

Rapportarkivét

06/00131-21	Intern	t arki v n r	Rapport lokalisering	Gradering Fortrolig
Ekstern rapport nr			Fortrolig pga Muting	Fortrolig fra dato:
	Dato sept	År 2006	Sulfidmalm A/S	r og/eller oppdragstaker) ical LTD
Fylke Telemark Aust-Agder	Bergdistrikt			1; 250 000 kartblac 2 Skien Arendal
Dokument	type	200.000		
Råstofftype Cu Ni				
	Ekstern rapport nr hysical surveys on t D; Logistics Report Fylke Telemark Aust-Agder Dokument	Ekstern rapport nr Overse Sulfide hysical surveys on the Bamble at D: Logistics Report 2006 UTEM Dato Sept Fylke Telemark Aust-Agder Dokument type Råstofftype	Ekstern rapport nr Oversendt fra Sulfidmalm a.s. hysical surveys on the Bamble and Ertelie D: Logistics Report 2006 UTEM Survey I Dato År sept. 2006 Fylke Telemark Aust-Agder Dokument type Forekom Bamble S Råstofftype	Ekstern rapport nr Oversendt fra Sulfidmalm a.s. Portrolig pga Muting Muting Dato Ar Sept. 2006 Fylke Telemark Aust-Agder Dokument type Posterist Agstraction of the service of the sulfidmalm and t

-Logistics Report-2006 UTEM Survey Bamble/Seljaasen Projects Norway for A/S Sulfidmalm

31 4856

LAMONTAGNE

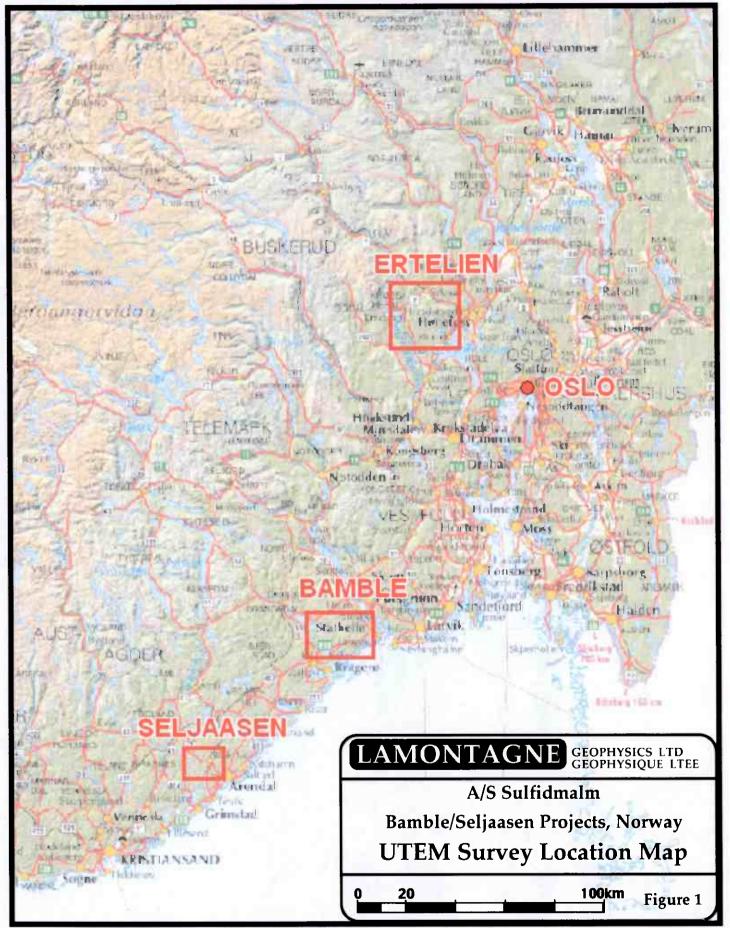
GEOPHYSICS LTD GEOPHYSIQUE LTEE

September, 2006

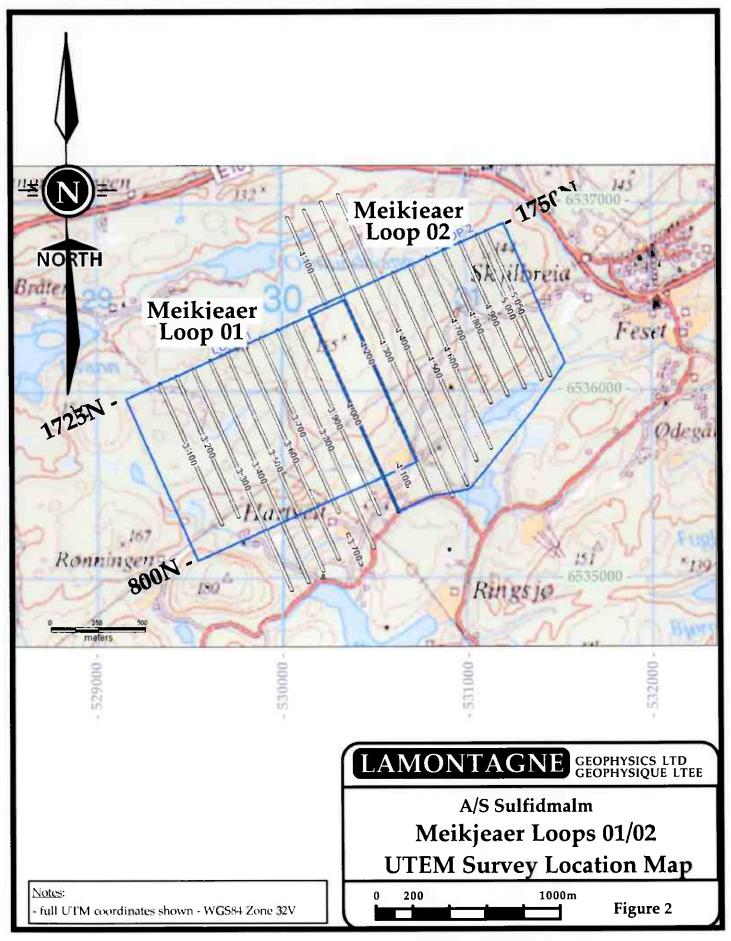
Rob Langridge, M.Sc.

CONTENTS

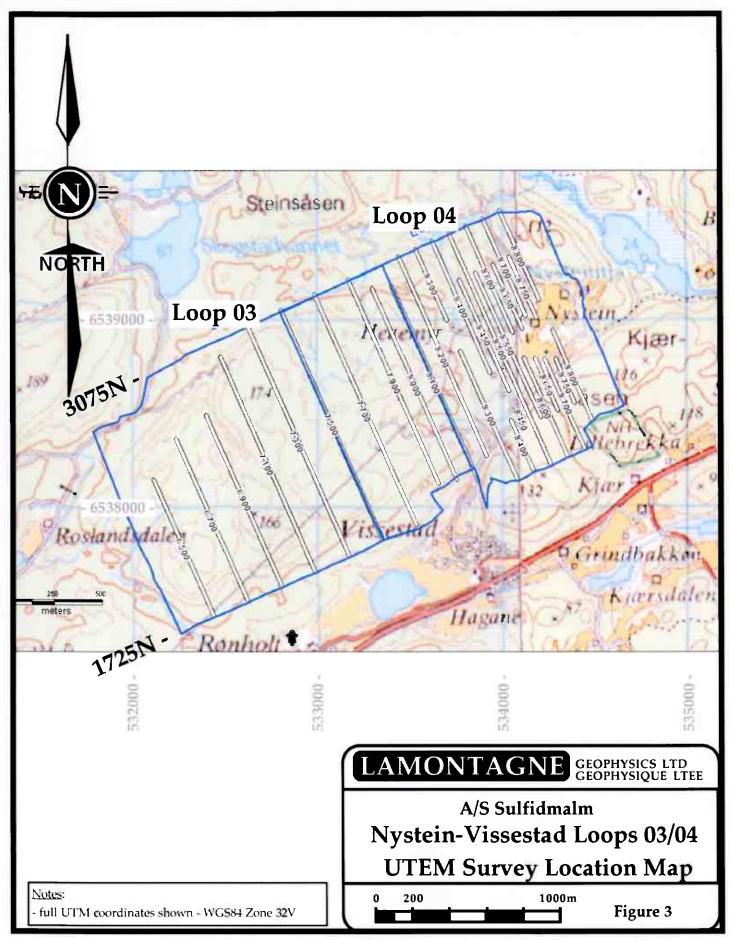
Introduction2
Survey Design
Survey Logistics8
Survey Results9
Discussion of the Grids10
Discussion of the Results11
Conclusions and Recommendations12
Figures
Figure 1: Property Location Map
Appendices
Appendix A

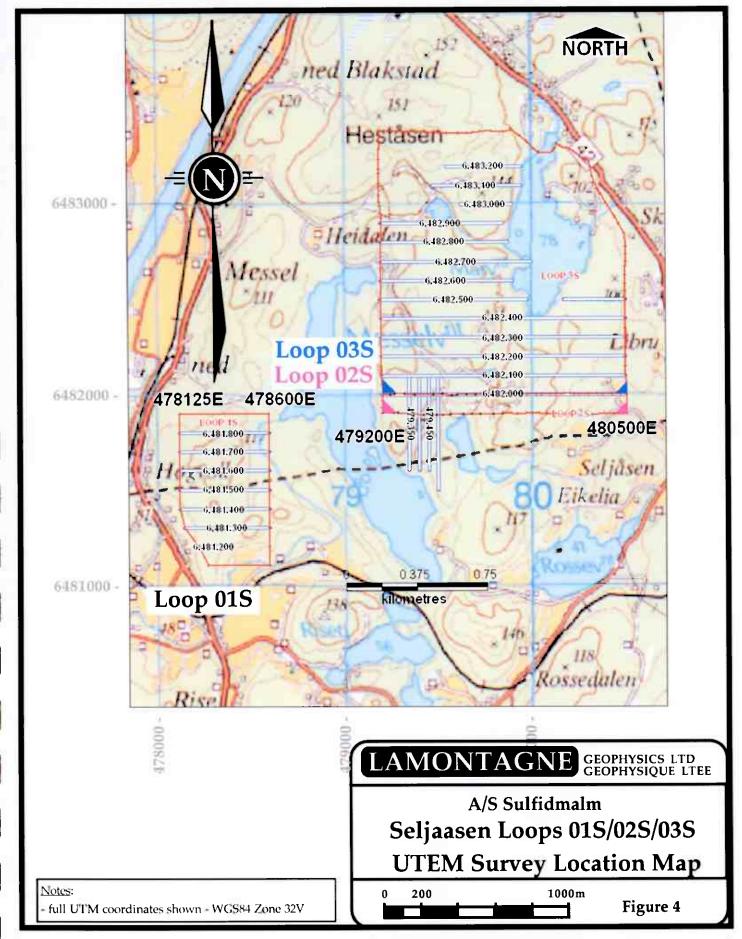

INTRODUCTION

During the period of June 13th 2006 through July 8th 2006 a UTEM survey was carried out by Lamontagne Geophysics Limited personnel for A/S Sulfidmalm in the Bamble/Seljaasen Project areas, Norway (Figure 1). The location of the various grids on the property are shown in Figures 2 through 4. Areas of interest were identified from the results of an airborne survey and previous work. The survey was carried out to locate conductors in the immediate grid areas with the intention of outlining targets for future work.


A total of 62.525km of surface UTEM data was collected using 7 transmitter loops (Loops 4, 9 and 9B). All lines were surveyed measuring the vertical component, Hz. A station spacing of 25m or 50m and a line spacing of 50m, 100m or 200m was employed. For all loops the receiver operated in 10-channel mode at a transmitter frequency of 3.251Hz.

This report documents the UTEM survey in terms of logistics, survey parameters and field personnel. Appendix A contains the data presented in profile form. Other appendices contain:


-	List of Personnel/Production Log	(Appendix B)
	an outline of the UTEM System	(Appendix C)
	Note on sources of anomalous Ch1	(Appendix D)
2	Note on 4Hz UTEM Data	(Appendix E)
-	Discussion of noise issue	(Appendix F)


A/S Sulfidmalm - 2006 UTEM Survey 0616 - Bamble/Seljaasen Projects - Norway pg 3

A/S Sulfidmalm - 2006 UTEM Survey 0616 - Bamble/Seljaasen Projects - Norway pg 4

A/S Sulfidmalm - 2006 UTEM Survey 0616 - Bamble/Seljaasen Projects - Norway pg 5

A/S Sulfidmalm - 2006 UTEM Survey 0616 - Bamble/Seljaasen Projects - Norway pg 6

SURVEY DESIGN

This UTEM survey is part of a nickel exploration program in the Bamble/ Seljaasen Project areas. Historically, mining of Ni-bearing massive sulfide deposits has been carried out in the area. The UTEM survey was planned and carried out to outline and allow better definition of known conductors, to detect/outline new conductors and to detect/outline deeper features and depth continuations of known features.

The grid and loop layout was designed by A/S Sulfidmalm/Falconbridge Ltd. personnel to allow efficient coverage of the project area. Loop size and locations were selected to provide good coupling with the expected targets, to enhance the signal to noise, and to allow efficient coverage of the grid area. The base frequency was lowered from the international standard ~26Hz to 3.251Hz to eliminate the response of many "moderate" conductors - these responses will have decayed away by Ch1 time. Any remaining Ch1 responses are then considered to be representative of conductors of an appreciably higher conductivity.

The survey parameters employed:

- both in-loop and outside-the-loop coverage with 2 receivers
- 1.70mm diameter (~2mm² ~14-gauge) copper wire DAMID PE GR 2
- variable transmitter loop size to fit the area to be covered and the relief
- line spacing of 200m, 100m or 50m intervals as required
- station interval of 25m or 50m with detailing at 12.5m as required.
- Hz (vertical component measurements)
- 10-channel data at a frequency of 3.251Hz
- minimum 256 stacking (512 half-cycles) increased where noise levels dictate

In nickel exploration non-decaying Channel 1 (Ch1) conductors are indicative of highly conductive mineralization. Any non-decaying anomalous Ch1 features are therefore of interest. Non-decaying channel UTEM anomalies can reflect:

- i) the presence of conductive mineralization
- ii) the presence of a magnetic anomaly
- iii) poor geometric control either station location or loop location

These are outlined in more detail in Appendix D. From an interpretation standpoint magnetic anomalies and geometric control should be considered and evaluated as a mandatory part of any interpretation. From a field standpoint precise geometric control should be part of any UTEM survey where the target is non-decaying. Poor geometric control has the potential to both mask and invent Ch1 conductors.

For this survey GPS data was made available by the client for use in reducing the UTEM data. Note: elevations at a small number of stations were erroneous by ~30m and have been corrected GPS data was collected for all survey points and at intervals around all transmitter loops. Note that due to time and logistical constraints the Lamontagne crew collected the GPS data (Garmin eTrex handhelds) for Loops 3/4. GPS data collection for UTEM reduction should be most detailed along loop fronts - the most important portion of the loop from a UTEM reduction perspective. The goal along the loop front - and for in-loop surveying the loop sides/back - is to recover the topographic shape of the loop as well as the loop/line intersection points.

A/S Sulfidmalm - 2006 UTEM Survey 0616 - Bamble/Seljaasen Projects - Norway pg 7

SURVEY LOGISTICS

A Lamontagne Geophysics crew mobilized from Canada on June 11th and arrived in Oslo on June 12th. The crew consisted of Rob Langridge (crew chief), John Frost (operator), Kevin Arsenault (looper/operator) and Patrick Foley (looper). The crew collected the surface equipment at the field house near Tyristrand on June 12th and headed to a rented field house at Stavnes to the east of Kragerø. The following morning - June 13th - the crew toured the survey area with Falconbridge Geologist Trevor Blair and then laid out Loop 02 at Meikjeaer in the afternoon. Surveying began the following morning - June 14th.

Seven transmitter loops were used during the surface UTEM survey for a total surface survey coverage of 62.525km. Figures 2 through 4 show the loop locations and grid layouts. Access to the Bamble/Seljaasen Project areas was by pick-up truck and then on foot. The grid/loop positions had been established by GPS and were demarcated by flagging. The flagging was removed by the UTEM crew as the stations were surveyed unless otherwise indicated.

Loop numbering began at Loop 1 and the loops were numbered as follows:

Meikjeaer Loops 1 and 2 Nystein-Vissestad Loops 3 and 4 Seljaasen Loops 1S, 2S and 3S

Surveying in the Bamble area (Meikjeaer and Nystein-Vissestad Grids) was completed on June 29th and packing began for the move to rental accommodation on Tromay southeast of Arendal. Over the next two days we packed/cleaned/moved and unpacked and laid out Loop 01S on the Seljaasen Grid. Surveying at Seljaasen began the following day - July 2nd. We completed work at Seljaasen on July 7th and packed for the move to Tyristrand to work on another project. The move to Tyristrand was completed in two vehicles on July 8th. Details of the daily production and personnel are included in the Production Log (Appendix B) along with a summary of production.

Electrical connection to the generator was made through an LGL isolation-transformer and a Variac which was rewired to conform with the sockets (standard 2-pin/side-clip ground european) on the generator. This worked well for the duration of the survey. The generator was left in the field during most nights.

In general, surface surveying for all loops went well, although at times - due to noise levels - slowly. Noise levels proved to be high and in places, along certain geologic structures and proximal to powerlines, extremely high. Higher noise levels in the vertical component are typical of very resistive areas. Locally, noisy areas indicate some channeling of telluric currents along features in the very-resistive country rock. The noise levels encountered in the project area are discussed further in Appendix F.

The survey equipment consisted of two UTEM 3 receivers and one UTEM 3 transmitter as well as all necessary accessories, support equipment and backup equipment. Data was reduced on a field computer (Macintosh) and UTEM profiles and digital data were made available/emailed to the client's personnel on a daily basis.

The weather during the survey was good. In terms of surveying we found that constantly scanning for flagging on uncut lines - in the middle distance - resulted in a number of stick-in-the-eye incidents. Safety glasses were obtained and the problem was lessened considerably. It is highly recommended that in this type of surveying - working in brush in summer on uncut lines - glasses be worn. Note that this may require the use of prescription safety glasses by some crew members.

Ticks also proved to be a concern and a considerable effort was made to "groom" after/during a days work and to use insect repellent. It should be noted that one crew member tested positive for Lyme disease after the work and received treatment. If further work is planned in this area the possibility of a vaccine being available should be investigated.

SURVEY RESULTS

The results of the survey are summarized and presented as UTEM profiles in Appendix A. The survey Grids and Loop Locations are presented in Figures 2 through 4. Overall the data quality is good - though in places it is noisy. Evidence of conductors and/or conductive features (many cultural) are evident in the profiles, particularly the profiles near the old mine workings. Although every effort was taken to shelter the receiver coil, minor wind noise may be evident in some profiles. Note the elevations at a small number of stations were erroneous by ~30m. These have been corrected.

Surface profiles are listed by Grid and Loop number and presented as 3-axis profiles in the following order:

Hz continuous norm Ch1 reduced (blue separator)
Hz point normalized Ch1 reduced (pink separator)

A description of the standard plotting formats used and of the UTEM System is presented in Appendix C.

Outline of surface profile types

Hz continuous norm

Ch1 reduced

(blue separator)

Continuous normalization is useful for detection of the presence of anomalies at any position on a profile. The anomaly shape is distorted by the normalization to the local field. As the field gets very big near the wire the continuously normalized Ch1 tends towards zero.

top axis - Ch5-10 middle axis - Ch2-5 bottom axis - Ch1 bottom axis - topography - no vertical exaggeration normalization point: all loops all lines ~centre of the loop

Point normalized data is useful for interpretation purposes. Anomaly shape is preserved as is the amplitude if the normalization point is local to the anomaly.

All the data collected have been normalized to a point at the centre of the loop. This field value is the smallest field value inside the loop and is a standard field value used for plotting, when surveying from inside the loop.

Note: Typically the normalization point for off-loop profiles is 4-500m out from the centre of the loop front and for inside-the-loop profiles it is the loop centre.

The disadvantage of point normalization is that small errors in location near the wire and in current tend to appear as large errors in Ch1. If the loop/station locations and the current are accurately known then point normalized Ch1 (in the absence of a local conductor) will tend to be continuous approaching the wire - unlike the continuously normalized Ch1 which, as described above, will dip to zero.

top axis - Ch5-10 middle axis - Ch2-5 bottom axis - Ch1 bottom axis - topography - no vertical exaggeration

Discussion of the Grids

The profiles presented in Appendix A have been reduced with a grid produced from the GPS data collected by the client (Note: the exception being locations for Loops 3 and 4 at Nystein-Vissestad which were collected by the Lamontagne crew). The overall results are quite good (Appendix A). Some of the character in Ch1 profiles is due to remaining errors in loop/line location - this is particularly true near the loop wire where errors in station/loop location/elevation have a larger effect (Appendix D). Aside from survey accuracy and day-to-day variation sources of error in location include "adjustments" of the loop to topography and wind. Note the elevations at a small number of stations were erroneous by ~30m. These have been corrected.

The GPS data for Loops 01, 02 and some lines of Loops 03 and 04 was provided by the usual source - Rob McKeown. Additional GPS data for Loops 03 and 04 as well as the Seljaasen Grid data was provided by a new source (Scandicraft). Scandicraft was unfamiliar with this style of surveying and there were some teething problems - mainly to do with grid labeling. In addition the data was only provided in full UTM coordinates - Rob McKeown provides both full UTM coordinates and local grid coordinates. Note that this means that the full UTM coordinates provided with this UTEM data set should be used in preference to the local grid coordinates which have been calculated by the author of this report. For reference the transformation from UTM to grid coordinates used by the author follow.

Note that due to time and logistical constraints the Lamontagne crew collected the GPS data (Garmin eTrex handhelds) for Loops 3 and 4 at Nystein-Vissestad.

For the Meikjeaer (Loops 1 and 2) and Nystein-Vissestad (Loops 3 and 4) Grids

a) translation:

UTM WGS84 Zone 32V (UTMeasting, UTMnorthing) (527200mE, 6533200 mN) becomes

Local Meikjeaer and Nystein-Vissestad Grids (gridEast, gridNorth) (0,0)

b) rotation:

Local Meikjeaer and Nystein-Vissestad gridNorth is @ azimuth 336.

For the Seljaasen Grid (Loops 1S, 2S and 3S)

a) translation:

UTM WGS84 Zone 32V (UTMeasting, UTMnorthing) (470000mE, 6480000mN) becomes

Local Seljaasen Grid (gridEast, gridNorth) (0,0)

b) rotation:

Local Seljaasen Grid gridNorth is @ azimuth 360.

Discussion of the Results

The Bamble/Seljaasen Project areas are very resistive, and the noise levels proved to be high and in places, along certain geologic structures, extremely high. Higher noise levels in the vertical component are typical of very resistive areas. Local noisy areas can indicate some channeling of telluric currents along features in the very-resistive country rock. Further discussion of the noise levels encountered in the project area is presented in Appendix F.

The in-loop configuration (Loop 09B) provides better quality data at considerably reduced stacking levels. The in-loop configuration has been the choice for most of the grids surveyed on this project. Note that in-loop surveying is less sensitive to small, steeply-dipping conductors

CONCLUSIONS AND RECOMMENDATIONS

The results of the survey are summarized and presented as UTEM profiles in Appendix A. The final Grid and Loop Locations are presented in Figures 2 through 4. Overall the data quality is good - though in places it is noisy. The area surveyed is very resistive and cultural noise was present on many of the grids. This contributed to the elevated noise levels seen in the profiles, and is discussed further in Appendix F.

The profiles presented in Appendix A have been reduced with the grids corrected as well as possible using available information. The location of all survey points and loop locations were collected using a GPS system. The accuracy of the GPS system was quite high, however small errors may remain in loop locations and station/coil locations. Some GPS data for this survey was provided by a new source (Scandicraft) and was only provided in full UTM coordinates. In addition, due to time and logistical constraints, the Lamontagne crew collected the GPS data (Garmin eTrex handhelds) for Loops 3 and 4 at Nystein-Vissestad. Note that this means that the full UTM coordinates provided with this UTEM data set should be used in preference to the local grid coordinates which have been calculated by the author of this report. For reference the transformation from UTM to grid coordinates used by the author are listed above.

Two considerations when planning future summer field work in the area:

- It is highly recommended that in this type of surveying working in brush in summer on uncut lines - glasses be worn. Note that this may require the use of prescription safety glasses by some crew members.
- Ticks also proved to be a concern and crews should be informed to be watchful and to use insect repellent. It should be noted that one crew member tested positive for Lyme disease after the work and received treatment. If further work is planned in this area the possibility of a vaccine being available should be investigated. Post-field testing for exposure to Lyme disease is recommended

Otherwise, in terms of logistics, the survey ran quite smoothly. The Falconbridge Ltd. employees were extremely helpful and their hard work is greatly appreciated.

Appendix A

0616 UTEM Profiles

UTEM 3 Survey

Bamble/Seljaasen Projects Norway

for

A/S Sulfidmalm

Presentation

The results of the survey are summarized and presented as UTEM profiles in Appendix A. The survey Grids and Loop Locations are presented in Figures 2 and 3. Overall the data quality is good - though in places it is noisy. Evidence of conductors and/or conductive features are evident in the profiles, particularly the profiles near the old mine workings. Although every effort was taken to shelter the receiver coil, minor wind noise may be evident in some profiles. Note the elevations at a small number of stations were erroneous by ~30m. These have been corrected. A description of the standard plotting formats used and of the UTEM System is presented in Appendix C.

The profiles are listed by Loop number and presented as 3-axis profiles in the order:

Hz continuous norm Hz point normalized Ch1 reduced (blue separator) Ch1 reduced (pink separator)

Outline of surface profile types

Hz continuous norm

Ch1 reduced

(blue separator)

Continuous normalization is useful for detection of the presence anomalies at any position on a profile. The anomaly shape is distorted by the normalization to the local field. As the field gets very big near the wire the continuously normalized Ch1 tends towards zero.

top axis - Ch5-10 middle axis - Ch2-5 bottom axis - Ch1

bottom axis - topography - no vertical exaggeration

Hz point normalized

Ch1 reduced

(pink separator)

normalization point:

all data

~300m out from the loop-front centre

Point normalized data is useful for interpretation of responses. Anomaly shape is preserved as is the amplitude if the normalization point is local to the anomaly.

All the data collected have been normalized to a point at the centre of the loop. This field value is the smallest field value inside the loop and is a standard field value used for plotting, when surveying from inside the loop.

Note: Typically the normalization point for off-loop profiles is 4-500m out from the centre of the loop front and for inside-the-loop profiles it is the loop centre.

The disadvantage of point normalization is that small errors in location near the wire and in current tend to appear as large errors in Ch1. If the loop/station locations and the current are accurately known then point normalized Ch1 (in the absence of a local conductor) will tend to be continuous approaching the wire - unlike the continuously normalized Ch1 which, as described above, will dip to zero.

top axis - Ch5-10 middle axis - Ch2-5 bottom axis - Ch1

bottom axis - topography - no vertical exaggeration

UTEM Survey 0616 -A/S Sulfidmalm Bamble/Seljaasen Projects, Norway Appendix A pg A1

List of Data Collected and Plotted

Bamble/Seljaasen - summer - 2006

Surface coverage - @ 3.251 Hertz

8	Line	coverage	
Loop 01	Line 3100E Line 3200E Line 3300E Line 3400E Line 3500E Line 3600E Line 3700E Line 3900E Line 4000E Meikjeaer	875N - 1725N 875N - 1725N 825N - 1725N 450N - 1725N 450N - 1725N 475N - 1725N 400N - 550N 700N - 1725N 475N - 1725N 600N - 1725N 575N - 1725N	850m 850m 900m 1275m 1275m 1250m 150m 1025m 1250m 1125m 1150m
Loop 02 in-loop	Line 4100E Line 4200E Line 4300E Line 4400E Line 4500E Line 4600E Line 4700E Line 4900E Line 5000E Line 5050E	650N - 800N 575N - 1750N 525N - 1750N 525N - 1750N 625N - 1750N 700N - 1750N 875N - 1750N 900N - 1750N 900N - 1750N 900N - 1750N	150m 1175m 1225m 1225m 1125m 1050m 875m 850m 850m 850m
Loop 02N off-loop	Line 4100E Line 4200E Line 4300E Line 4400E Meikjeaer	650N - 800N 1750N - 2250N 1750N - 2250N 1750N - 2250N Loop 02 Total	500m 500m 500m 500m 12200m
Loop 03	Line 6500E Line 6700E Line 6900E Line 7100E Line 7300E Line 7500E Nystein-Vissestad	1725N - 2525N 1725N - 2675N 1725N - 2725N 1725N - 2975N 1725N - 3075N 1725N - 3075N Loop 03 Total	800m 950m 1000m 1250m 1350m 1350m

	Line	coverage	
Loop 04	Line 7700E	1725N - 3075N	1350m
	Line 7900E	1850N - 3075N	1225m
	Line 8000E	1875N - 2950N	1075m
	Line 8100E	1825N - 2950N	1125m
	Line 8200E	1725N - 30 7 5N	1350m
	Line 8300E	1725N - 2475N	750m
		2650N - 3075N	425m
	Line 8400E	1725N - 2025N	300m
		2175N - 3075N	900m
	Line 8450E	1975N - 2825N	850m
	Line 8500E	1725N - 2250N	525m
		2350N - 3075N	7 25m
	Line 8550E	1975N - 2350N	3 7 5m
		2400N - 28 2 5N	425m
	Line 8600E	1725N - 2300N	5 75 m
		2425N - 3075N	650m
	Line 8650E	19 75N - 2275N	3 00m
		2450N - 2825N	375m
	Line 8700E	1725N - 2250N	525m
		2500N - 3075N	5 7 5m
	Line 8750E	1975N - 2225N	250m
		2475N - 2825N	350m
		1850N - 21 7 5N	325m
	Line 8800E	2550N - 3075N	525m
	Nystein-Vissestad	Loop 04 Total	15850m
	Bamble 2006	5 Total	45.850km

	Line	coverage	
Loop 01S	Line 1200N	225E - 375E	150m
	Line 1300N	150E - 600E	450m
	Line 1400N	125E - 600E	4 7 5m
	Line 1500N	125E - 600E	475m
	Line 1600N	125E - 600E	47 5m
	Line 1700N	125E - 600E	47 5m
	Line 1800N	125E - 600E	4 7 5m
	Seljaasen	Loop 01S Total	2975m
Loop 02S	Line 2000N	9200E - 10500E	1300m
•	Line 2100N	9200E - 10500E	1300m
	Line 2200N	9200E - 10500E	1300m
	Line 2300N	9200E - 10500E	1300m
	Line 2400N	9200E - 10500E	1300m
	Line 2500N	9200E - 9975E	775m
	. 0	10 17 5E - 10500E	325m
	Line 2600N	9200E - 9900E	7 00m
	Line 2700N	9200E - 10000E	800m
	Line 2800N	9200E - 9850E	650m
	Line 2900N	9200E - 9850E	650m
	Line 3000N	9575E - 9900E	325m
	Line 3100N	9475E - 9950E	4 7 5m
	Line 3200N	9550E - 9950E	400m
	Seljaasen	Loop 02S Total	11600m
Loop 03S	Line 9350E	1600N - 2100N	500m
	Line 9400E	1600N - 2100N	500m
	Line 9450E	1600N - 2100N	500m
	Line 9500E	1500N - 2100N	600m
	Seljaasen	Loop 03S Total	2100m
	Seljaaser	n 2006 Total	16.675km
	Bamble/Seljaaser	n 2006 Total	62.525km

0616

Surface UTEM Profiles

Bamble

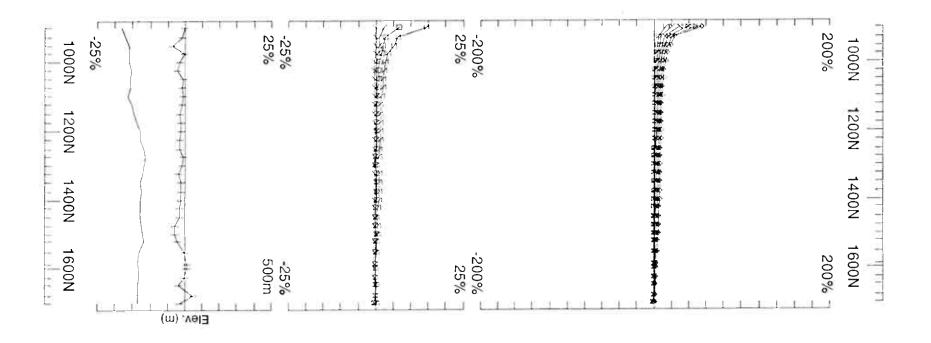
Meikjeaer Loops 01/02

Nystein-Vissestad Loops 03/04

Seljaasen Loops 01S/02S/03S

Meikjeaer

Loop 01


Hz @3.251 Hz frequency

continuous norm

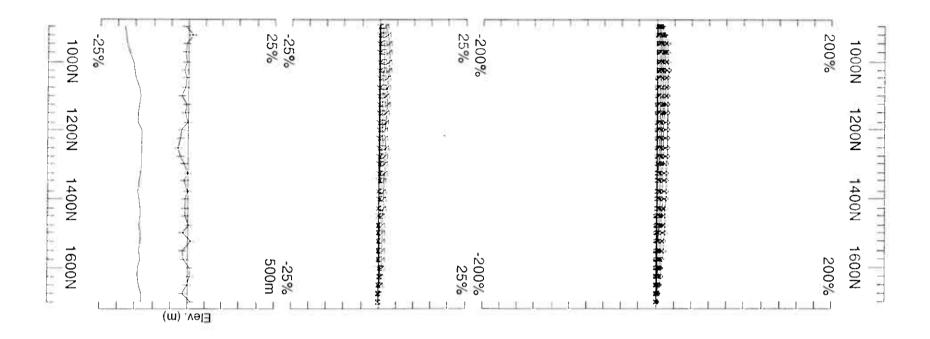
Ch1 reduced

Loop 01	Line 3100E	875N - 1725N	850m
	Line 3200E	875N - 1725N	850m
	Line 3300E	825N - 1725N	900m
	Line 3400E	450N - 1725N	1275m
	Line 3500E	450N - 1725N	1275m
	Line 3600E	475N - 1725N	1250m
	Line 3700E	400N - 550N	150m
		700N - 1725N	1025m
	Line 3800E	475N - 1725N	1250m
	Line 3900E	600N - 1725N	1125m
	Line 4000E	575N - 1725N	1150m
	Meikjeaer	Loop 01 Total	11100m

Loop 01 - continuous norm

Line: 3100E Contin. Norm at depth of 0 m

Compt: Hz


Secondary, (Chn - Ch1)/IHpl

Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

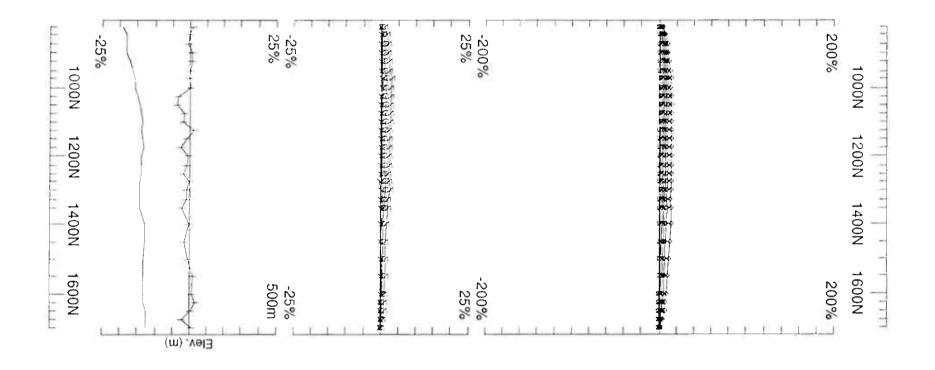
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Secondary, (Chn - Ch1)/IHpI

Line: 3200E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz


UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

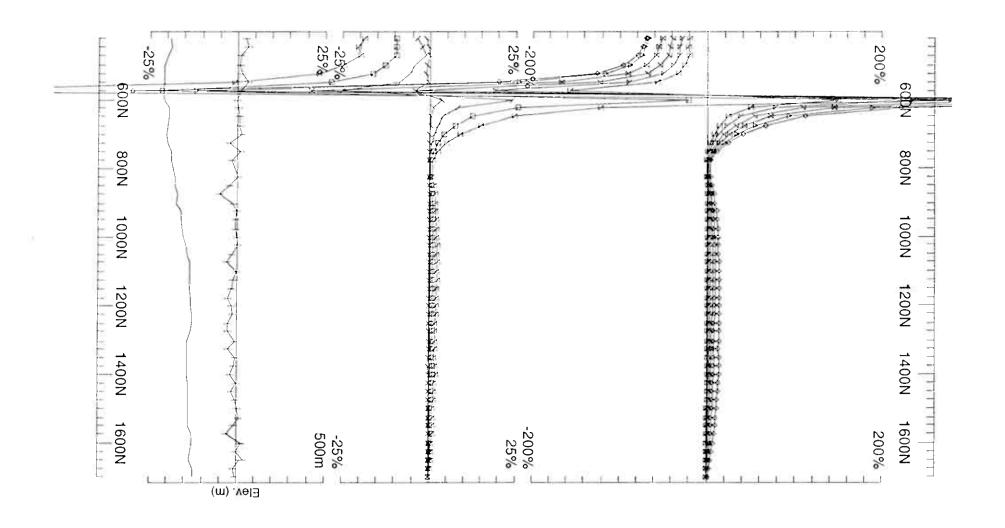
LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616

Surveyed 20/6/6 Reduced 5/9/6 Plotted 5/9/6

Loop: 01 Secondary, (Chn - Ch1)/IHpl

Line: 3300E Contin. Norm at depth of 0 m


Base Freq. 3.251 Hz Compt: Hz

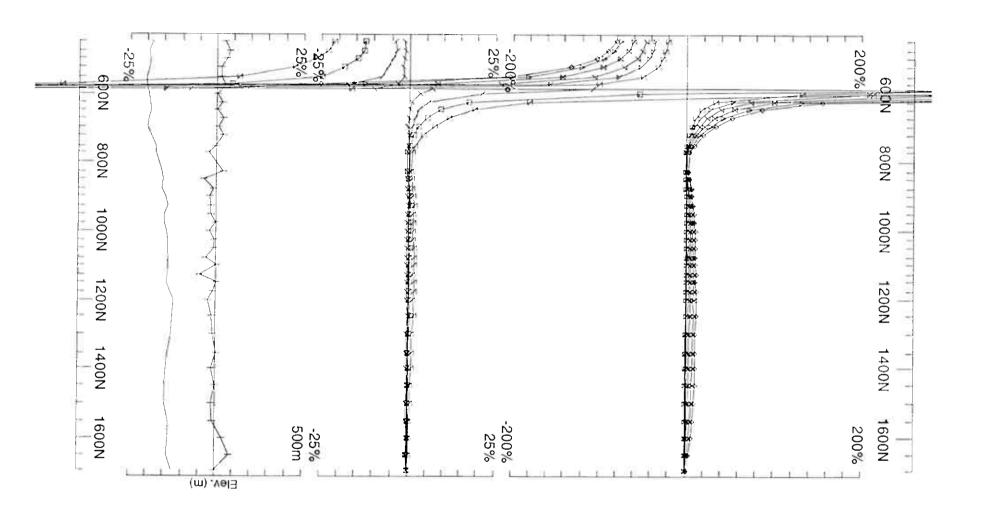
UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Surveyed 19/6/6 Reduced 5/9/6 Plotted 5/9/6

Loop: 01 Secondary, (Chn - Ch1)/IHpl

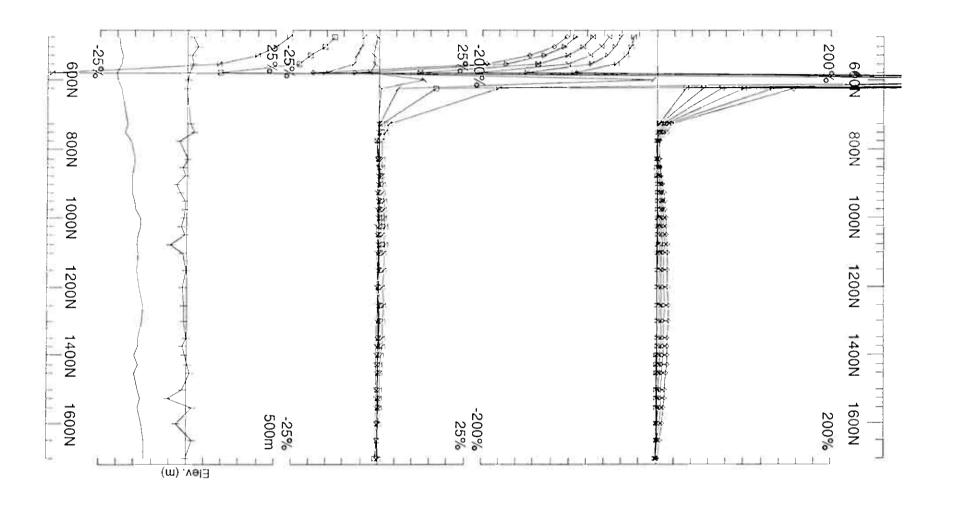

Line: 3400E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Surveyed 19/6/6 Reduced 19/6/6 Plotted 5/9/6


Surveyed: 19/6/6 Reduced: 19/6/6 Plotted: 5/9/6

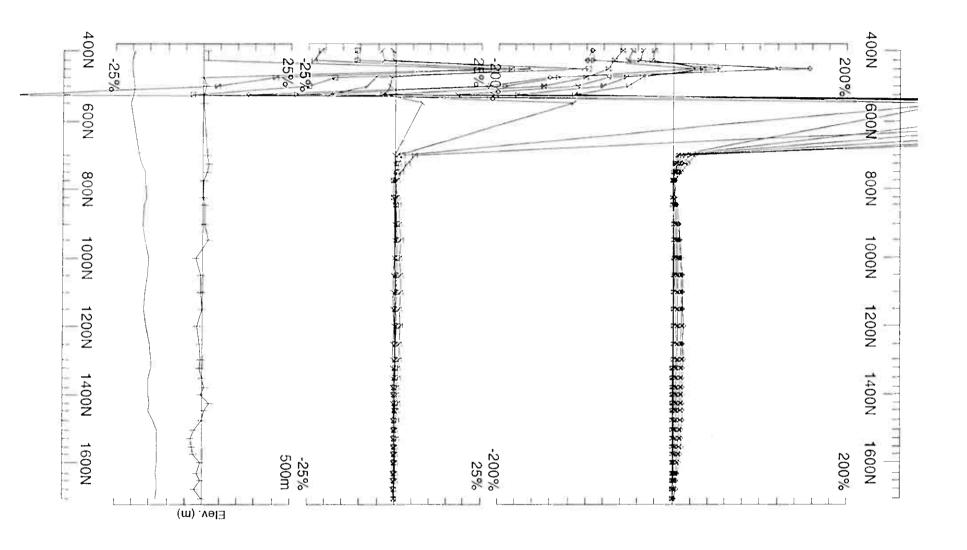
Loop: 01

Line: 3500E
Contin. Norm at depth of 0 m
Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616

Secondary, (Chn-Ch1)/IHpI


Line: 3600E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz Compt: Hz

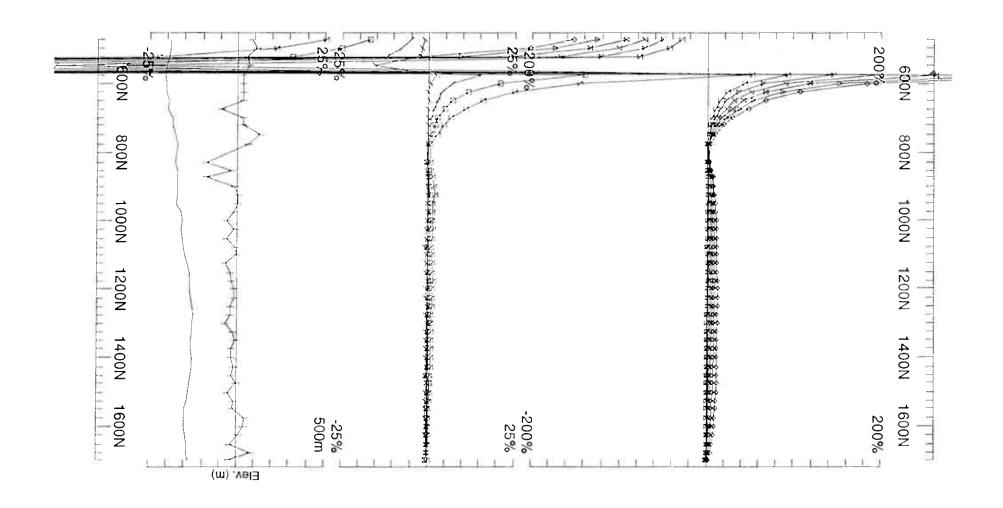
UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job GEOPHYSIQUE LTEE 0616

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

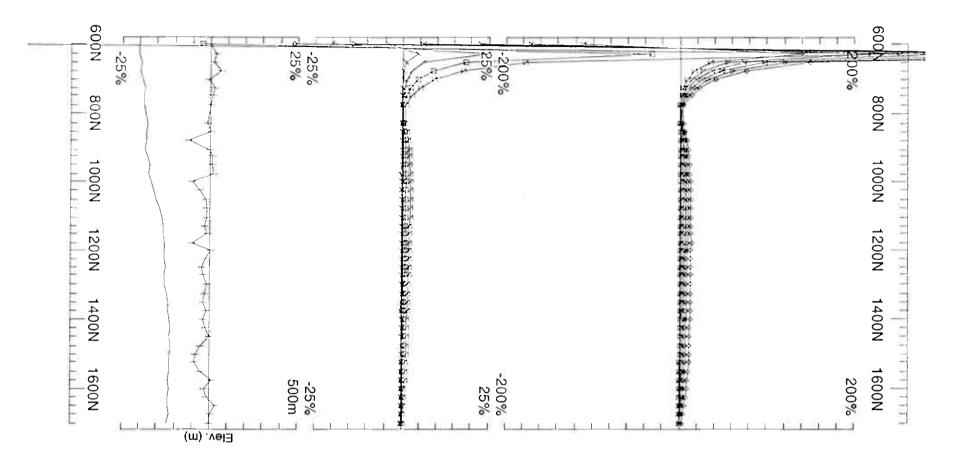

Line: 3700E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 5/9/6

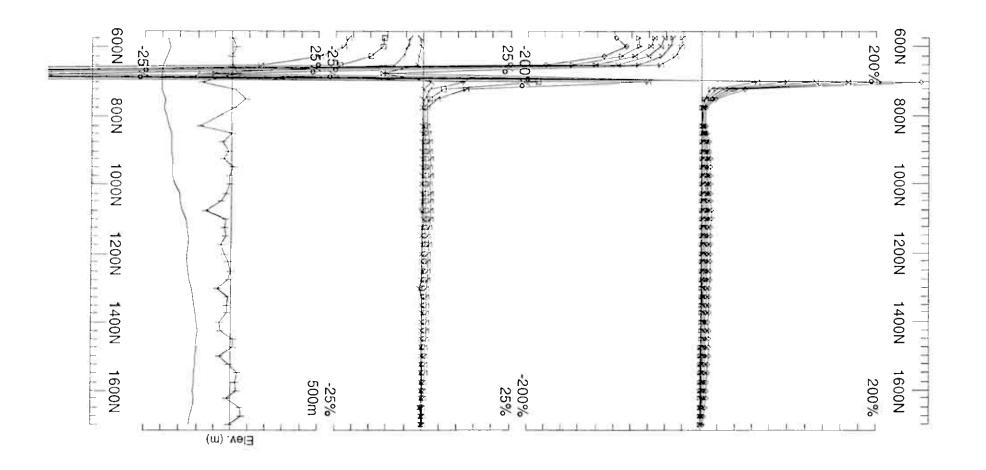

Secondary, (Chn - Ch1)/IHp!

Line: 3800E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616



Surveyed : 18/6/6 Reduced : 5/9/6 Plotted : 5/9/6

Loop: 01 Secondary, (Chn - Ch1)/IHpl Line: 3900E Contin. Norm at depth of 0 m Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB GEOPHYSIQUE LTEE 0616

Compt: Hz

Secondary, (Chn - Ch1)/IHpI

Line: 4000E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

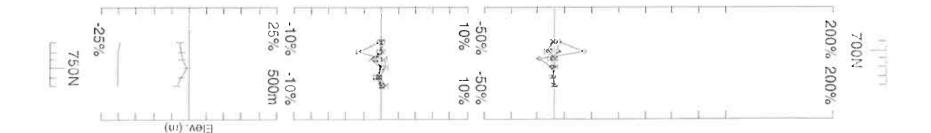
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616

Meikjeaer

Loop 02


Hz @3.251 Hz frequency

continuous norm

Ch1 reduced

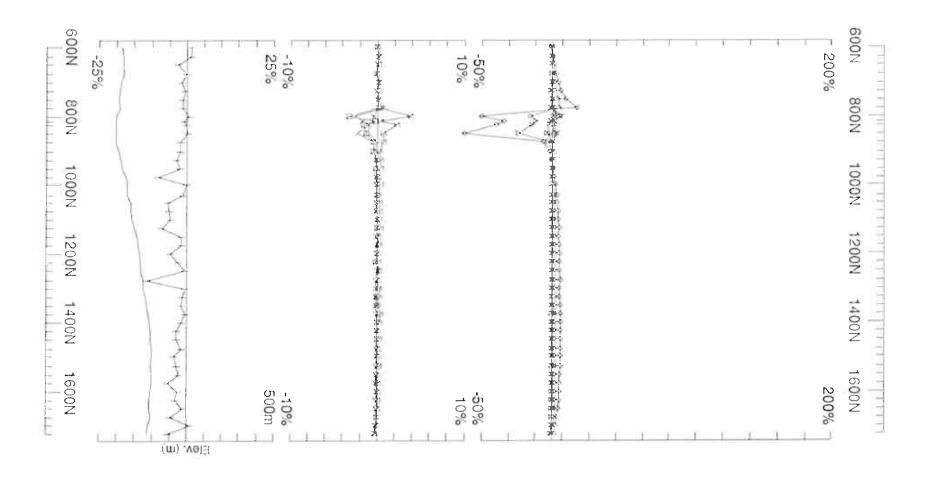
Loop 02	Line 4100E	650N - 800N	150m
in-loop	Line 4200E	575N - 1750N	1175m
	Line 4300E	525N - 1750N	1225m
	Line 4400E	525N - 1750N	1225m
	Line 4500E	625N - 1750N	1125m
	Line 4600E	700N - 1750N	1050m
	Line 4700E	875N - 1750N	875m
	Line 4800E	900N - 1750N	850m
	Line 4900E	925N - 1750N	825m
	Line 5000E	900N - 1750N	850m
	Line 5050E	900N - 1750N	850m
Loop 02N	Line 4100E	650N - 800N	500m
off-loop	Line 4200E	1750N - 2250N	500m
	Line 4300E	1750N - 2250N	500m
	Line 4400E	1750N - 2250N	500m
	Meikjeaer	Loop 02 Total	12200m

Loop 02 - continuous norm

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 4100E Contin. Norm at depth of 0 m


Base Freq. 3.251 Hz

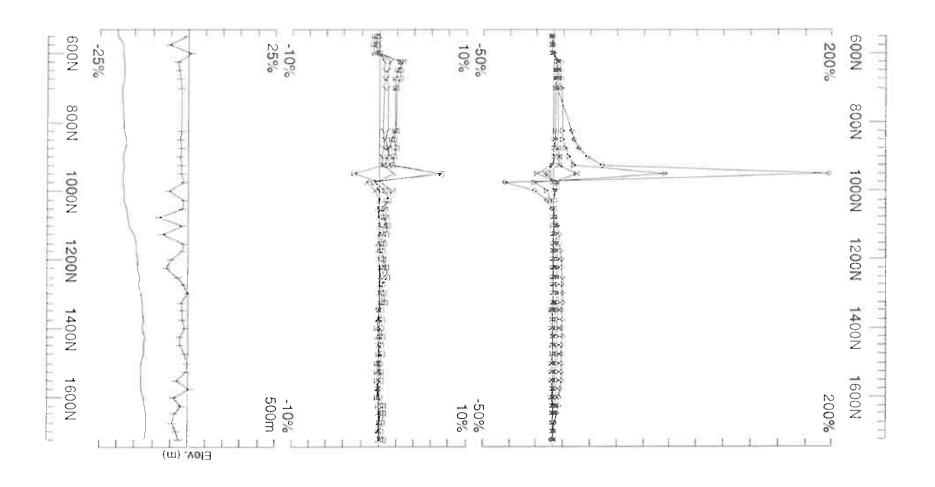
UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Surveyed 14.6.5 Reduced 69.6 Plotted 69.6

Secondary, (Chn - Ch1)/Hpl


Line: 4200E Contin. Norm at depth of 0 m

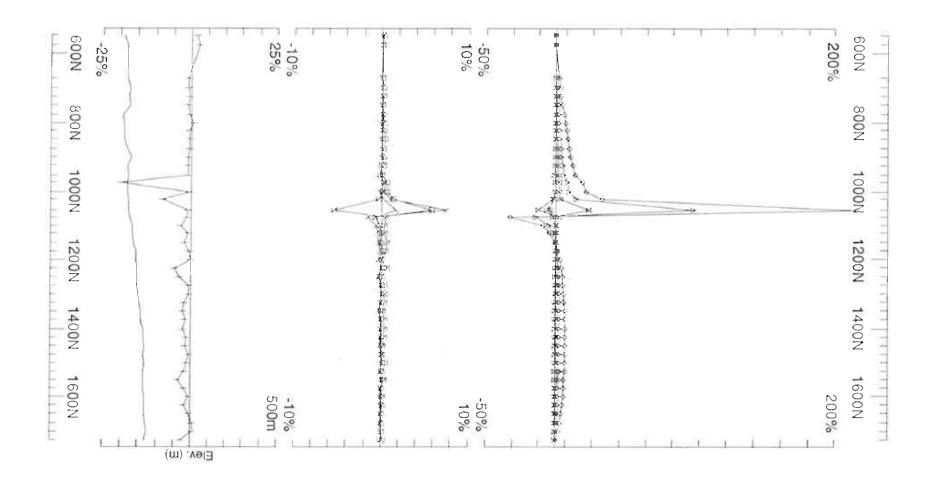
Base Freq. 3.251 Hz Compt: Hz

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Secondary, (Chn - Ch1)/IHpl


Line: 4300E Contin. Norm at depth of 0 m

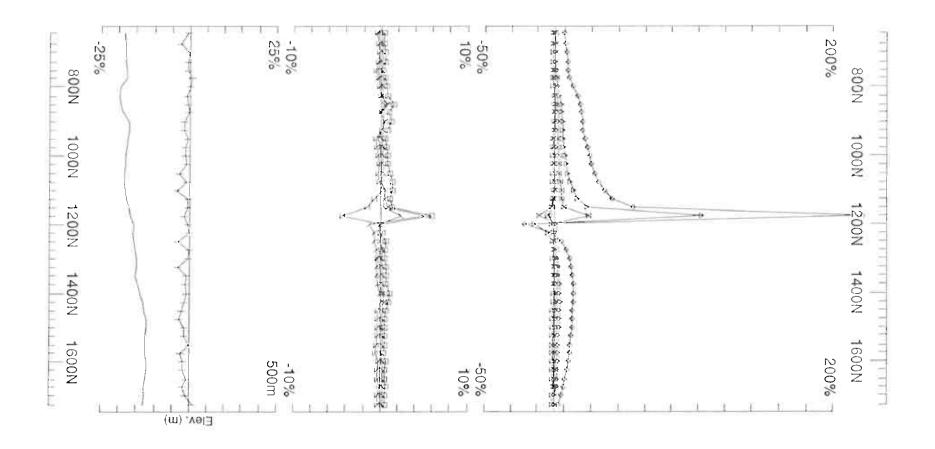
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Surveyed: 14.6/6 Reduced: 6.9/6 Plotted: 6/9/6

Secondary, (Chn - Ch1)/IHpI


Line: 4400E Contin. Norm at depth of 0 m

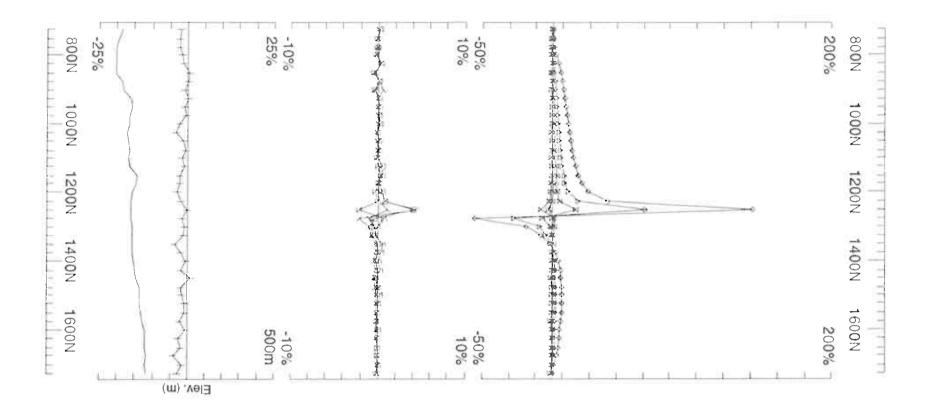
Base Freq. 3.251 Hz Compt: Hz

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Secondary, (Chn - Ch1)/IHpl


Line: 4500E Contin. Norm at depth of 0 m

Compt: Hz

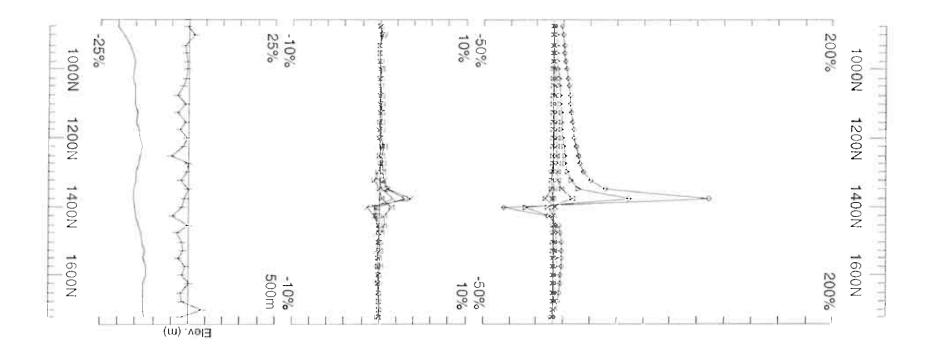
Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

Secondary, (Chn - Ch1)/IHpl

Line: 4600E Contin. Norm at depth of 0 m


Base Freq. 3.251 Hz

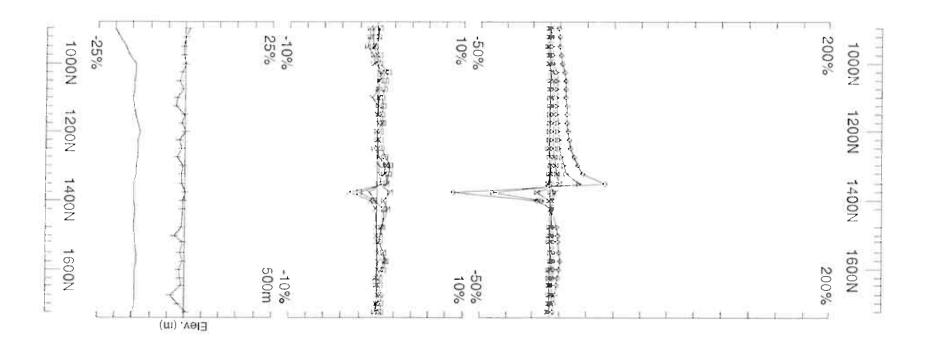
UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job GEOPHYSIQUE LTEE 0616

Compt: Hz

Secondary, (Chn - Ch1)/iHpl

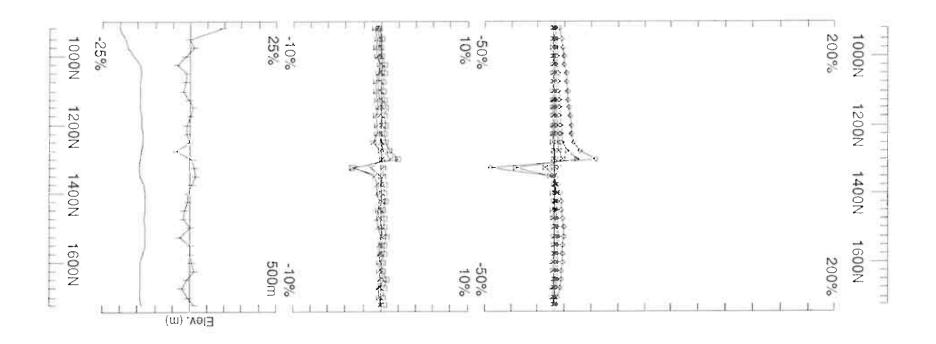

Line: 4700E Contin. Norm at depth of 0 m

Compt: Hz

LAMONTAGNE GEOPHYSICS LTD JOB 0616 Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm



Loop: 02 Secondary, (Chn - Ch1)/iHpl

Line: 4800E Contin. Norm at depth of 0 m

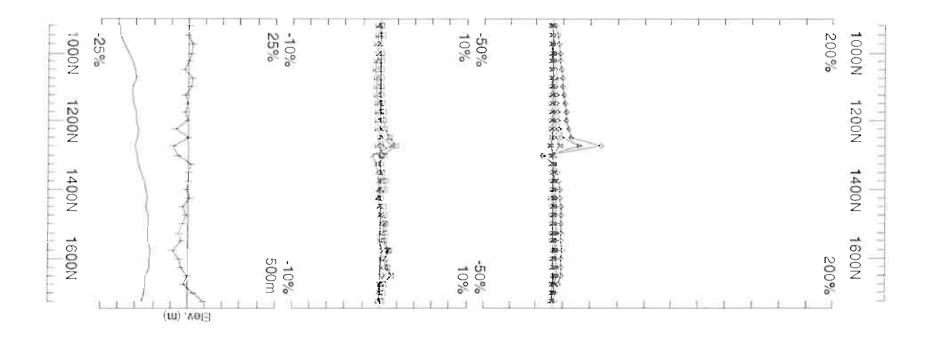
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 4900E Contin. Norm at depth of 0 m


Base Freq. 3.251 Hz

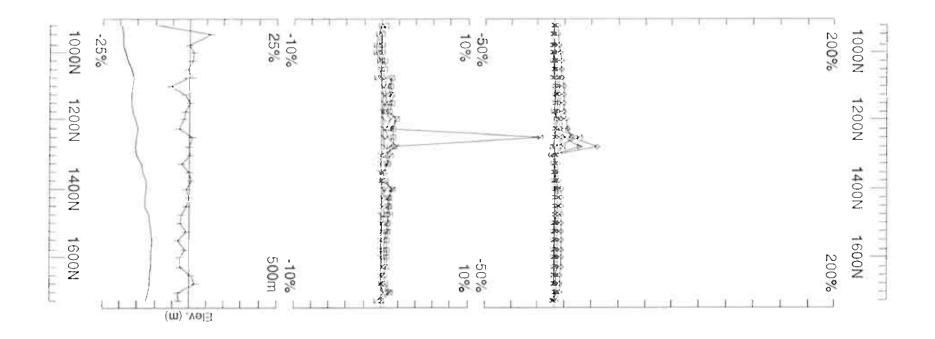
UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616

Compt: Hz


Secondary, (Chn - Ch1)/IHpI

Line: 5000E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

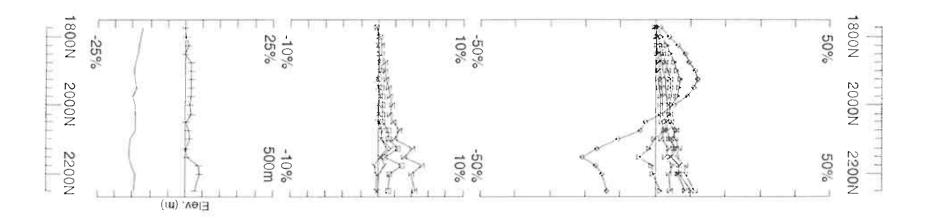
UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

Loop: 02 Secondary, (Chn - Ch1)/iHpl

Line: 5050E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz

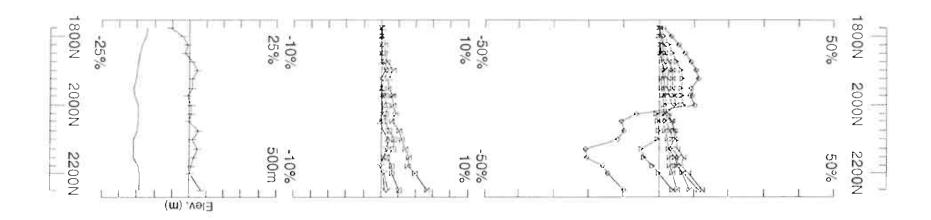

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616

Surveyed 15/6/6 Reduced 6/9/6 Plotted 6/9/6



Secondary, (Chn - Ch1)/IHpl

Line: 4100E Contin. Norm at depth of 0 m

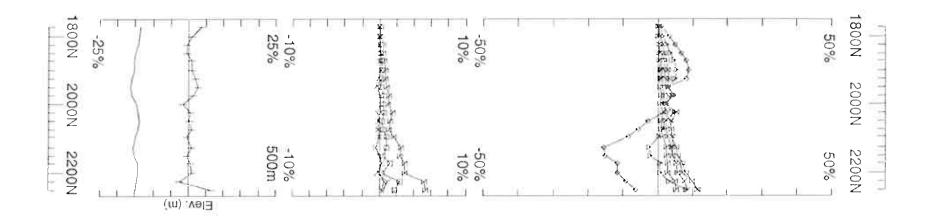
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 4200E Contin. Norm at depth of 0 m


Base Freq. 3.251 Hz

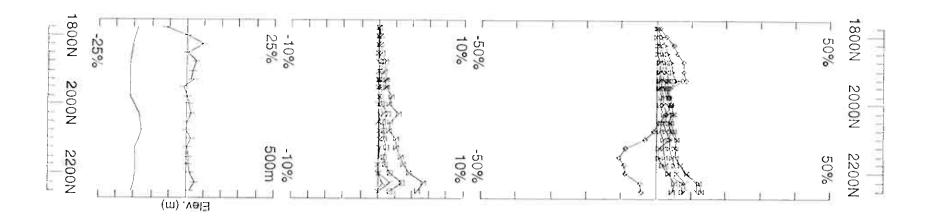
UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Surveyed 15.6.5 Reduced 6.79.6 Plotted 6/9.6

Secondary, (Chn - Ch1)/IHpl


Line: 4300E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz Compt: Hz

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB GEOPHYSIQUE LTEE 0616

Secondary, (Chn - Ch1)/IHpl

Line: 4400E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

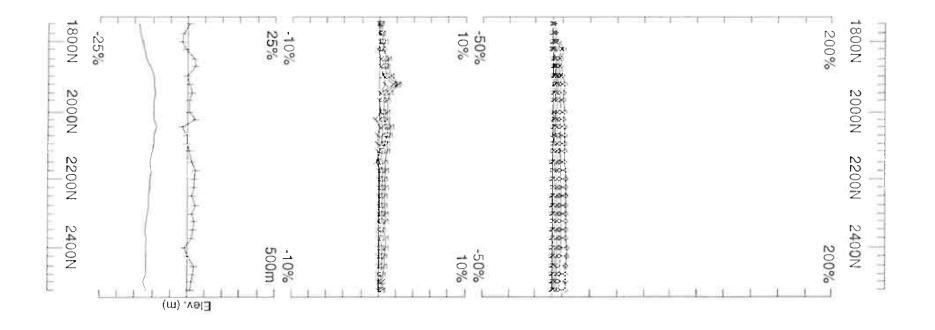
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Compt: Hz

Nystein-Vissestad

Loop 03


Hz @3.251 Hz frequency

continuous norm

Ch1 reduced

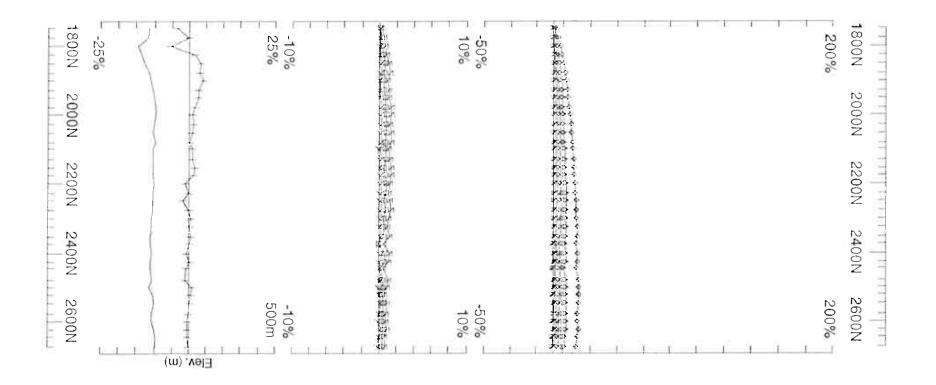
Loop 03	Line 6500E	1725N - 2525N	800m
	Line 6700E	1725N - 2675N	950m
	Line 6900E	1725N - 2725N	1000m
	Line 7100E	1725N - 2975N	1250m
	Line 7300E	1725N - 3075N	1350m
	Line 7500E	1725N - 3075N	1350m
	Nystein-Vissestad	Loop 03 Total	6700m

Loop 03 - continuous norm

Compt: Hz

Secondary, (Chn - Ch1)/iHpl

Line: 6500E Contin. Norm at depth of 0 m

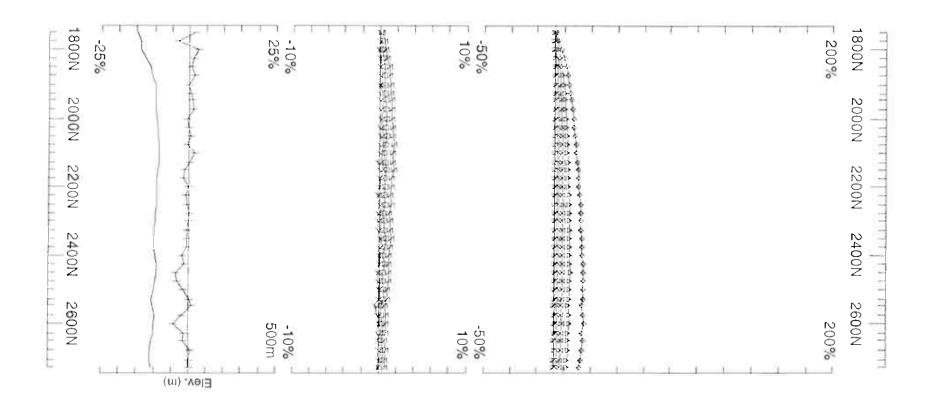

Base Freq. 3.251 Hz

UTEM Survey at: Nystein-Vissestad Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Surveyed 28.6.6 Reduced 29.6.6 Plotted £/9.6


Secondary, (Chn - Ch1)/IHpl

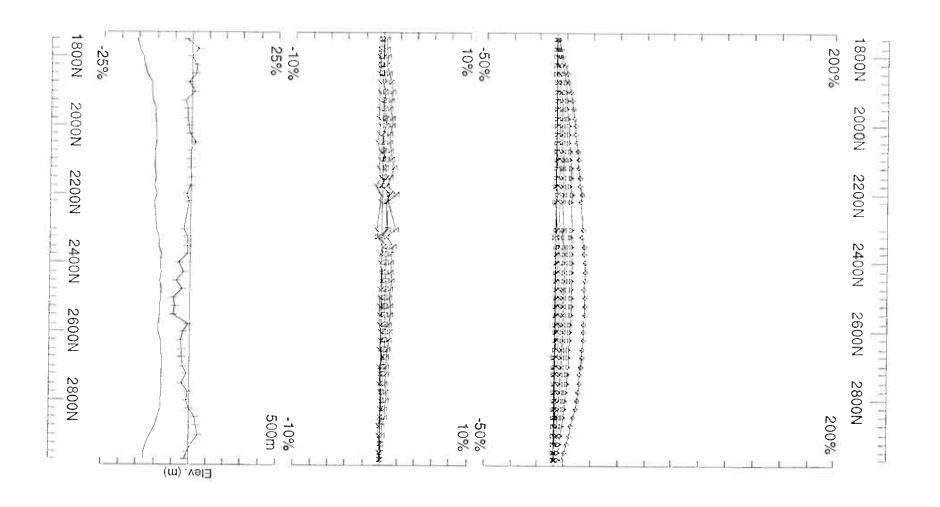
Line: 6700E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Nystein- Vissestad Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job GEOPHYSIQUE LTEE 0616 Surveyed 28/6/6 Reduced 29/6/6 Plotted 6/9/6

Compt: Hz

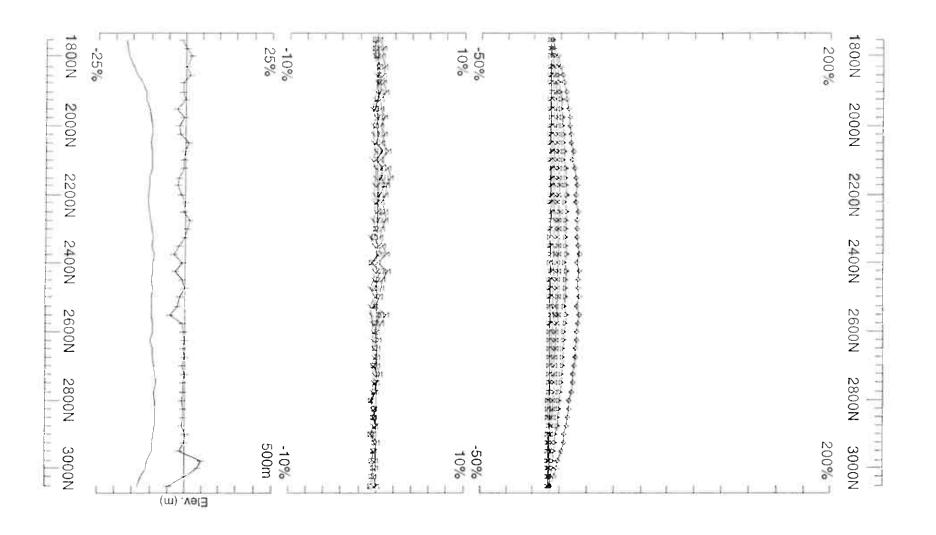

Secondary, (Chn - Ch1)/IHpl

Line: 6900E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Nystein- Vissestad Grid

For: A/S Sulfidmalm


Loop: 03
Line: 7100E
Compt: Hz

Secondary, (Chn - Ch1)/IHpl
Compt: Hz

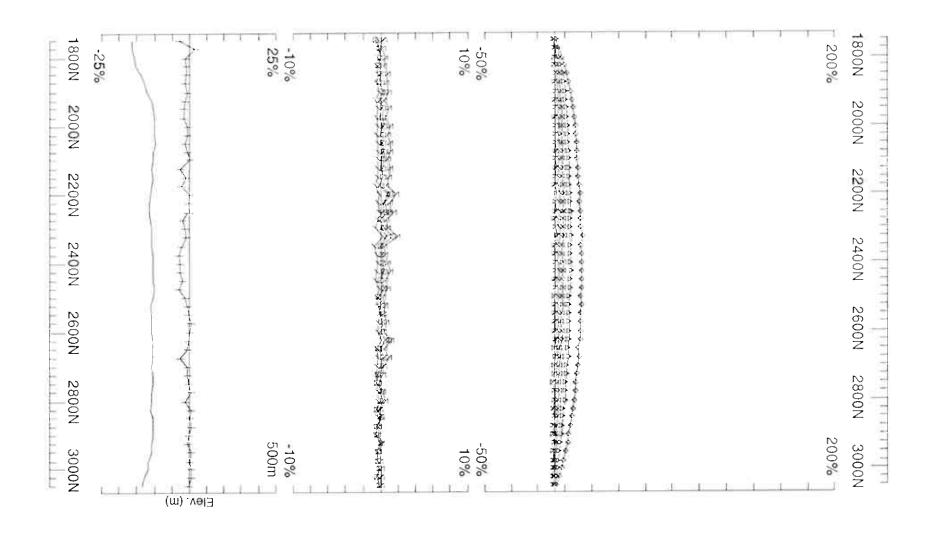
Secondary, (Chn - Ch1)/IHpl
Contin. Norm at depth of 0 m
Base Freq. 3.251 Hz

UTEM Survey at: Nystein- Vissestad Grid
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616
Plotted 6/0/6

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Line: 7300E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Nystein- Vissestad Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job GEOPHYSIQUE LTEE 0616

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 7500E Contin. Norm at depth of 0 m

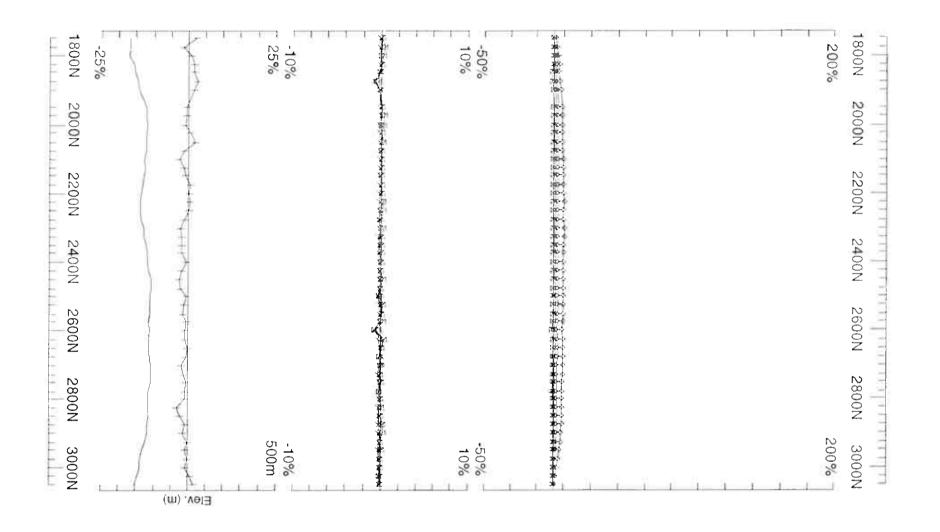
Base Freq. 3.251 Hz

UTEM Survey at: Nystein- Vissestad Grid

For: A/S Sulfidmalm

Nystein-Vissestad

Loop 04


Hz @3.251 Hz frequency

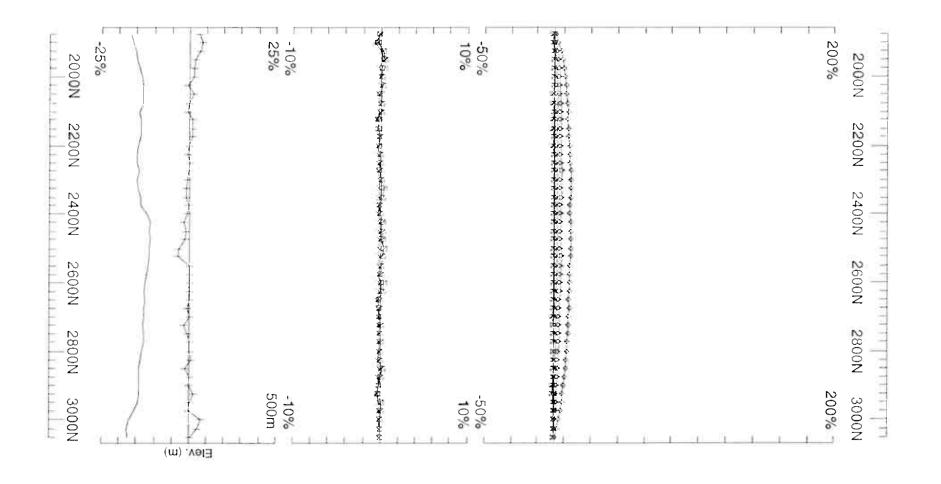
continuous norm

Ch1 reduced

Loop 04	Line 7700E	1725N - 3075N	1350m
	Line 7900E	1850N - 3075N	1225m
	Line 8000E	1875N - 2950N	1075m
	Line 8100E	1825N - 2950N	1125m
	Line 8200E	1725N - 3075N	1350m
	Line 8300E	1725N - 3075N	1175m
	Line 8400E	1725N - 3075N	1200m
	Line 8450E	1975N - 2825N	850m
	Line 8500E	1725N - 3075N	1250m
	Line 8550E	1975N - 2825N	1200m
	Line 8600E	1725N - 3075N	1225m
	Line 8650E	1975N - 2825N	675m
	Line 8700E	1725N - 3075N	1100m
	Line 8750E	1975N - 2825N	600m
	Line 8800E	1850N - 3075N	850m
	Nystein-Vissestad	Loop 04 Total	15850m

Loop 04 - continuous norm

Compt: Hz


Secondary, (Chn - Ch1)/IHpl

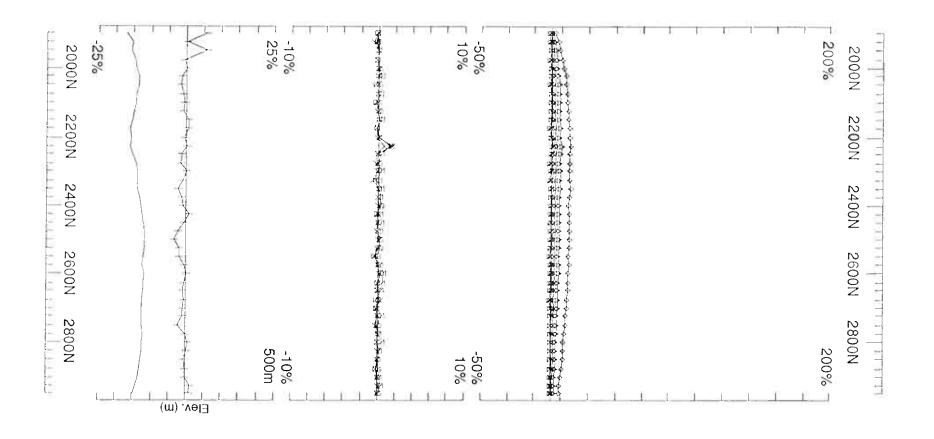
Line: 7700E Contin, Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

Compt: Hz

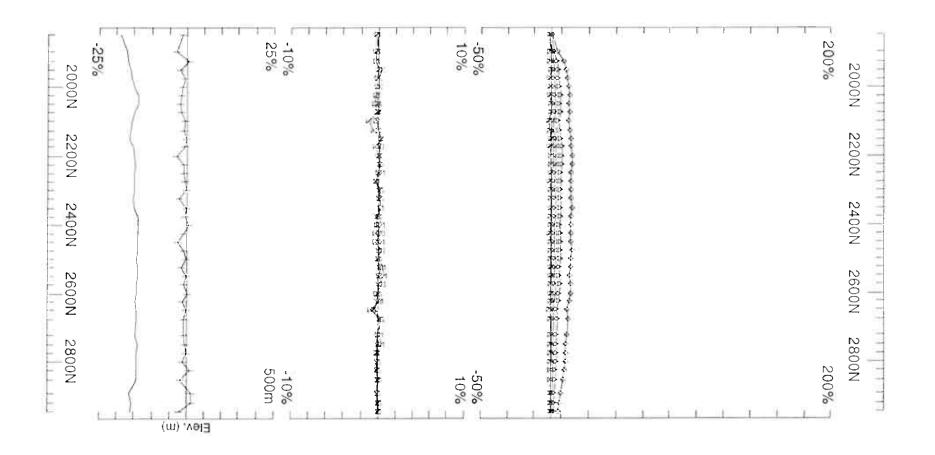

Secondary, (Chn - Ch1)/IHpI

Line: 7900E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm



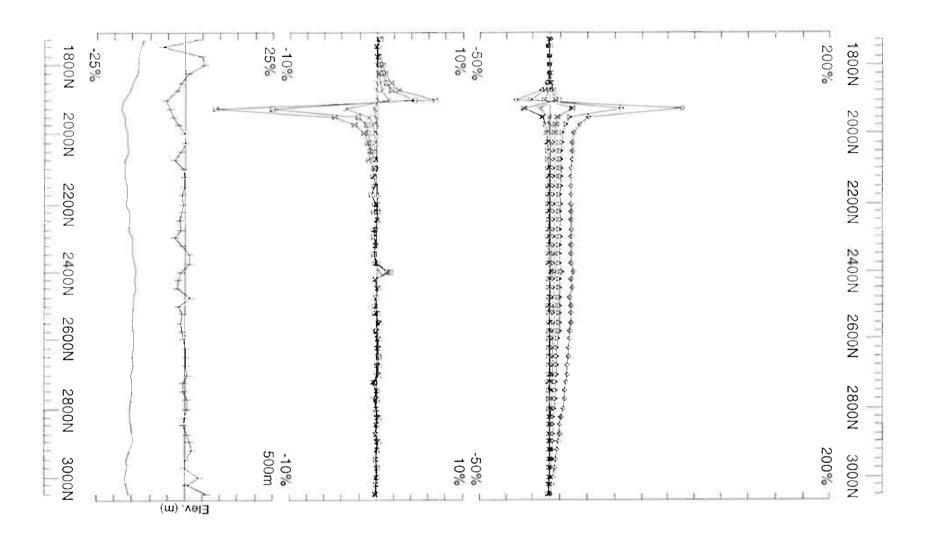
Loop: 04 Secondary, (Chn - Ch1)/IHpl Line: 8000E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

Compt: Hz

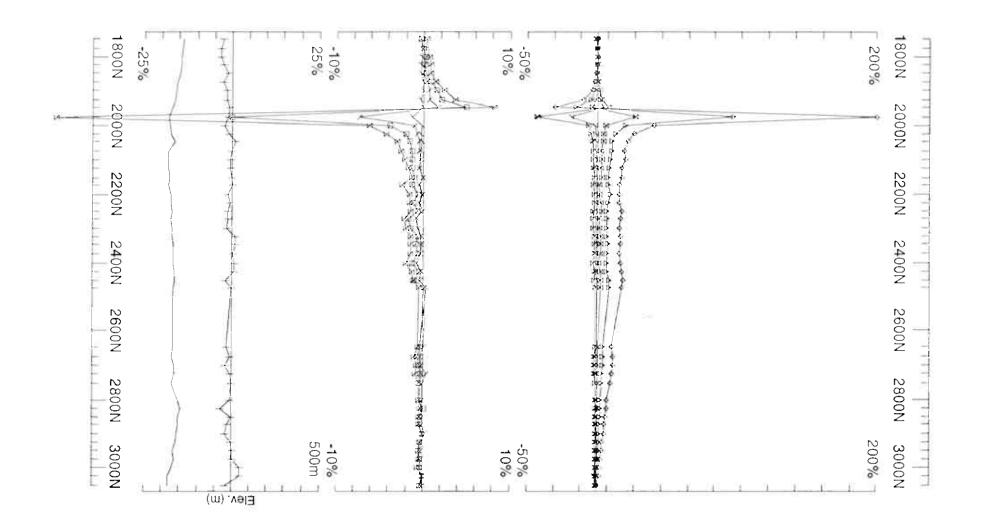

Secondary, (Chn - Ch1)/iHpl

Line: 8100E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm


Secondary, (Chn - Ch1)/IHpl

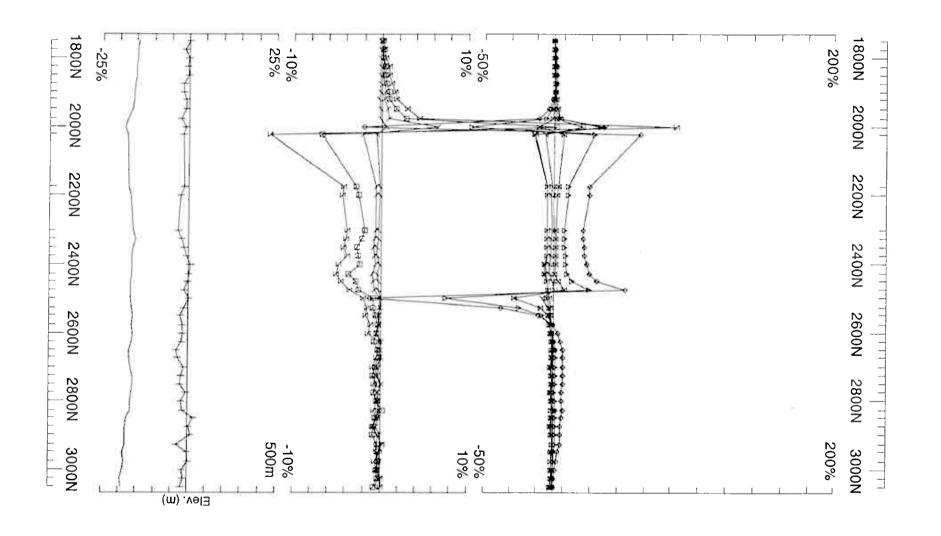
Line: 8200E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz Compt: Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

Secondary, (Chn - Ch1)/iHpi


Line: 8300E Contin. Norm at depth of 0 m

Compt: Hz

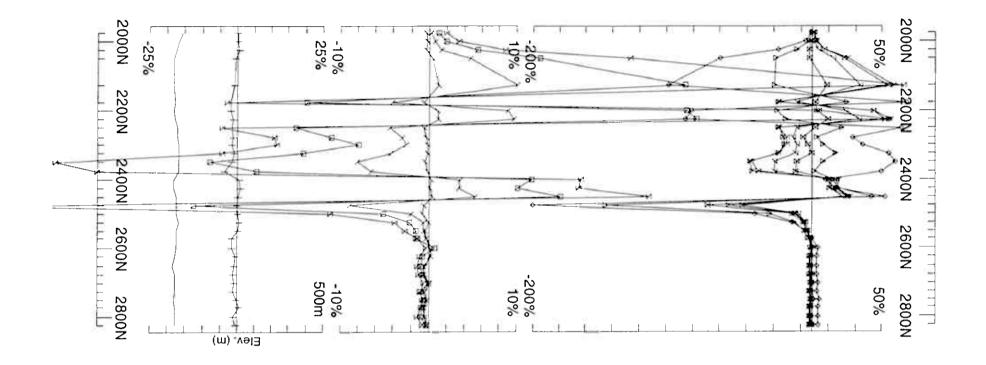
Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Line: 8400E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

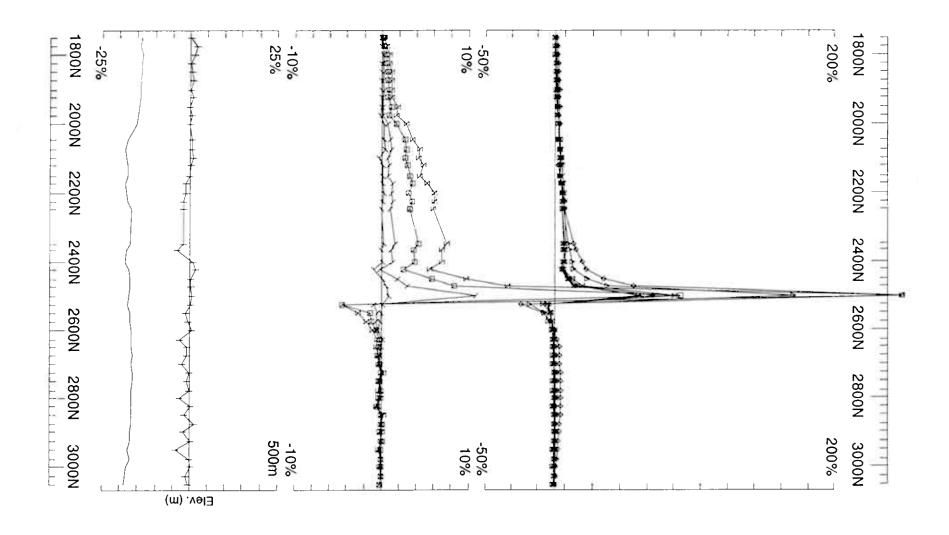
UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted: 6/9/6

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Line: 8450E Contin. Norm at depth of 0 m

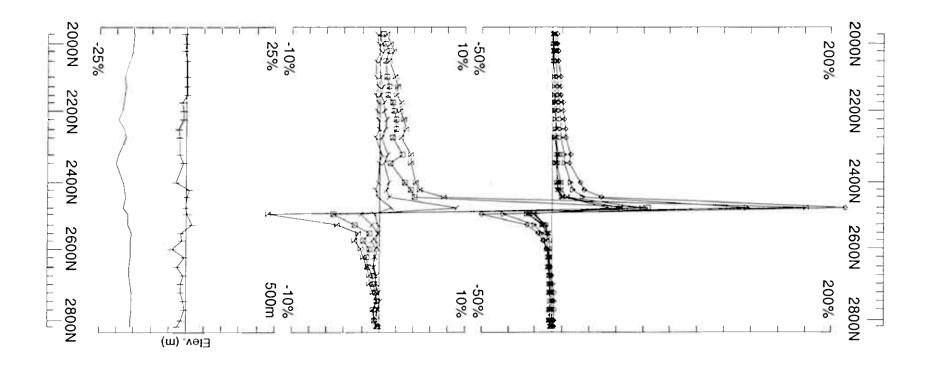
Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed: 25/6/6 Reduced: 6/9/6

Compt: Hz

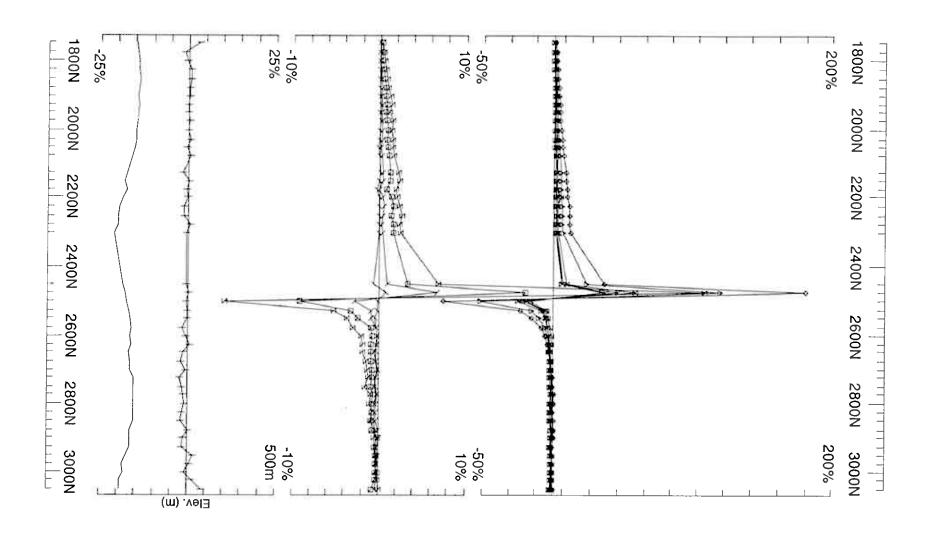

Secondary, (Chn - Ch1)/IHpl

Line: 8500E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

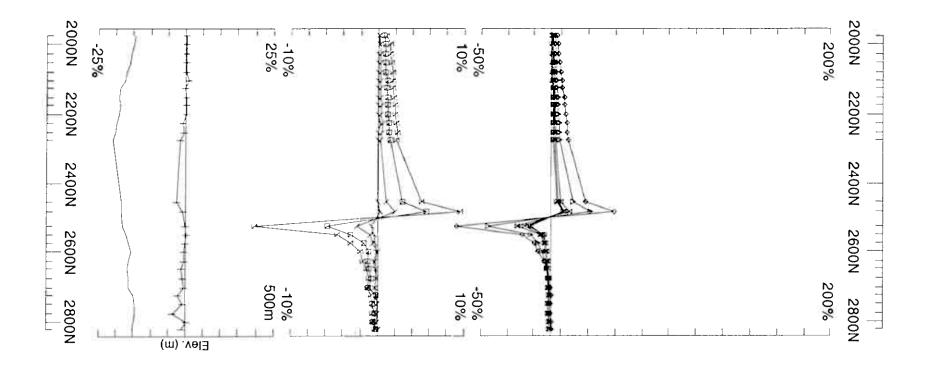

Loop: 04 Secondary, (Chn - Ch1)/IHpl Line: 8550E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plated 6/9/6


Secondary, (Chn - Ch1)/IHp!

Line: 8600E Contin. Norm at depth of 0 m

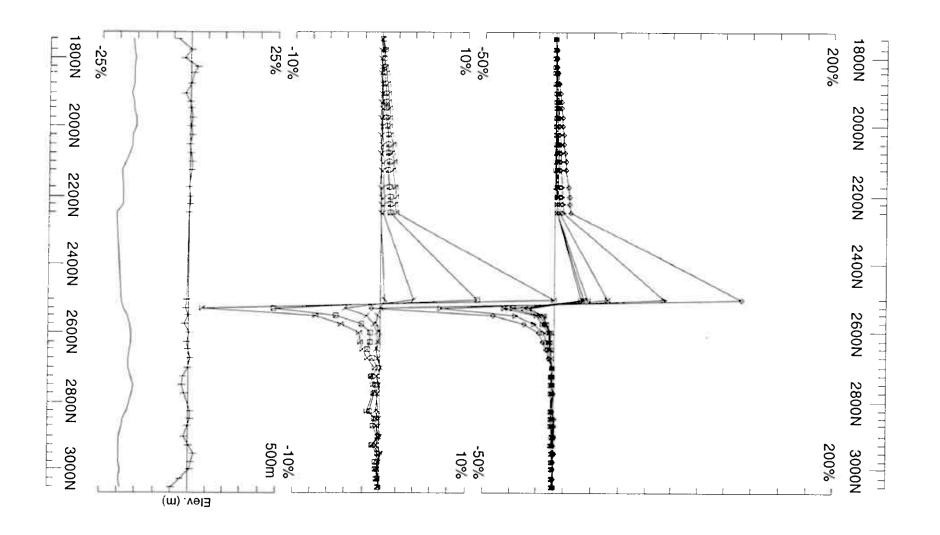
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6/9/6

Compt: Hz

Secondary, (Chn - Ch1)/|Hpl

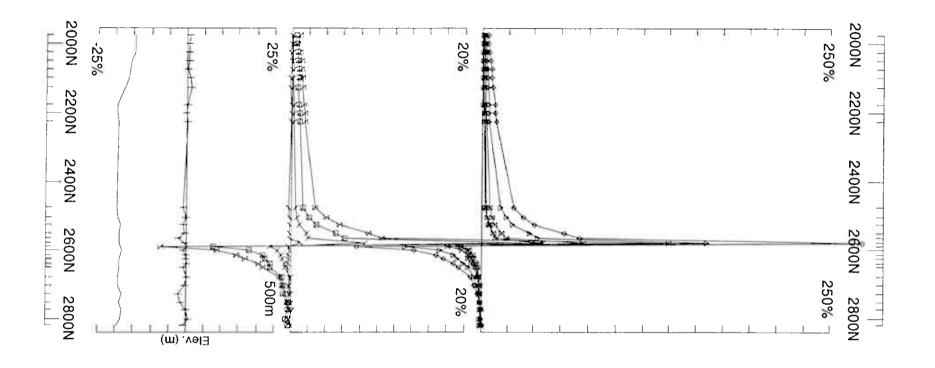

Line: 8650E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616 Plotted: 6/9/6



Loop: 04 Secondary, (Chn - Ch1)/IHpl Line: 8700E Contin. Norm at depth of 0 m

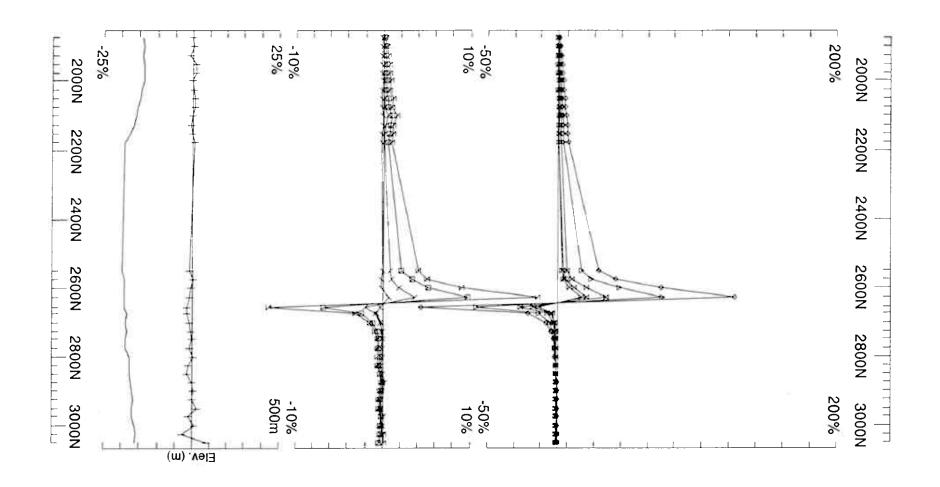
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6/9/6

Compt: Hz

Secondary, (Chn - Ch1)/IHpI


Line: 8750E Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plated: 6/9/6

Loop: 04 Secondary, (Chn - Ch1)/IHpl Line: 8800E Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz

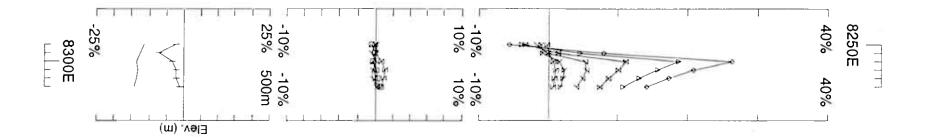
UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Platted 6.9%

Seljaasen

Loop 01S


Hz @3.251 Hz frequency

continuous norm

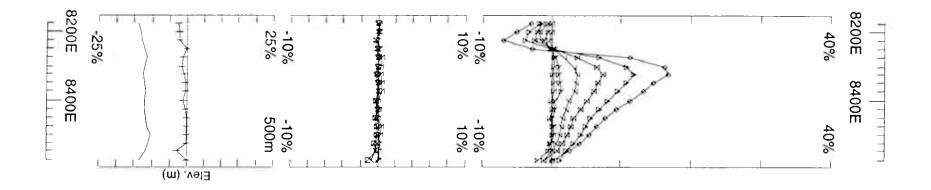
Ch1 reduced

Loop 01S	Line 1200N	225E - 375E	150m
	Line 1300N	150E - 600E	450m
	Line 1400N	125E - 600E	475m
	Line 1500N	125E - 600E	475m
	Line 1600N	125E - 600E	475m
	Line 1700N	125E - 600E	475m
	Line 1800N	125E - 600E	475m
	Seljaasen	Loop 01S Total	2975m

Loop 01S - continuous norm

Loop: 01S

Compt: Hz


Secondary, (Chn - Ch1)/IHpl

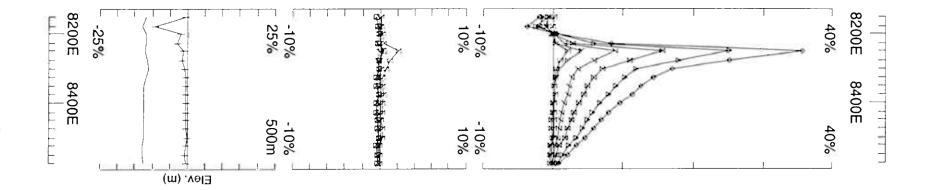
Line: 1200N Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

Secondary, (Chn - Ch1)/IHpl

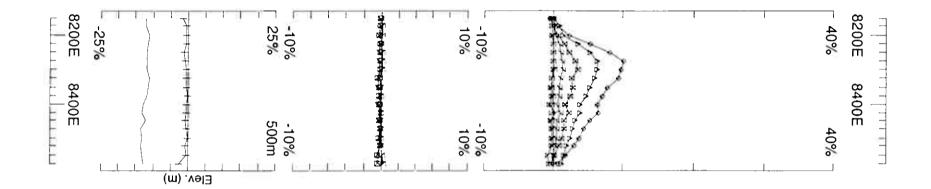

Line: 1300N Contin. Norm at depth of 0 m

Base Freq. 3,251 Hz Compt: Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616


Secondary, (Chn - Ch1)/IHpl

Line: 1400N Contin. Norm at depth of 0 m

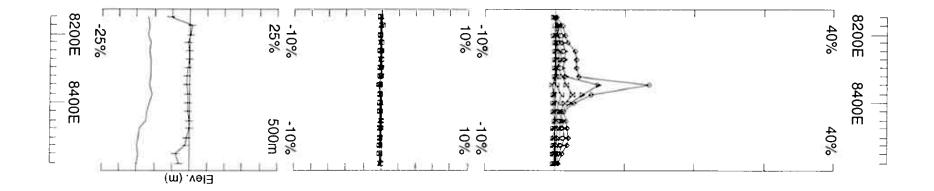
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE 0616 Surveyed 17/2/6 Reduced : 7/7/6 Pletted : 6/9/6

Secondary, (Chn - Ch1)/IHpl

Line: 1500N Contin. Norm at depth of 0 m Compt: Hz

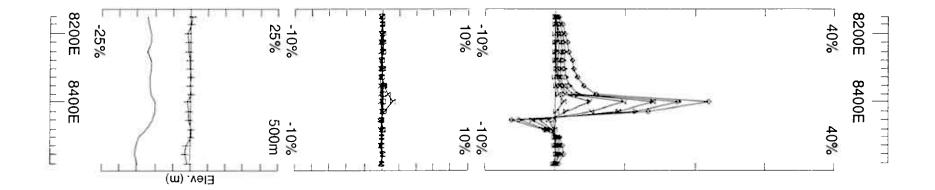

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616

Surveyed: 7/2/6 Reduced: 7/7/6 Plotted: 6/9/6

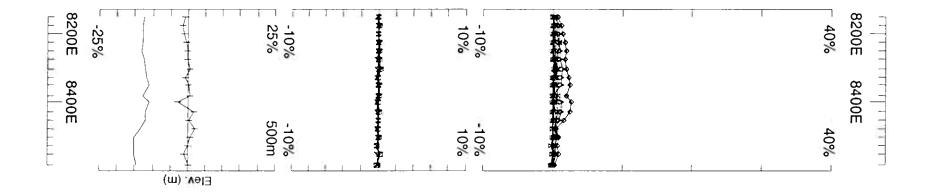

Secondary, (Chn - Ch1)/IHpI

Line: 1600N Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616


Secondary, (Chn - Ch1)/IHpl

Line: 1700N Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB O616

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 1800N Contin. Norm at depth of 0 m

Base Freq. 3,251 Hz

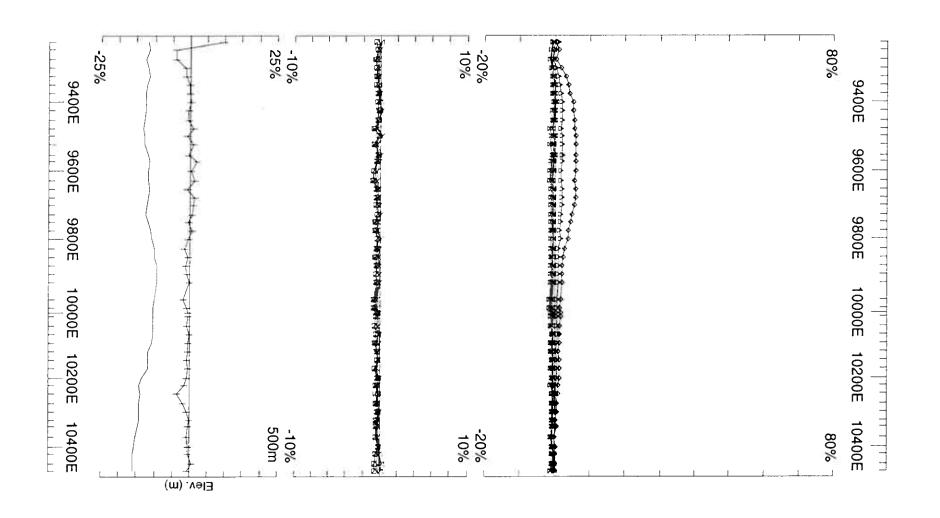
UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Seljaasen

Loop 02S


Hz @3.251 Hz frequency

continuous norm

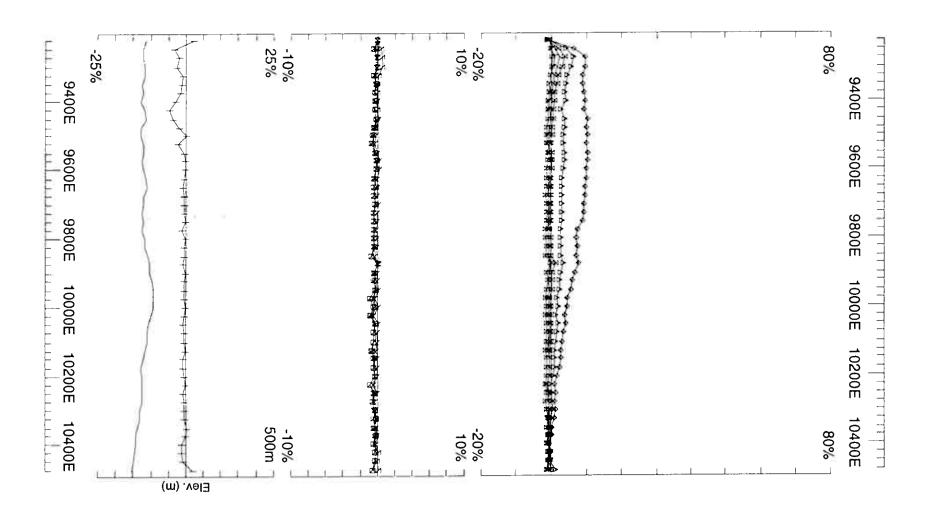
Ch1 reduced

Loop 02S	Line 2000N	9200E - 10500E	1300m
	Line 2100N	9200E - 10500E	1300m
	Line 2200N	9200E - 10500E	1300m
	Line 2300N	9200E - 10500E	1300m
	Line 2400N	9200E - 10500E	1300m
	Line 2500N	9200E - 9975E	775m
		10175E - 10500E	325m
	Line 2600N	9200E - 9900E	700m
	Line 2700N	9200E - 10000E	800m
	Line 2800N	9200E - 9850E	650m
	Line 2900N	9200E - 9850E	650m
	Line 3000N	9575E - 9900E	325m
	Line 3100N	9475E - 9950E	475m
	Line 3200N	9550E - 9950E	400m
	Seljaasen	Loop 02S Total	11600m

Loop 02S - continuous norm

Secondary, (Chn - Ch1)/IHpl

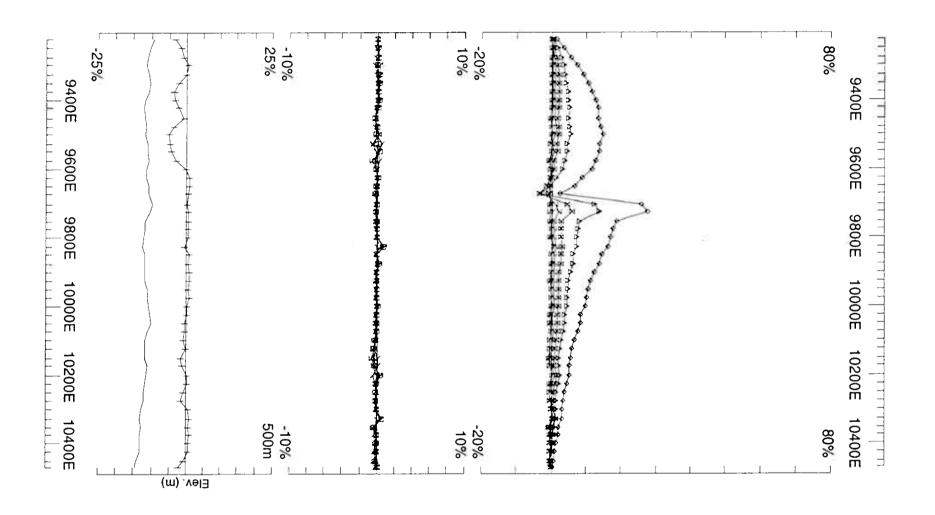
Line: 2000N Contin. Norm at depth of 0 m


Compt: Hz

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

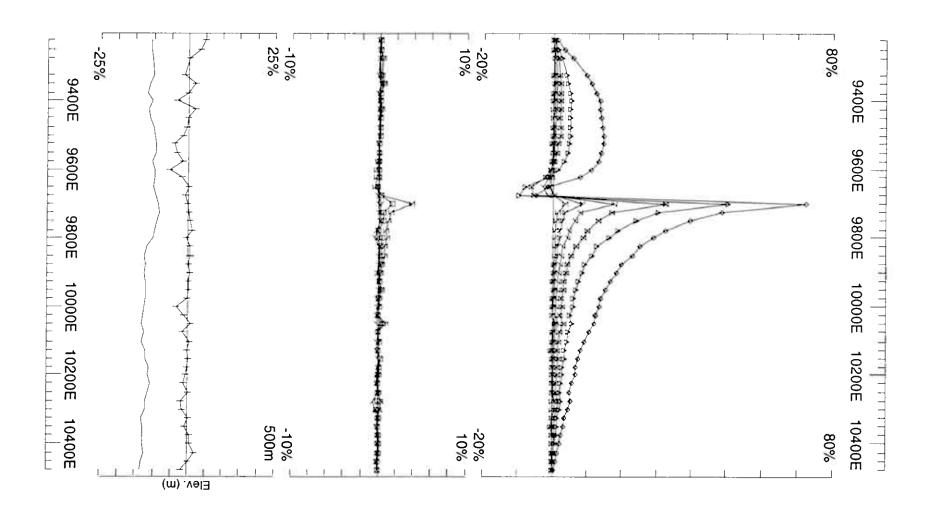

LAMONTAGNE GEOPHYSICS LTD Job 0616

Loop: 02S Secondary, (Chn - Ch1)/IHpl Line: 2100N Contin. Norm at depth of 0 m Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE 0616 Planted: 69/66 Planted: 69/66

Secondary, (Chn - Ch1)/IHpl Line: 2200N Contin. Norm at depth of 0 m


Compt: Hz

Base Freq. 3.251 Hz

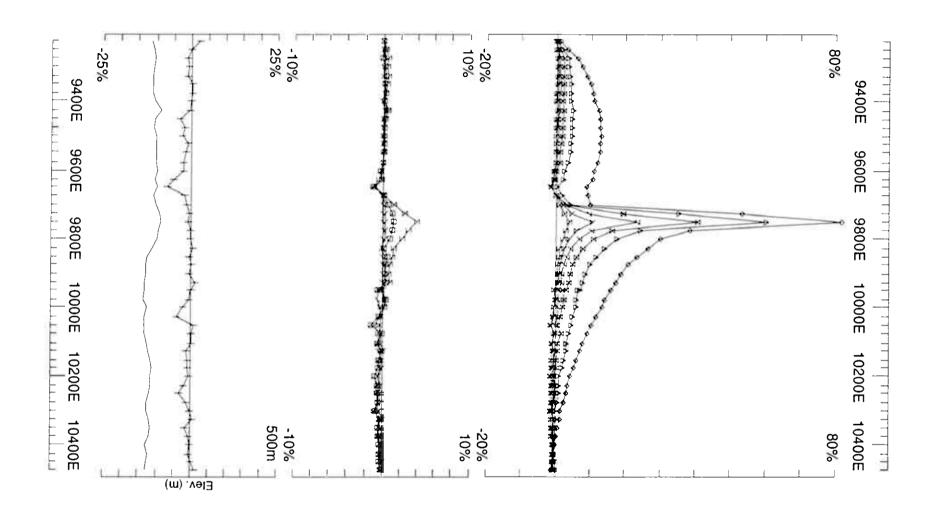
UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Secondary, (Chn - Ch1)/IHpl

Line: 2300N Contin. Norm at depth of 0 m


Compt: Hz

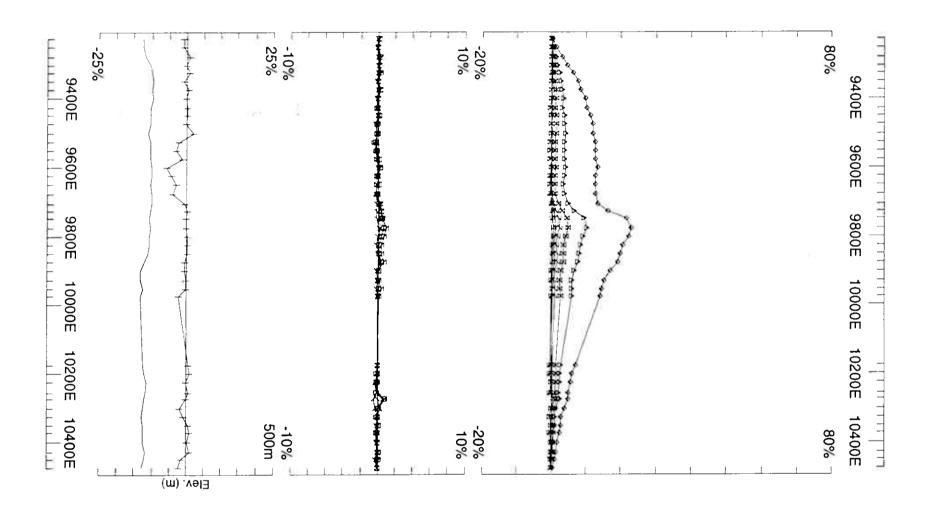
Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616

Secondary, (Chn - Ch1)/IHpl


Line: 2400N Contin. Norm at depth of 0 m

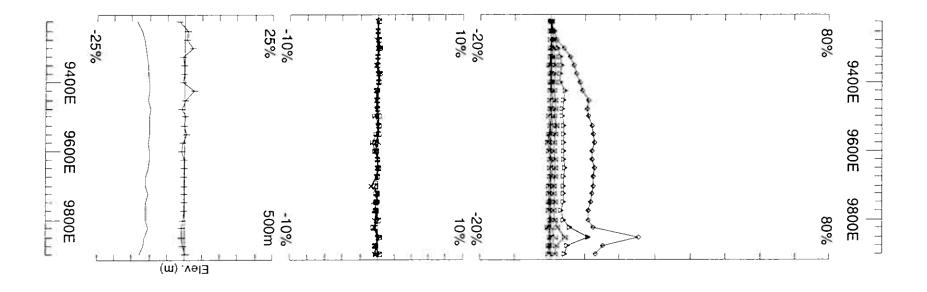
Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6/9/6

Loop: 02S Line: 2500N Contin. Norm at depth of 0 m

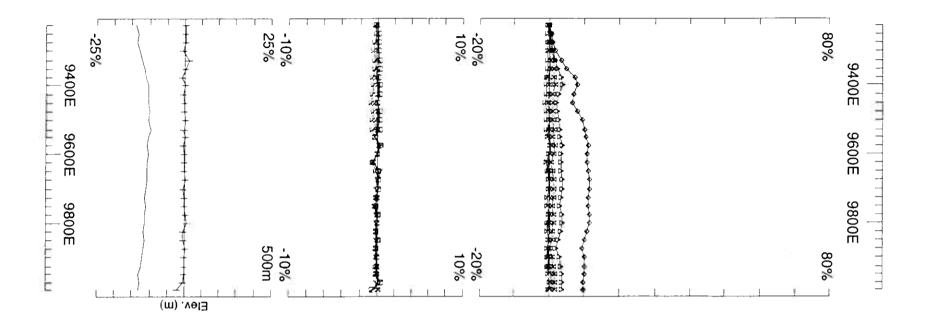

Secondary, (Chn - Ch1)/IHpI

Compt: Hz

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6/9/6

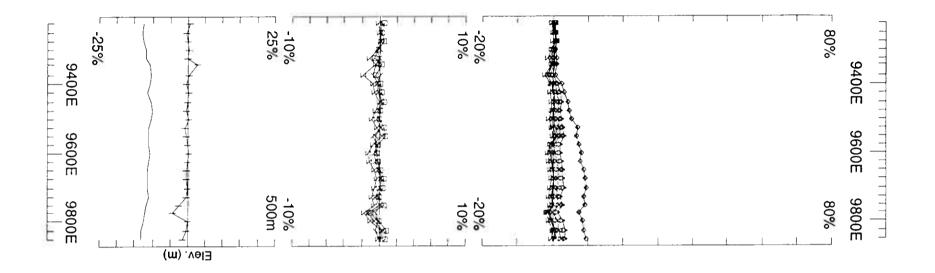

Secondary, (Chn - Ch1)/IHpl Line: 2600N Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz Compt: Hz

UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed: 5/7/6
Reduced: 6/9/6
Plotted: 6/9/6

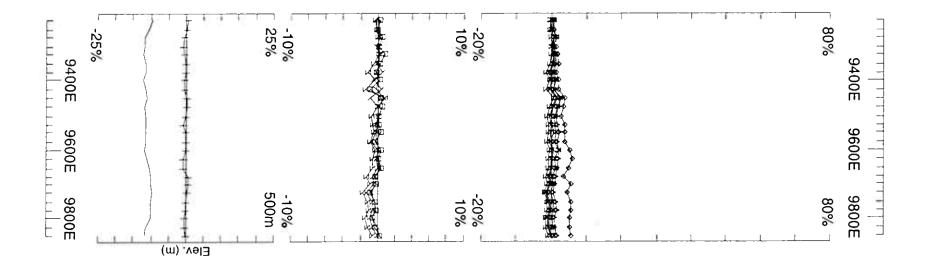

Loop: 02S Secondary, (Chn - Ch1)/IHpl Line: 2700N Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6.9/6



Secondary, (Chn - Ch1)/IHpl Line: 2800N Contin. Norm at depth of 0 m

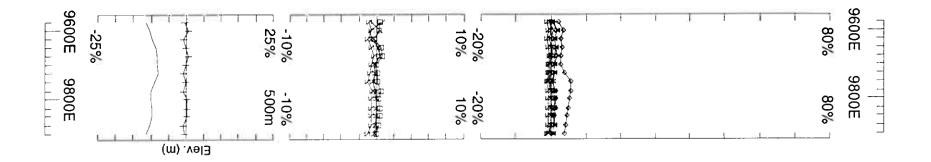
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Line: 2900N Contin. Norm at depth of 0 m

Compt: Hz

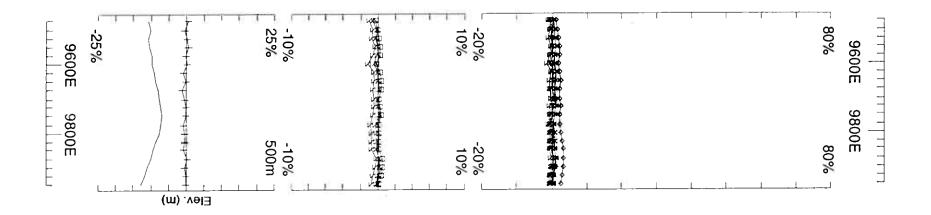

Secondary, (Chn - Ch1)/IHpl

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed: 7/5/6 Reduced: 6/9/6

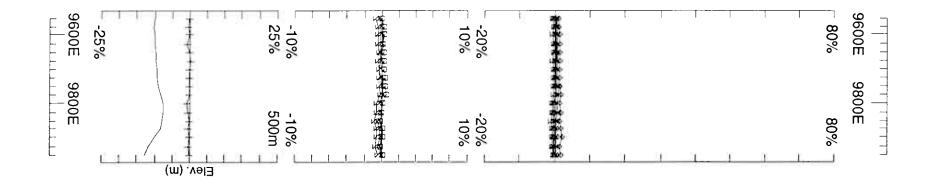

Secondary, (Chn - Ch1)/IHpl

Line: 3000N Contin. Norm at depth of 0 m

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB O616


Loop: 02S Secondary, (Chn - Ch1)/IHpl Line: 3100N Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz Compt: Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed 7/5/6 Reduced 6/9/6

Secondary, (Chn - Ch1)/IHpl

UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

Line: 3200N Contin. Norm at depth of 0 m

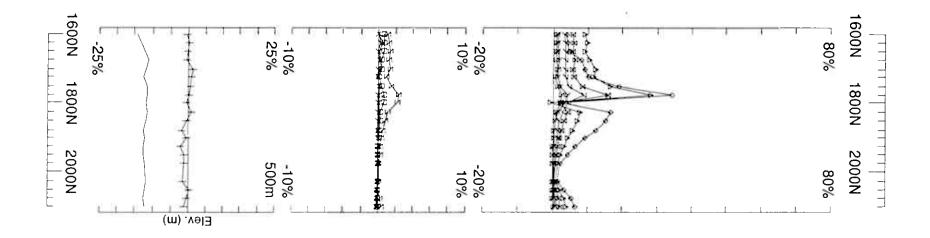
Compt: Hz

Base Freq. 3.251 Hz

LAMONTAGNE GEOPHYSICS LTD Job Surveyed 7/5/6 Reduced 6/9/6

Seljaasen

Loop 03S


Hz @3.251 Hz frequency

continuous norm

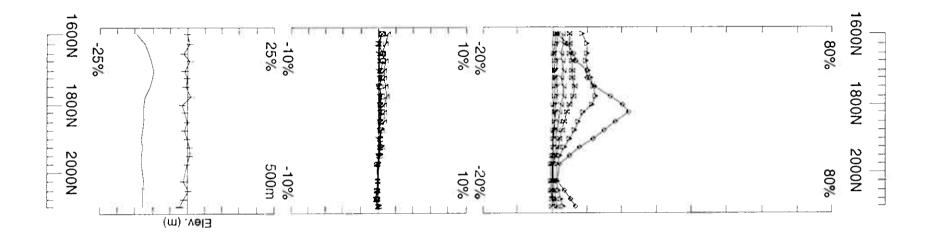
Ch1 reduced

Loop 03S	Line 9350E	1600N - 2100N	500m
	Line 9400E	1600N - 2100N	500m
	Line 9450E	1600N - 2100N	500m
	Line 9500E	1500N - 2100N	600m
	Seljaasen	Loop 03S Total	2100m

Loop 03S - continuous norm

Secondary, (Chn - Ch1)/IHpl

Line: 9350N Contin. Norm at depth of 0 m


Compt: Hz Base Freq. 3.251 Hz

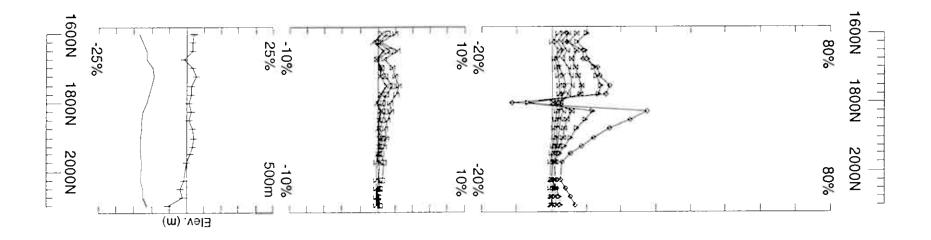
UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed: 67/6
Reduced: 6/9/6
Plotted: 6/9/6

Secondary, (Chn - Ch1)/IHpl


Line: 9400N Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz Compt: Hz

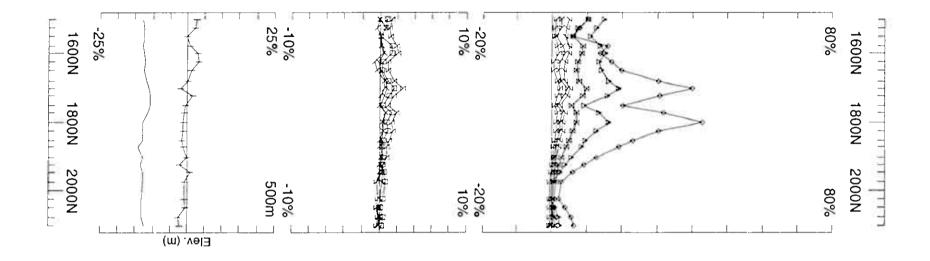
UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616 Surveyed: 67/6 Reduced: 67/6 Plotted: 6/9/6

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Line: 9450N Contin. Norm at depth of 0 m

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed: 67/6 Reduced: 69/6

Line: 9500N Contin. Norm at depth of 0 m

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

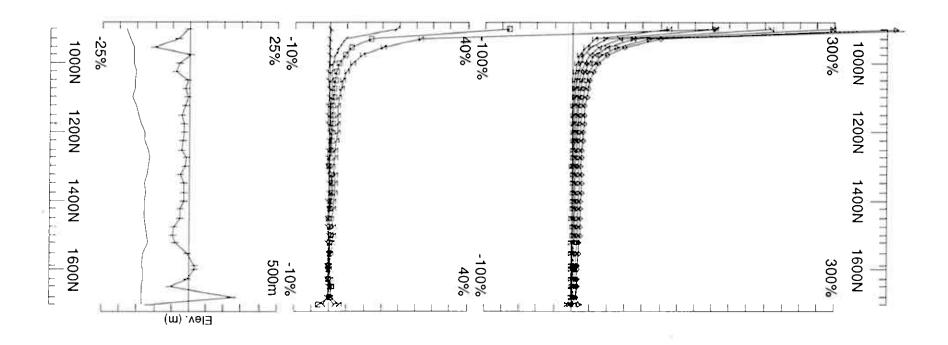
Job Surveyed 67/6
Reduced 6.9/6
Plotted 6.9/6

Meikjeaer

Loop 01

Hz @3.251 Hz frequency

point norm


@

(x,y,z) = (529925, 6535850, 100 m.a.s.l.)

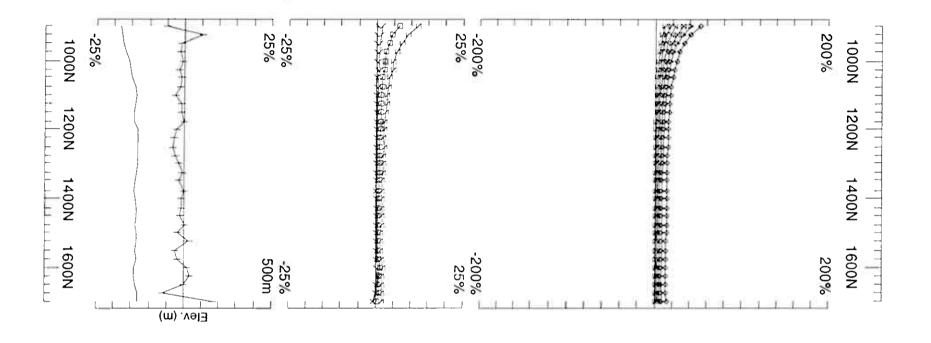
Ch1 reduced

Loop 01	Line 3100E	875N - 1725N	850m
	Line 3200E	875N - 1725N	850m
	Line 3300E	825N - 1725N	900m
	Line 3400E	450N - 1725N	1275m
	Line 3500E	450N - 1725N	1275m
	Line 3600E	475N - 1725N	1250m
	Line 3700E	400N - 550N	150m
		700N - 1725N	1025m
	Line 3800E	475N - 1725N	1250m
	Line 3900E	600N - 1725N	1125m
	Line 4000E	575N - 1725N	1150m
	Meikjeaer	Loop 01 Total	11100m

Loop 01 - point norm

Secondary, (Chn - Ch1)/IHpl

UTEM Survey at: Meikjaer Grid


Line: 3100E

Point Norm.at x,y,z (2725,2650,100)

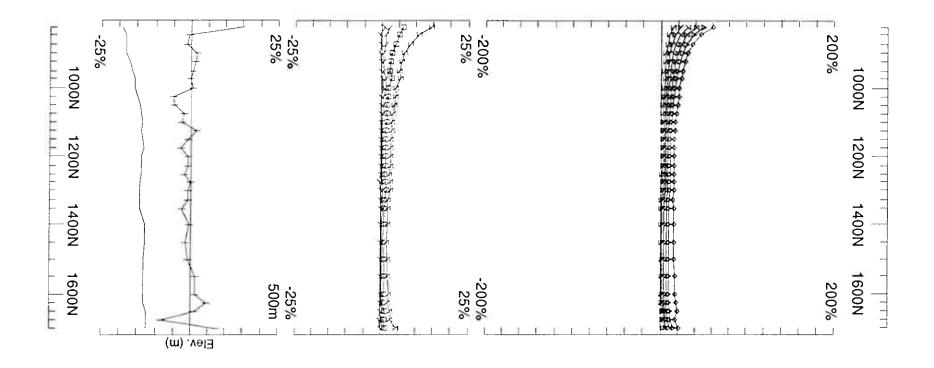
For: A/S Sulfidmalm LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE
0616

Compt: Hz

Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpI

Line: 3200E


Point Norm.at x,y,z (2725,2650,100)

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

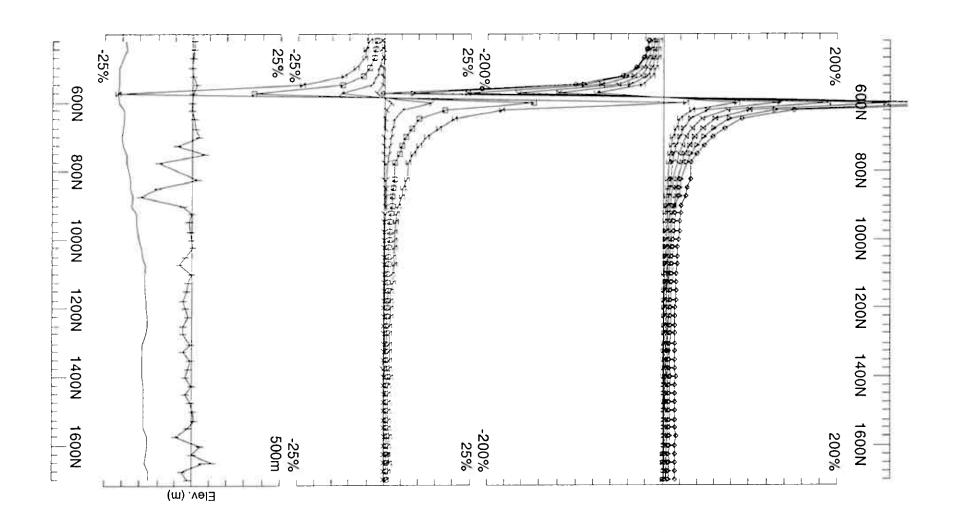
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed: 20/6/6
Reduced: 5.9/6

Line: 3300E

Compt: Hz

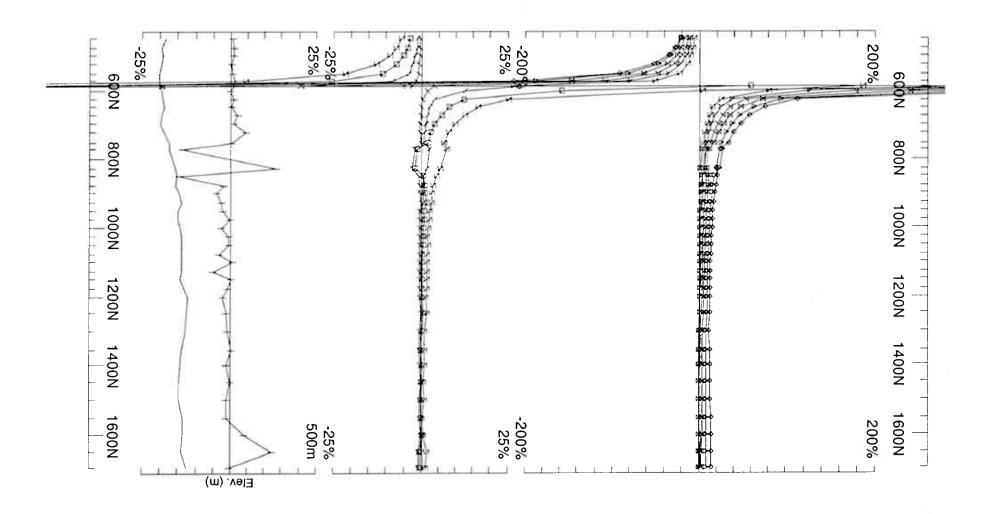

Secondary, (Chn - Ch1)/IHpI

Point Norm.at x,y,z (2725,2650,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed: 19/6/6
Reduced: 559/6


Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z Line: 3400E (2725,2650,100)

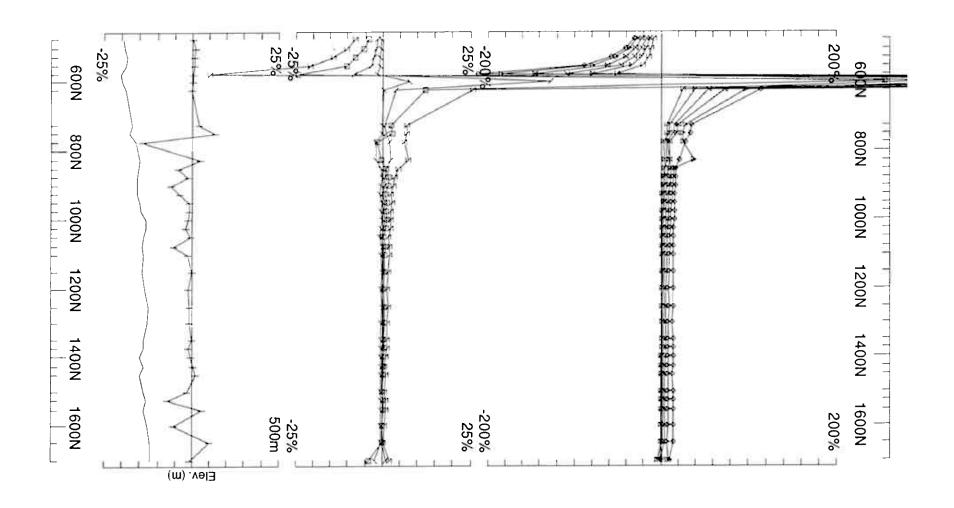
Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE 0616

Line: 3500E

Point Norm.at x,y,z (2725,2650,100)


Compt: Hz Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpI UTEM Survey at: Meikjaer Grid

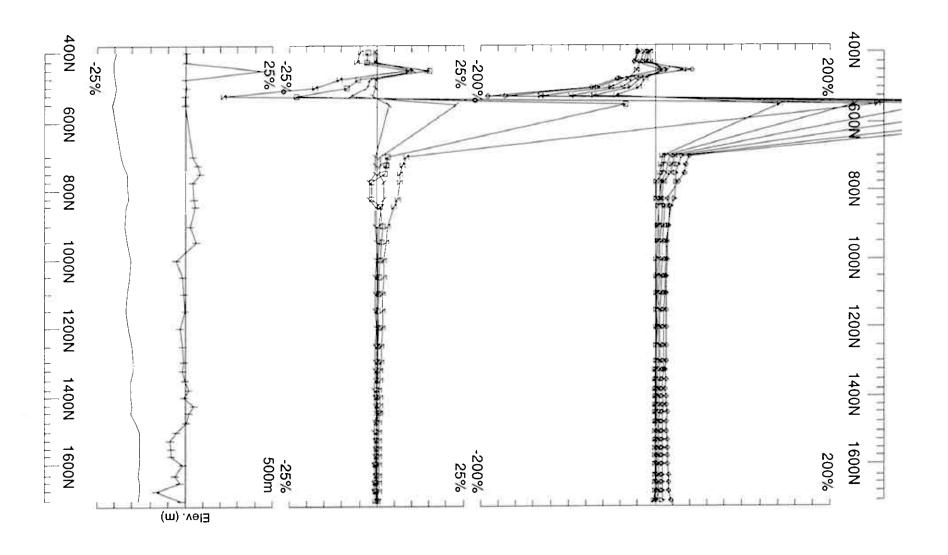
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed: 19/6/6
Reduced: 19/6/6

Line: 3600E

Point Norm.at x,y,z

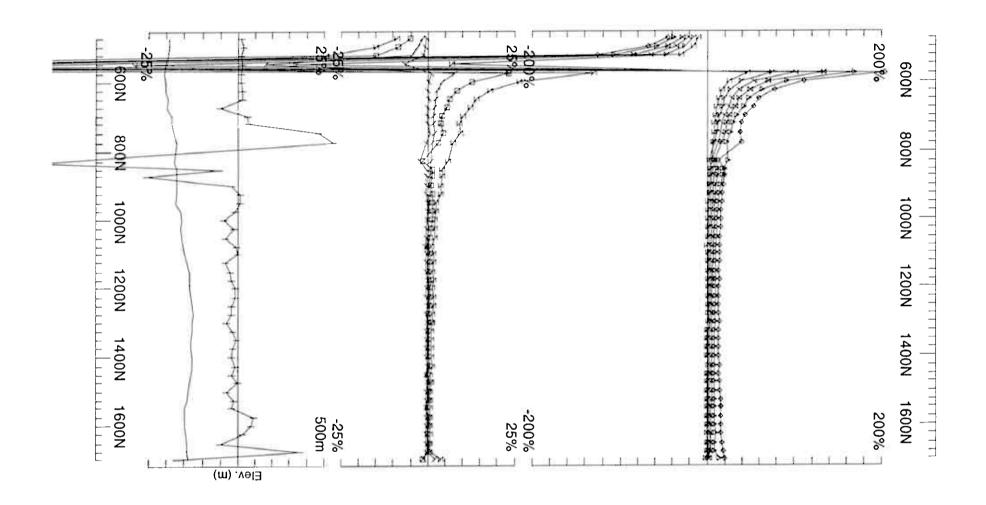

Compt: Hz

(2725,2650,100) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616



Loop: 01
Line: 3700E
Compt: Hz

Secondary, (Chn - Ch1)/IHpl
Point Norm.at x,y,z
(2725,2650,100)
Base Freq. 3.251 Hz

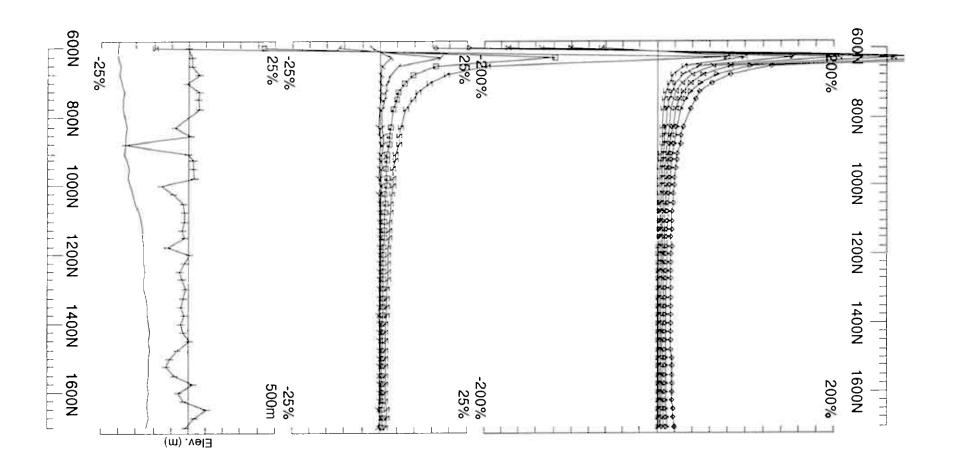
UTEM Survey at: Meikjaer Grid
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616 Plotted: 59/6

Line: 3800E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Point Norm.at x,y,z (2725,2650,100)

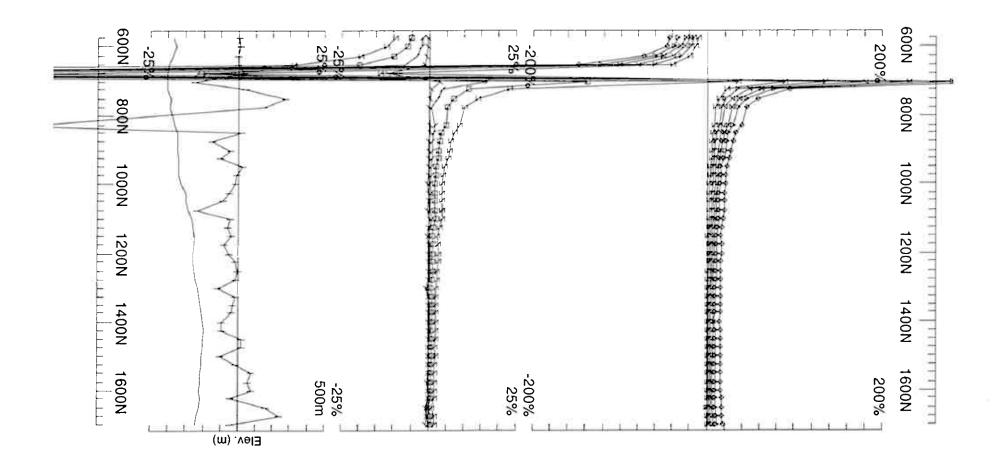
Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE Job Surveyed: 18/6/6 Reduced: 5-9/6

Loop: 01 Line: 3900E


Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (2725,2650,100)

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Loop: 01 Point Norm.at x,y,z

Line: 4000E (2725,2650,100) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

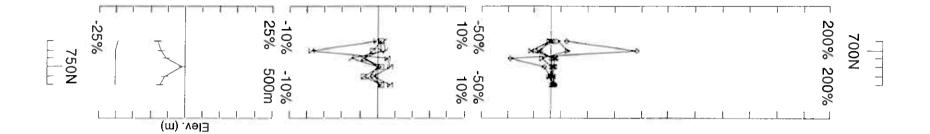
LAMONTAGNE GEOPHYSICS LTD Job Surveyed 18/6/6 Reduced 5/9/6 Plotted 5/9/6

Compt: Hz

Meikjeaer

Loop 02

Hz @3.251 Hz frequency


point norm

(x,y,z) = (530825, 6536125, 100 m.a.s.l.)

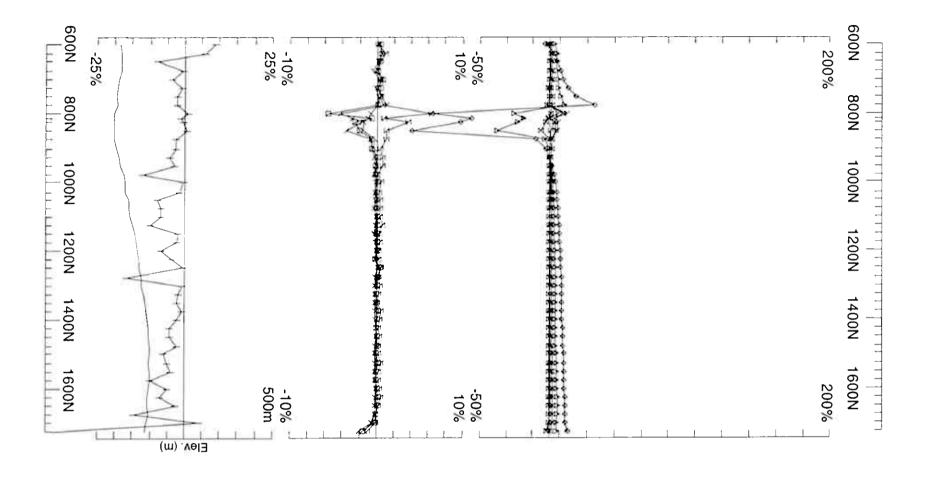
Ch1 reduced

Line 4100E	650N - 800N	150m
Line 4200E	575N - 1750N	1175m
Line 4300E	525N - 1750N	1225m
Line 4400E	525N - 1750N	1225m
Line 4500E	625N - 1750N	1125m
Line 4600E	700N - 1750N	1050m
Line 4700E	875N - 1750N	875m
Line 4800E	900N - 1750N	850m
Line 4900E	925N - 1750N	825m
Line 5000E	900N - 1750N	850m
Line 5050E	900N - 1750N	850m
Line 4100E	650N - 800N	500m
Line 4200E	1750N - 2250N	500m
Line 4300E	1750N - 2250N	500m
Line 4400E	1750N - 2250N	500m
Meikjeaer	Loop 02 Total	12200m
	Line 4200E Line 4300E Line 4400E Line 4500E Line 4600E Line 4700E Line 4800E Line 4900E Line 5000E Line 5050E Line 4100E Line 4200E Line 4300E Line 4400E	Line 4200E Line 4300E Line 4400E Line 4400E Line 4500E Line 4600E Line 4600E Line 4700E Line 4700E Line 4800E Line 4900E Line 5000E Line 5000E Line 5000E Line 5050E Line 4100E Line 4200E Line 4200E Line 4300E Line 4300E Line 4300E Line 4300E Line 4400E Line 4400E 575N - 1750N 625N - 1750N 750N 750N - 2250N 750N - 2250N 750N - 2250N 750N - 2250N

Loop 02 - point norm

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Line: 4100E Point Norm.at x,y,z (3625,2925,100)

Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid

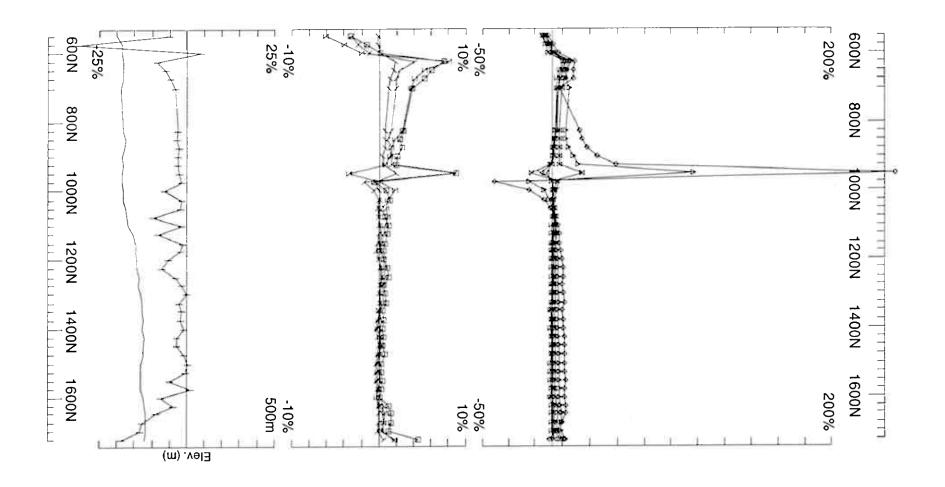
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616

Point Norm.at x,y,z

Line: 4200E (3625,2925,100)

Compt: Hz Base Freq. 3.251 Hz


Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

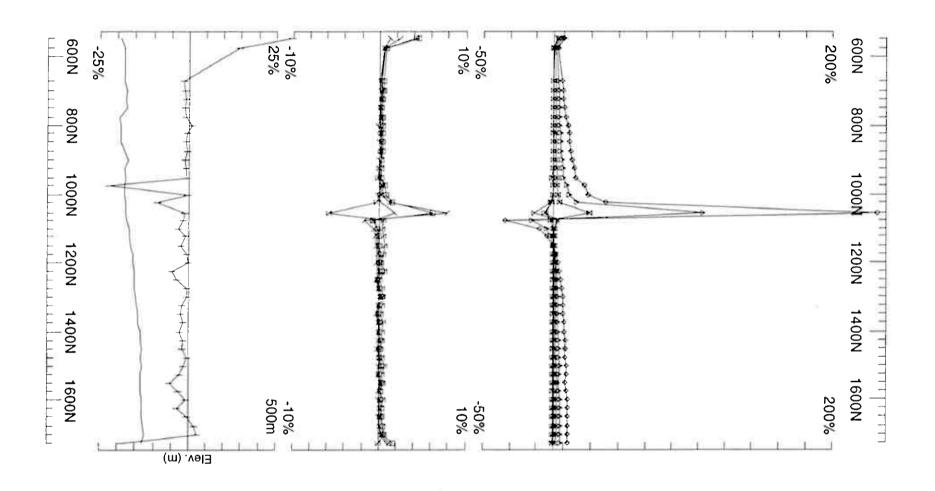
LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed 1466
Reduced 696

Reduced 696

Line: 4300E

Point Norm.at x,y,z (3625,2925,100)


Compt: Hz

Base Freq. 3.251 Hz

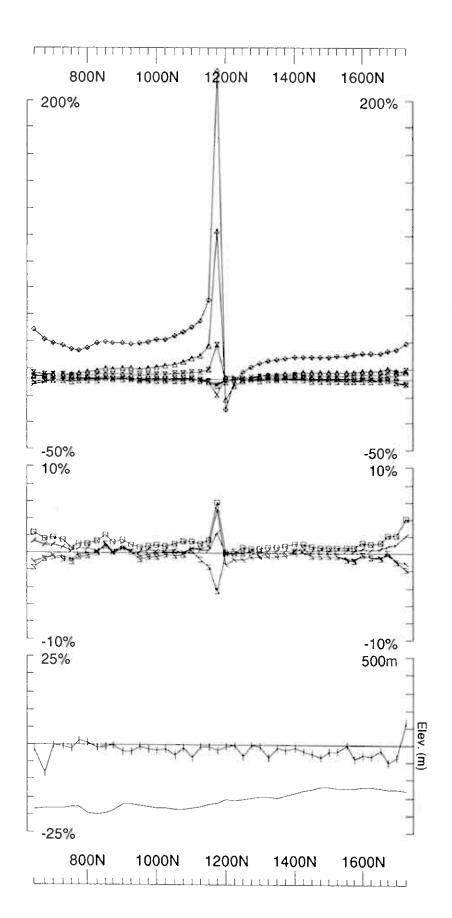
Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

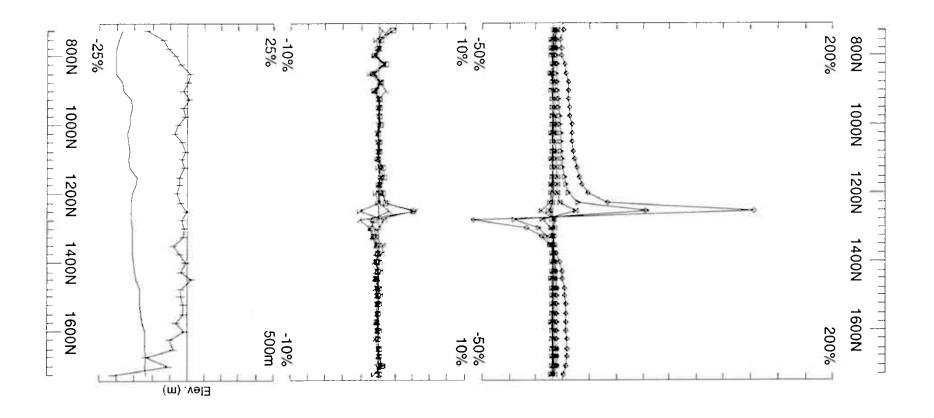
LAMONTAGNE GEOPHYSICS LTD Job Reduced: 69/6 Reduced: 69/6

Secondary, (Chn - Ch1)/IHpi

Line: 4400E


Point Norm.at x,y,z

Compt: Hz


(3625,2925,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid For: A/S Sulfidmalm

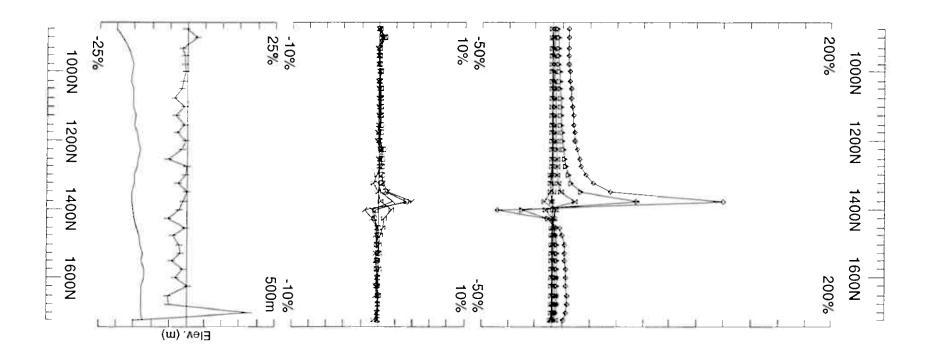
LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed: 14/8/6
Reduced: 6/9/6
Plotted: 6/9/6

Job 0616 SINE GEOPHYSICS LTD GEOPHYSIQUE LTEE UTEM Survey at: Meikjaer Grid Secondary, (Chn - Ch1)/IHpl (3625,2925,100) Base Freq. 3.251 Hz Point Norm.at x,y,z Line: 4500E Compt: Hz Loop: 02

Secondary, (Chn - Ch1)/IHpl

Line: 4600E


(3625,2925,100)

Compt: Hz

Point Norm.at x,y,z Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616 Surveyed 16/6/6 Reduced 69/6

Line: 4700E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

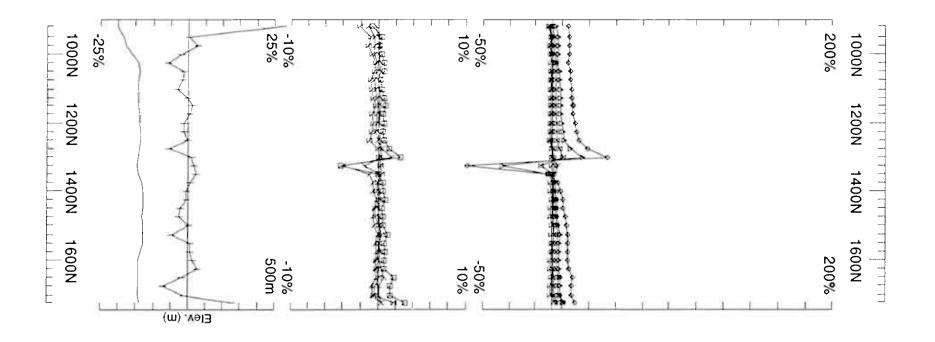
Point Norm.at x,y,z (3625,2925,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616

Line: 4800E


Compt: Hz

(3625,2925,100) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl Point Norm.at x,y,z
(3625 2925 100)

UTEM Survey at: Meikjaer Grid
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Line: 4900E

Point Norm.at x,y,z (3625,2925,100)

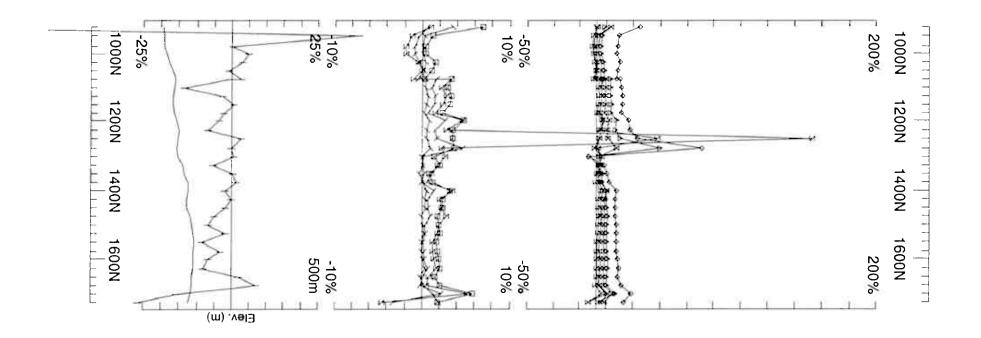
Compt: Hz Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHp1 UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

MONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616

Loop: 02 Line: 5000E


Compt: Hz

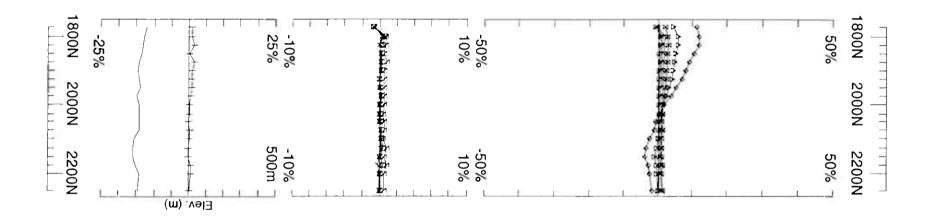
Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (3625,2925,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

MONTAGNE GEOPHYSICS LTD JOB 0616

Loop: 02 Line: 5050E


Compt: Hz

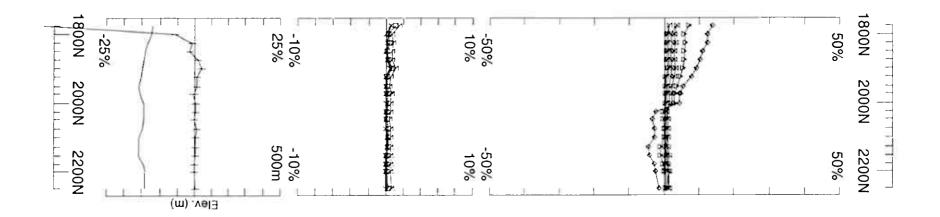
Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (3625,2925,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE O616 Plotted 6.9/6

Loop: 02N

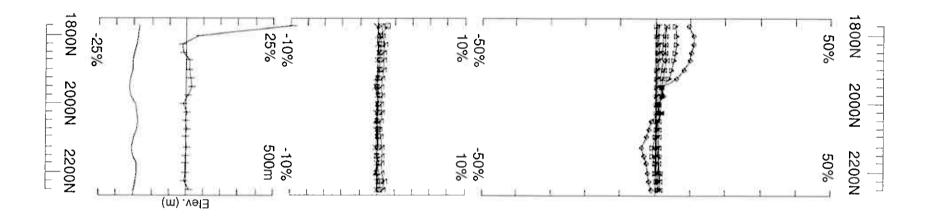

Line: 4100E Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (3625,2925,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

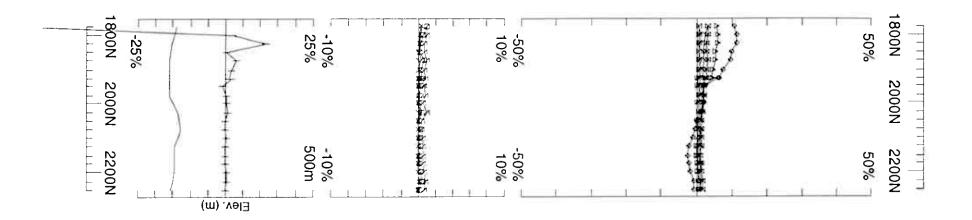

Loop: 02N Line: 4200E

Point Norm.at x,y,z (3625,2925,100) Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Meikjaer Grid Secondary, (Chn - Ch1)/IHpl

For: A/S Sulfidmalm

MONTAGNE GEOPHYSICS LTD JOB O616


Loop: 02N

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 4300E Point Norm.at x,y,z (3625,2925,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid For: A/S Sulfidmalm

MONTAGNE GEOPHYSICS LTD Job Surveyed: 15/6/6 Reduced: 6/9/6 Platted: 6/9/6

Loop: 02N

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 4400E Point Norm.at x,y,z (3625,2925,100) Base Freq. 3.251 Hz UTEM Survey at: Meikjaer Grid

For: A/S Sulfidmalm

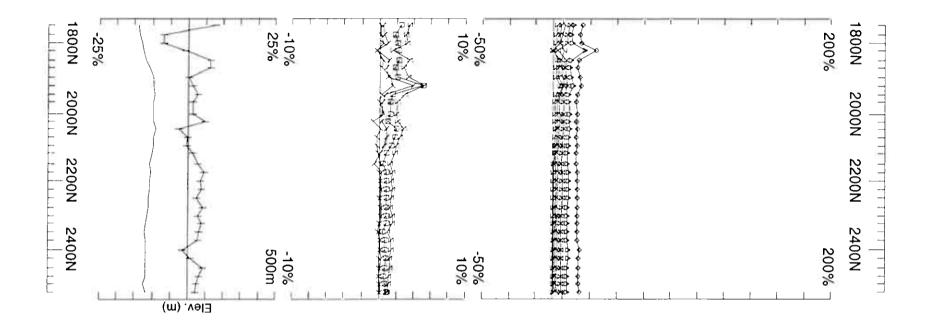
LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Nystein-Vissestad

Loop 03

Hz @3.251 Hz frequency

point norm

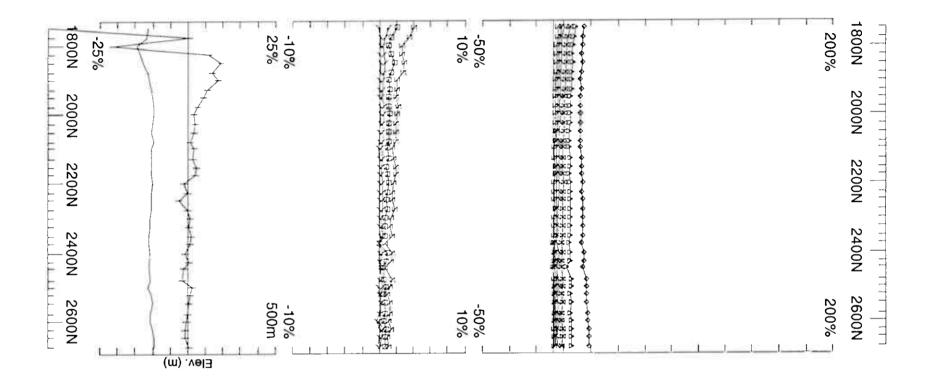

@

(x,y,z) = (532800, 6538325, 100 m.a.s.l.)

Ch1 reduced

Loop 03	Line 6500E	1725N - 2525N	800m
	Line 6700E	1725N - 2675N	950m
	Line 6900E	1725N - 2725N	1000m
	Line 7100E	1725N - 2975N	1250m
	Line 7300E	1725N - 3075N	1350m
	Line 7500E	1725N - 3075N	1350m
	Nystein-Vissestad	Loop 03 Total	6700m

Loop 03 - point norm


Loop: 03 Line: 6500E

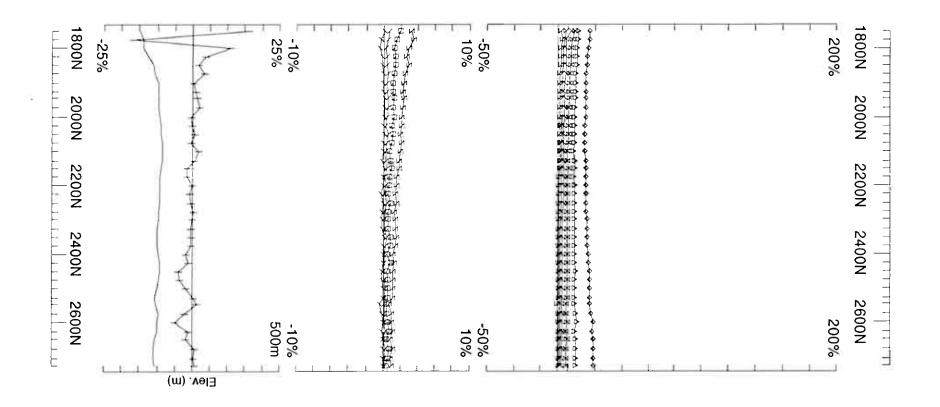
Point Norm.at x,y,z (5600,5125,120) Compt: Hz Base Freq. 3.251 Hz

UTEM Survey at: Nystein- Vissestad Grid Secondary, (Chn - Ch1)/IHpl

For: A/S Sulfidmalm

MONTAGNE GEOPHYSICS LTD Job Surveyed 28/6/6 Reducted :29/6/6

Loop: 03 Line: 6700E


Compt: Hz

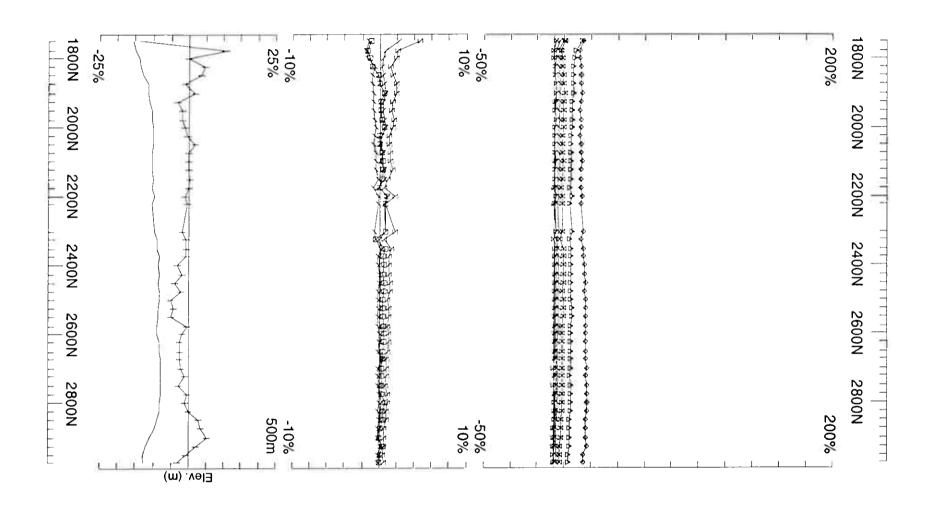
Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (5600,5125,120) Base Freq. 3.251 Hz

For: A/S Sulfidmalm LAMONTAGNE GEOPHYSICS LTD JOB 0616

UTEM Survey at: Nystein- Vissestad Grid

Loop: 03 Line: 6900E

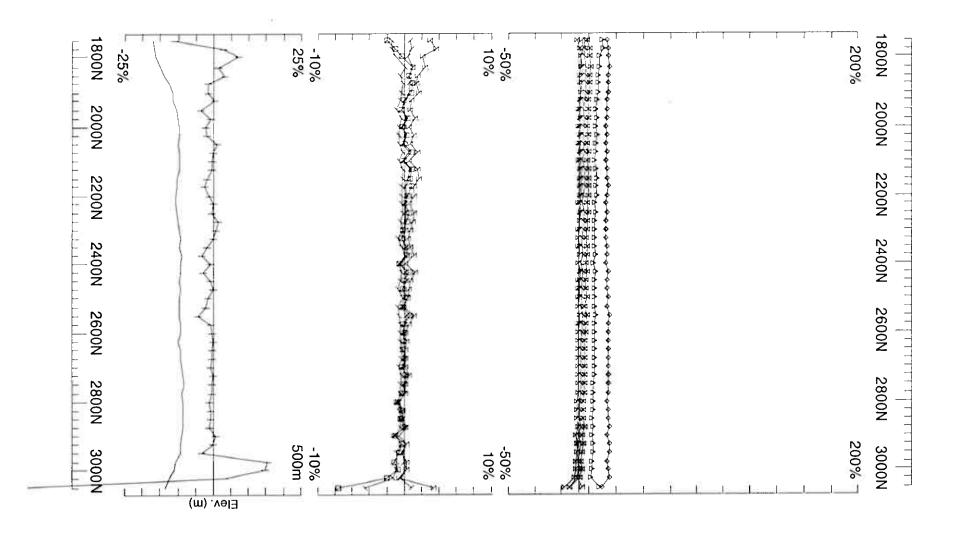

Compt: Hz

Secondary, (Chn - Ch1)/IHpI

Point Norm.at x,y,z (5600,5125,120) Base Freq. 3.251 Hz UTEM Survey at: Nystein-Vissestad Grid

For: A/S Sulfidmalm

GEOPHYSICS LTD Job Surveyed 28/6/6 Reduced 29/6/6 Plotted 6/9/6



Loop: 03
Line: 7100E
Compt: Hz

Secondary, (Chn - Ch1)/IHpl
Point Norm.at x,y,z
(5600,5125,120)
Base Freq. 3.251 Hz

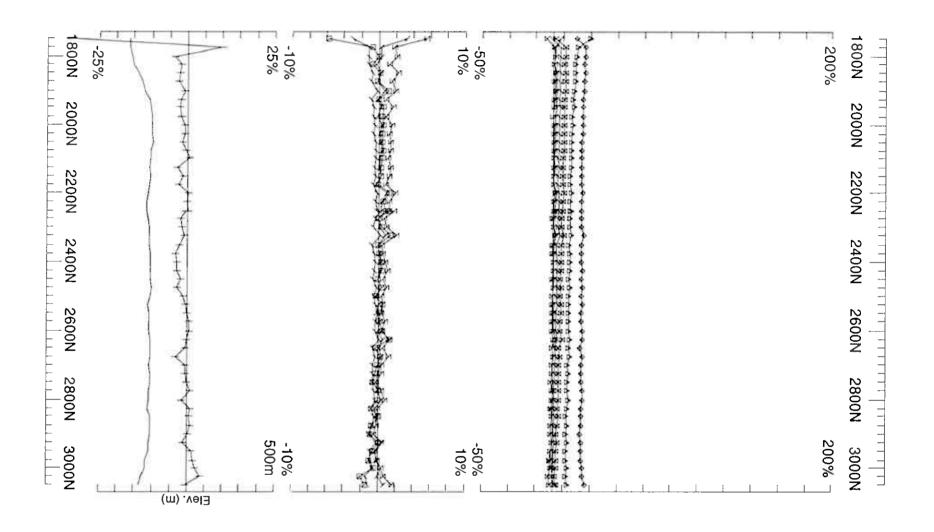
UTEM Survey at: Nystein- Vissestad Grid
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616 Planted 6946

Line: 7300E

Compt: Hz

Secondary, (Chn - Ch1)/IHpI


Point Norm.at x,y,z (5600,5125,120)

Base Freq. 3.251 Hz

UTEM Survey at: Nystein- Vissestad Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed 28/6/6 Reduced : 29/6/6

Line: 7500E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (5600,5125,120)

Base Freq. 3.251 Hz

UTEM Survey at: Nystein- Vissestad Grid

For: A/S Sulfidmalm

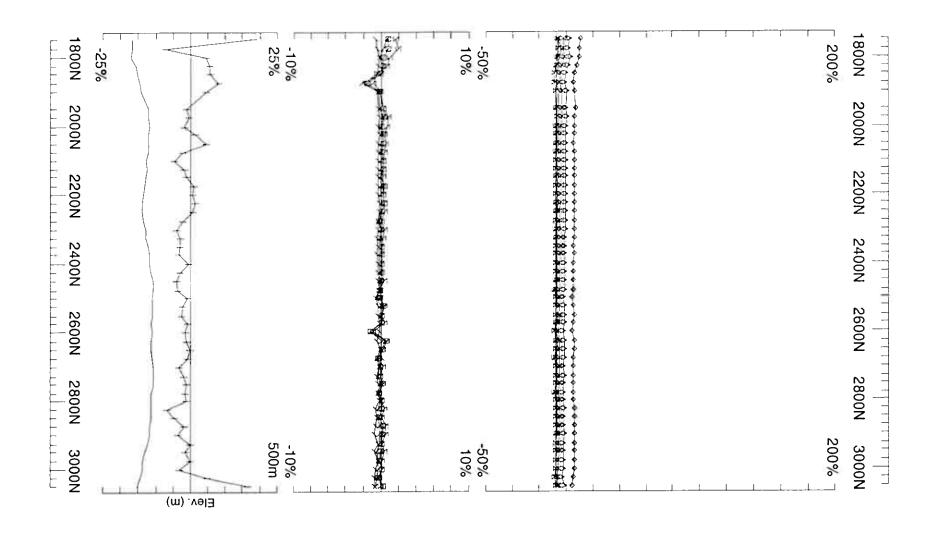
LAMONTAGNE GEOPHYSICS LTD JOB 0616

Nystein-Vissestad

Loop 04

Hz @3.251 Hz frequency

point norm


@

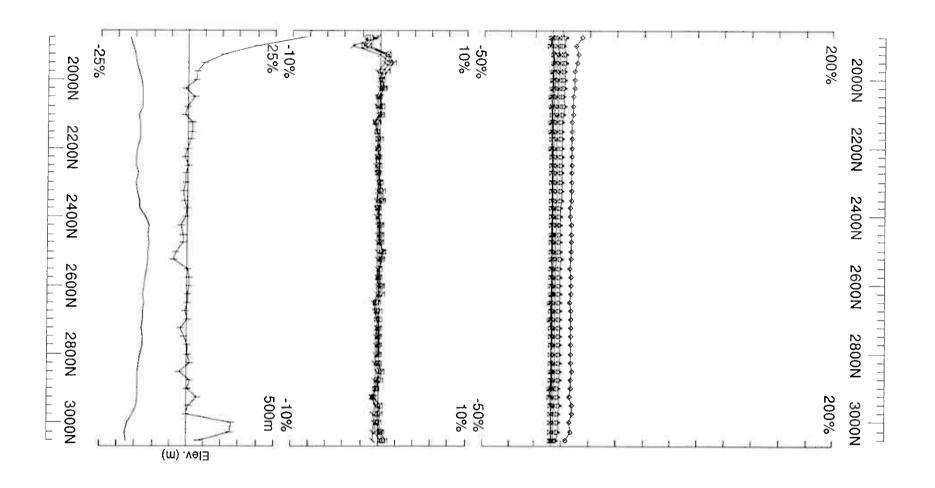
(x,y,z) = (533725, 6538700, 100 m.a.s.l.)

Ch1 reduced

Loop 04	Line 7700E	1725N - 3075N	1350m
	Line 7900E	1850N - 3075N	1225m
	Line 8000E	1875N - 2950N	1075m
	Line 8100E	1825N - 2950N	1125m
	Line 8200E	1725N - 3075N	1350m
	Line 8300E	1725N - 3075N	1175m
	Line 8400E	1725N - 3075N	1200m
	Line 8450E	1975N - 2825N	850m
	Line 8500E	1725N - 3075N	1250m
	Line 8550E	1975N - 2825N	1200m
	Line 8600E	1725N - 3075N	1225m
	Line 8650E	1975N - 2825N	675m
	Line 8700E	1725N - 3075N	1100m
	Line 8750E	1975N - 2825N	600m
	Line 8800E	1850N - 3075N	850m
	Nystein-Vissestad	Loop 04 Total	15850m

Loop 04 - point norm

Line: 7700E


Compt: Hz

Secondary, (Chn - Ch1)/IHpI

Point Norm.at x,y,z (6525,5500,100) Base Freq. 3.251 Hz UTEM Survey at: Vissestad-Nystein Grid

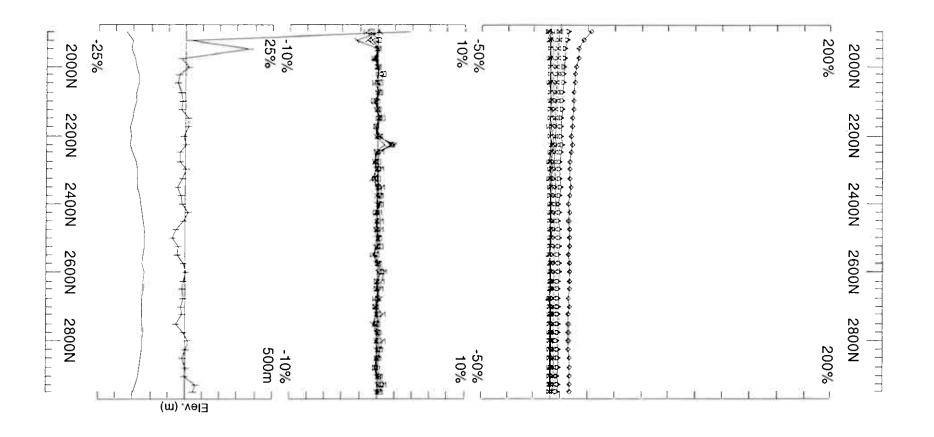
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed: 23/6/6 Plotted: 6/9/6

Line: 7900E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

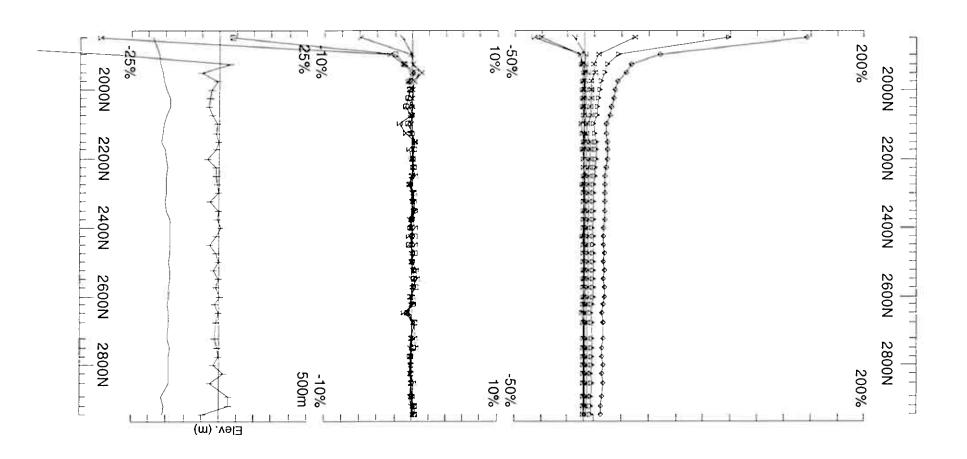

Point Norm.at x,y,z (6525,5500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD JOB 0616


Loop: 04
Line: 8000E
Compt: Hz

Secondary, (Chn - Ch1)/IHpl
Point Norm.at x,y,z
(6525,5500,100)
Base Freq, 3.251 Hz

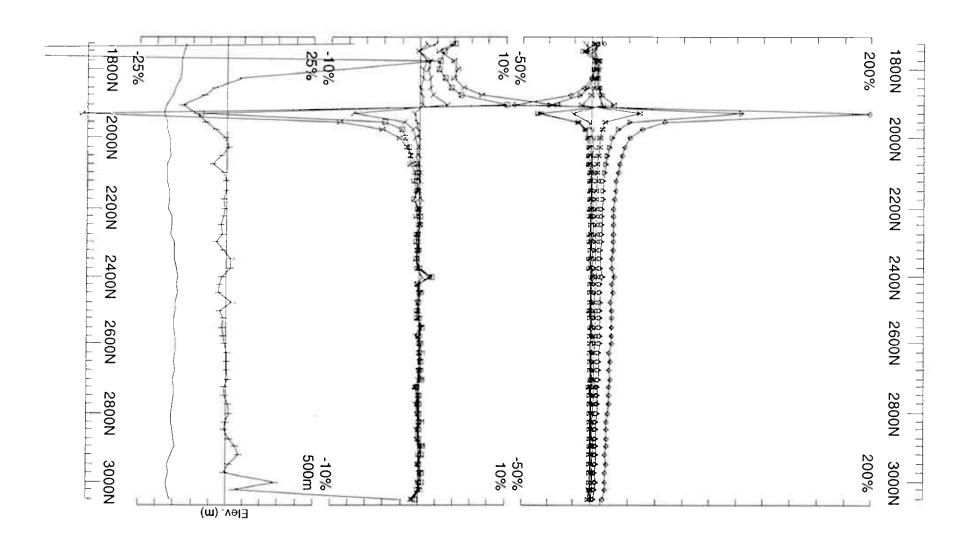
UTEM Survey at: Vissestad-Nystein Grid
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE
0616

Surveyed: 25/6/6
Reduced: 69/6

Secondary, (Chn - Ch1)/IHpl

Line: 8100E


Point Norm.at x,y,z

Compt: Hz

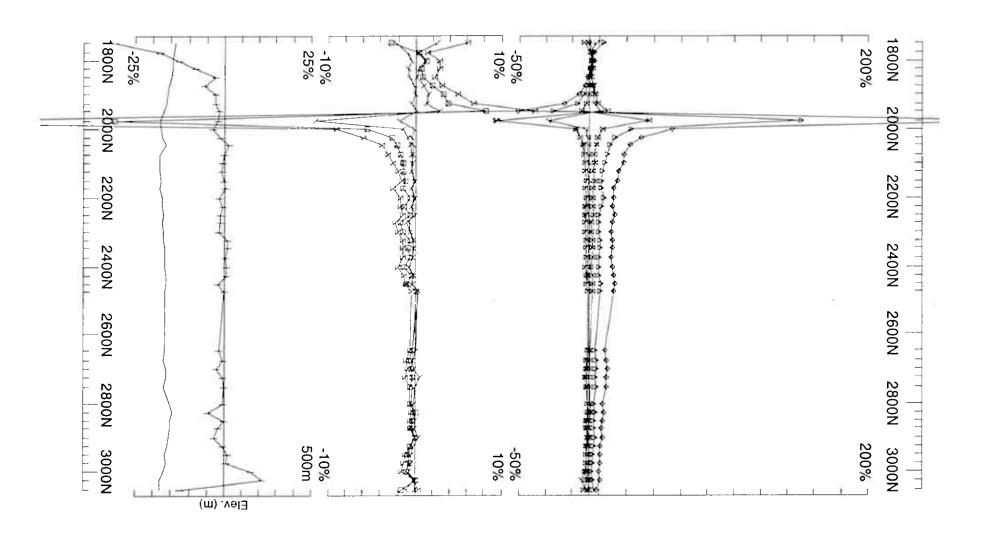
(6525,5500,100) Base Freq. 3.251 Hz UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE 0616

Secondary, (Chn - Ch1)/IHpl Point Norm.at x,y,z

UTEM Survey at: Vissestad-Nystein Grid


Line: 8200E

For: A/S Sulfidmalm

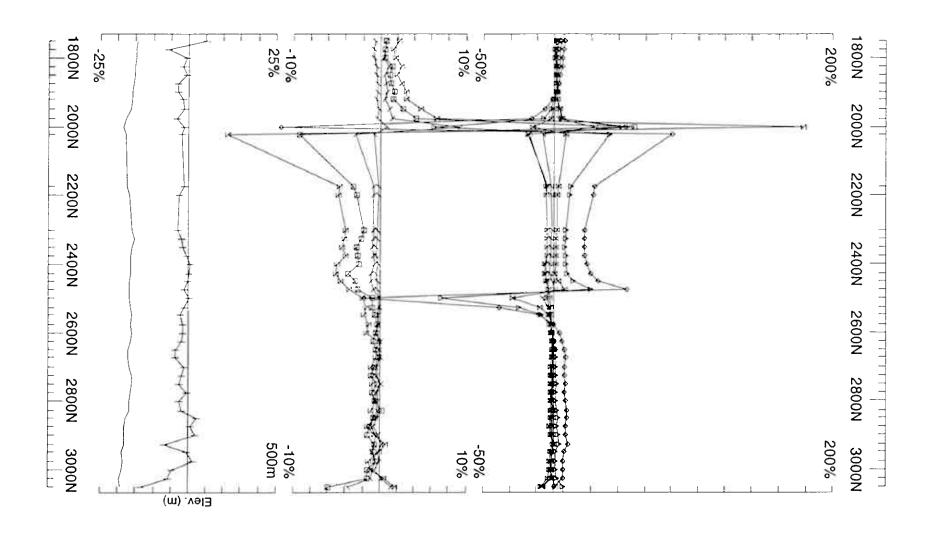
Compt: Hz

(6525,5500,100) Base Freq. 3.251 Hz

LAMONTAGNE GEOPHYSICS LTD Job 0616

Line: 8300E

Compt: Hz


Point Norm.at x,y,z

(6525,5500,100) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Vissestad-Nystein Grid

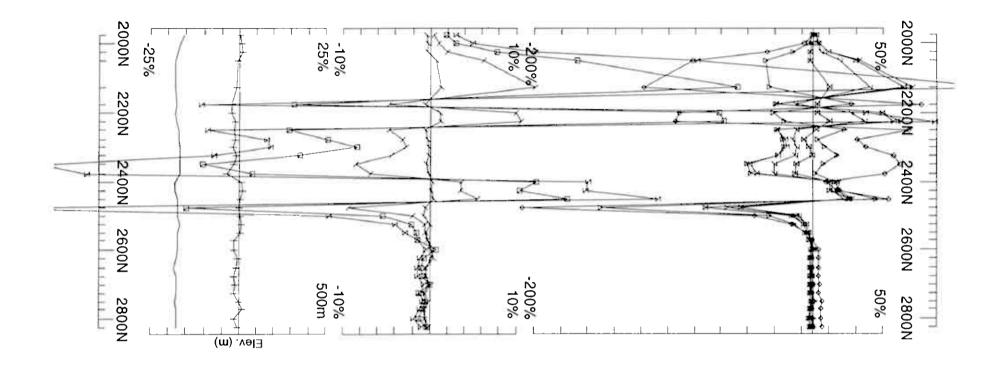
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616

Line: 8400E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Point Norm.at x,y,z (6525,5500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

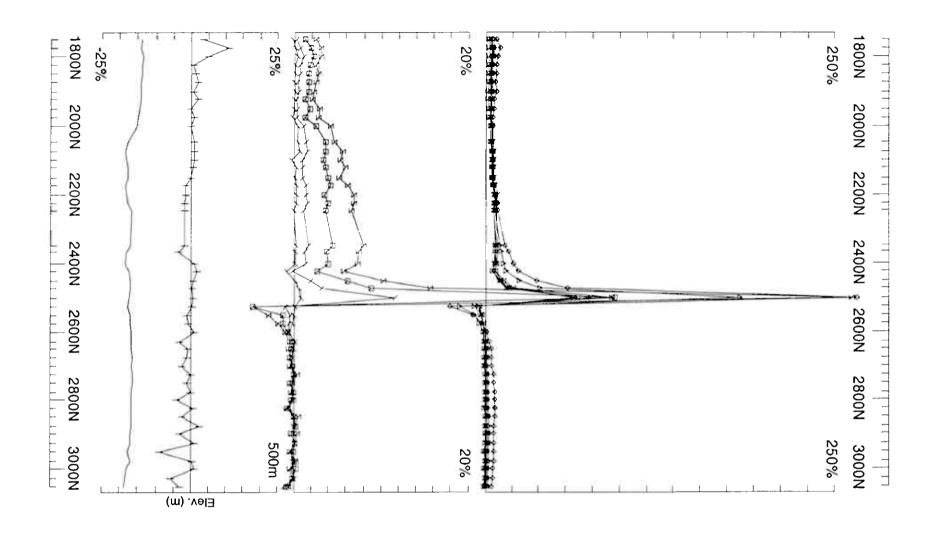
LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6/9/6

Line: 8450E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z


(6525,5500,100)

Base Freq. 3.251 Hz

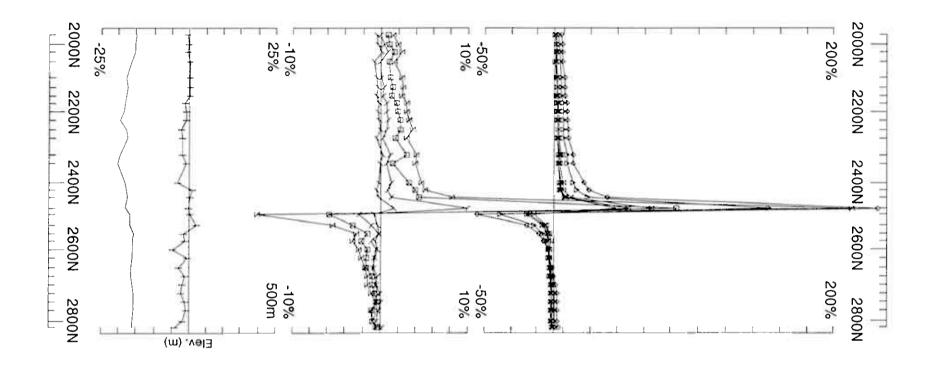
UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed 25/6/6 Reduced 69/6 Plotted 6/9/6

Line: 8500E

Compt: Hz


Point Norm.at x,y,z

(6525,5500,100) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Vissestad-Nystein Grid

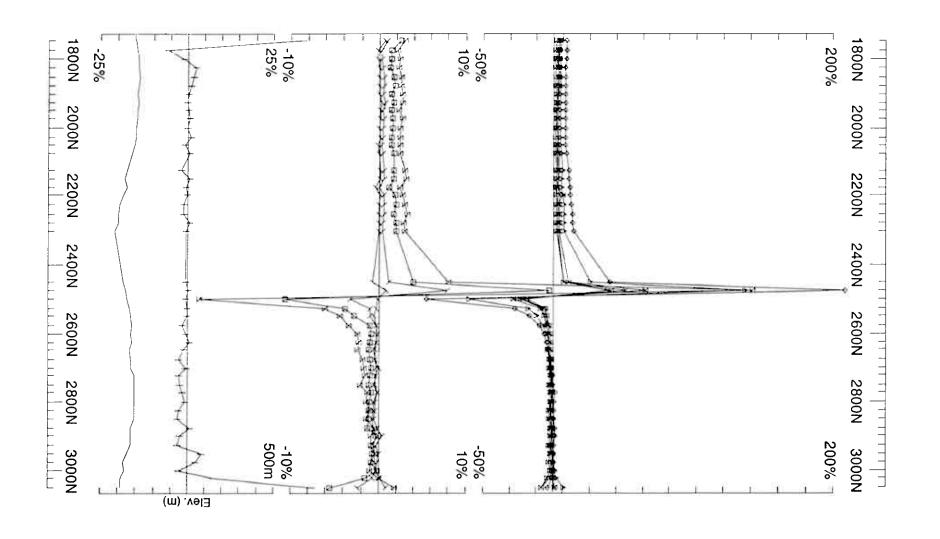
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Line: 8550E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Point Norm.at x,y,z (6525,5500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

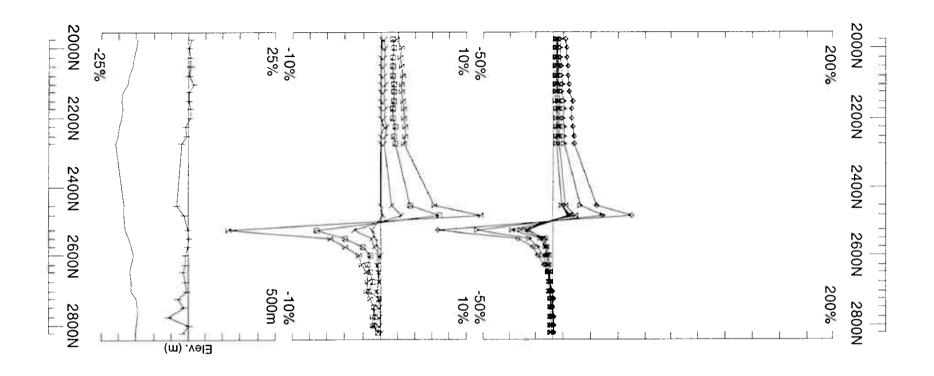
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616 Platted 69/6

Line: 8600E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

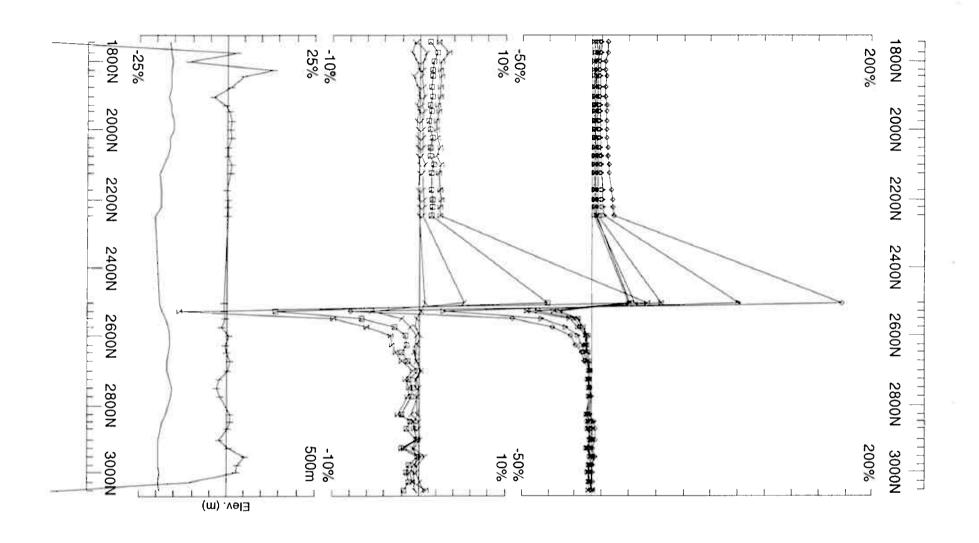

Point Norm.at x,y,z (6525,5500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6.9/6


Line: 8650E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (6525,5500,100) Base Freq. 3.251 Hz UTEM Survey at: Vissestad-Nystein Grid For: A/S Sulfidmalm

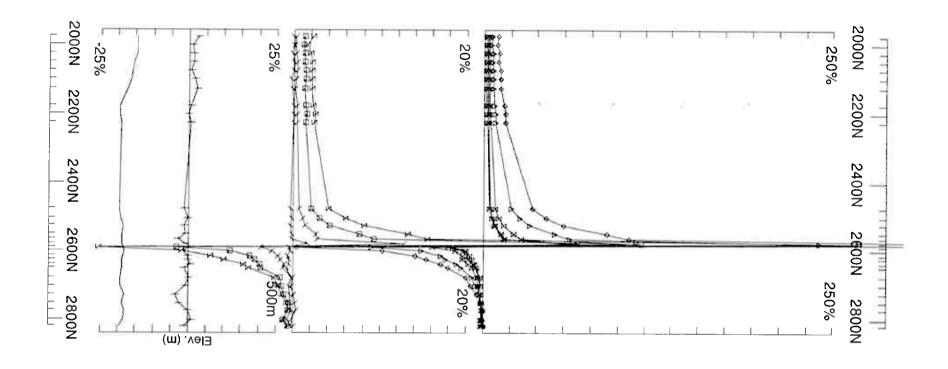
LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 69/6

Loop: 04

Line: 8700E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl


Point Norm.at x,y,z (6525,5500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

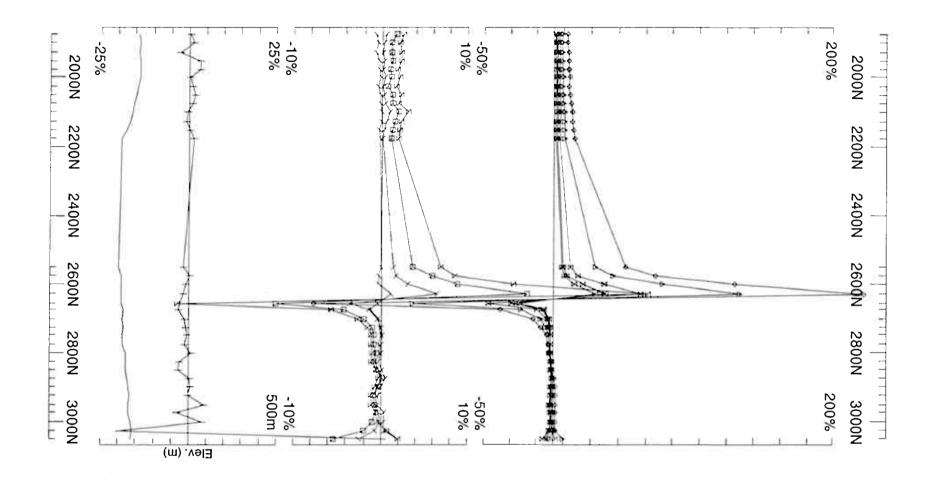
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 6/9/6

Loop: 04

Line: 8750E

Compt: Hz


Point Norm.at x,y,z (6525,5500,100) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpi UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616 Plotted 6/9/6

Loop: 04

Line: 8800E

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (6525,5500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Vissestad-Nystein Grid

For: A/S Sulfidmalm

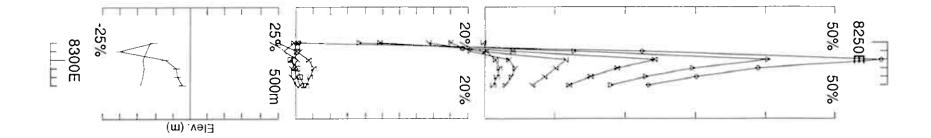
LAMONTAGNE GEOPHYSICS LTD Job O616 Plotted 69/6

Seljaasen

Loop 01S

Hz @3.251 Hz frequency

point norm


@

(x,y,z) = (478350E, 6481500N, 100 m.a.s.l.)

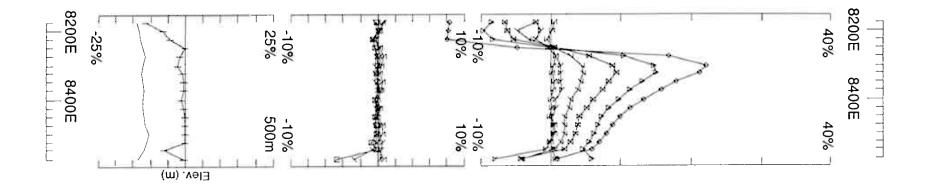
Ch1 reduced

Loop 01S	Line 1200N	225E - 375E	150m
	Line 1300N	150E - 600E	450m
	Line 1400N	125E - 600E	475m
	Line 1500N	125E - 600E	475m
	Line 1600N	125E - 600E	475m
	Line 1700N	125E - 600E	475m
	Line 1800N	125E - 600E	475m
	Seljaasen	Loop 01S Total	2975m

Loop 01S - point norm

Compt: Hz

Line: 1200N Point Norm.at x,y,z (8350,1500,100)


Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid

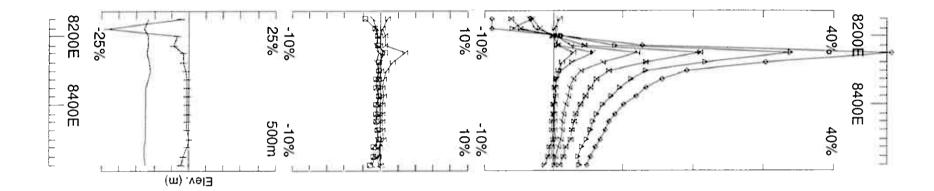
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed 7/2/6
Reduced 7/7/6
Plotted 6/9/6

Line: 1300N

Compt: Hz

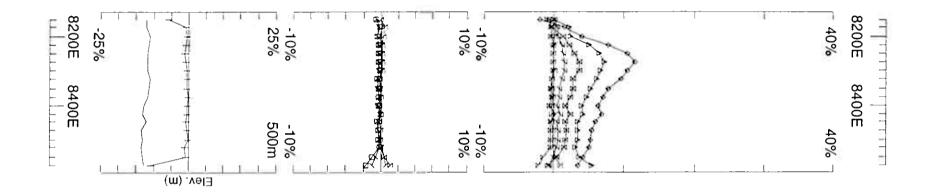

Point Norm.at x,y,z (8350,1500,100)

Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/Hpl UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616


Secondary, (Chn - Ch1)/IHpl Point Norm.at x,y,z

Line: 1400N

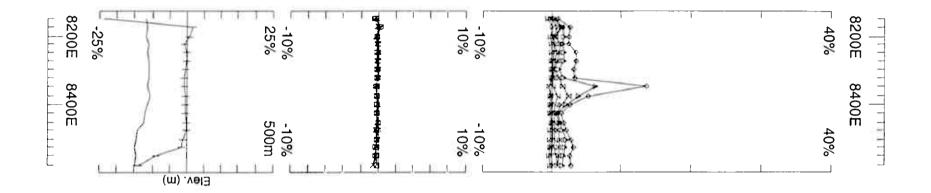
(8350,1500,100) Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Line: 1500N

Compt: Hz


Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (8350,1500,100) Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

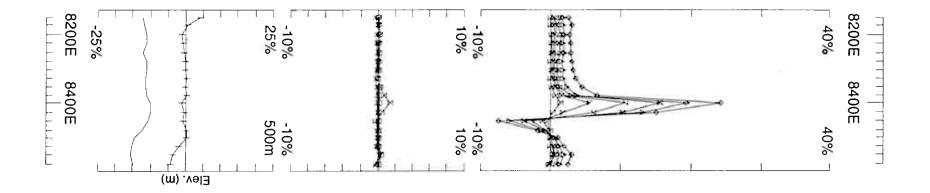
LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job Surveyed 7/2/6 Reduced : 7/7/6 Plotted : 6/9/6

Line: 1600N

Compt: Hz

Secondary, (Chn - Ch1)/lHpl

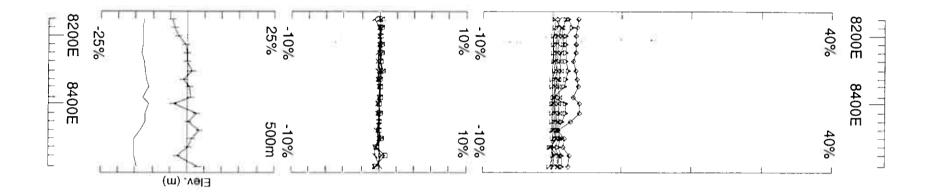

Point Norm.at x,y,z (8350,1500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed 27/16 Reduced 7/7/6 Plotted 6/9/6


Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 1700N Point Norm.at x,y,z (8350,1500,100) Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job Surveyed: 277/6 Reduced: 177/6 Plated: 6/9/6

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Line: 1800N Point Norm.at x,y,z (8350,1500,100)

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

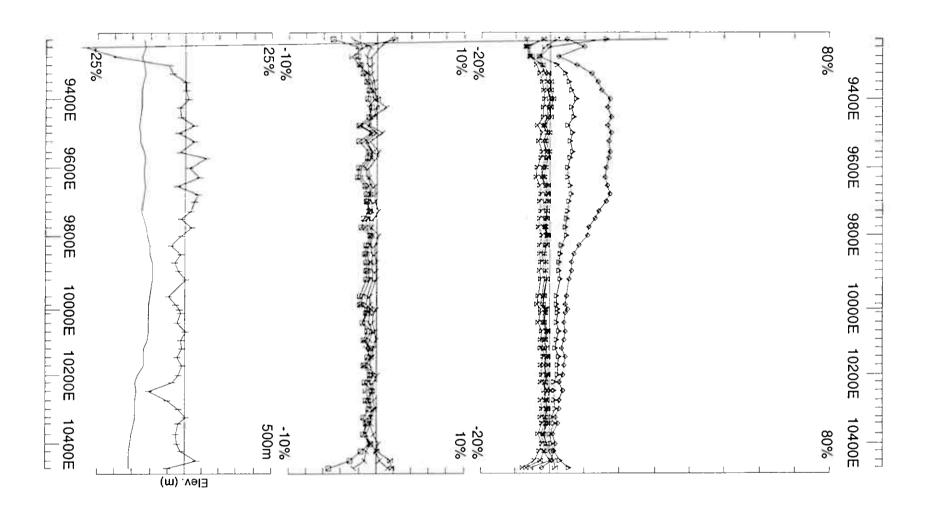
LAMONTAGNE GEOPHYSICS LTD Job 0616

Seljaasen

Loop 02S

Hz @3.251 Hz frequency

point norm


@

(x,y,z) = (479850E, 6482650N, 150 m.a.s.l.)

Ch1 reduced

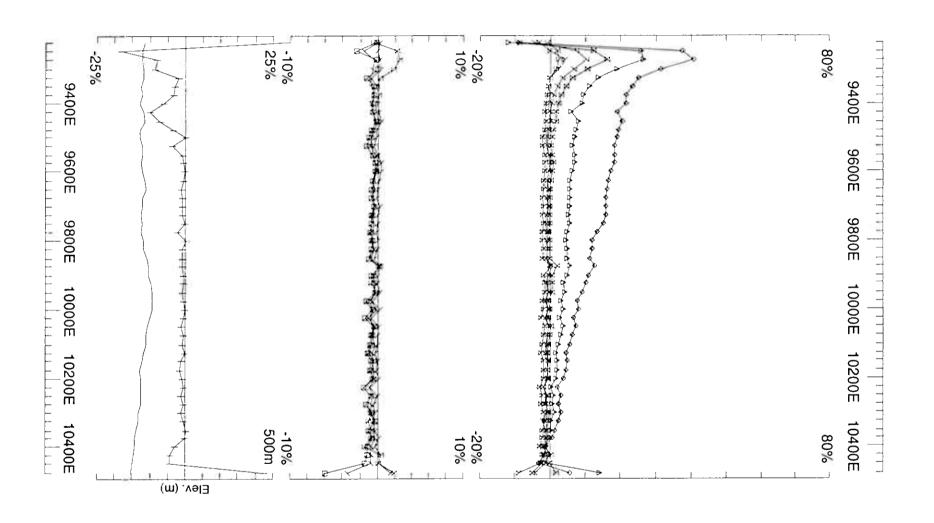
Loop 02S	Line 2000N	9200E - 10500E	1300m
	Line 2100N	9200E - 10500E	1300m
	Line 2200N	9200E - 10500E	1300m
	Line 2300N	9200E - 10500E	1300m
	Line 2400N	9200E - 10500E	1300m
	Line 2500N	9200E - 9975E	775m
		10175E - 10500E	325m
	Line 2600N	9200E - 9900E	700m
	Line 2700N	9200E - 10000E	800m
	Line 2800N	9200E - 9850E	650m
	Line 2900N	9200E - 9850E	650m
	Line 3000N	9575E - 9900E	325m
	Line 3100N	9475E - 9950E	475m
	Line 3200N	9550E - 9950E	400m
	Seljaasen	Loop 02S Total	11600m

Loop 02S - point norm

Loop: 02S Line: 2000N

Compt: Hz

Point Norm.at x,y,z (9850,2650,150)


Secondary, (Chn - Ch1)/IHpl

Base Freq. 3.251 Hz

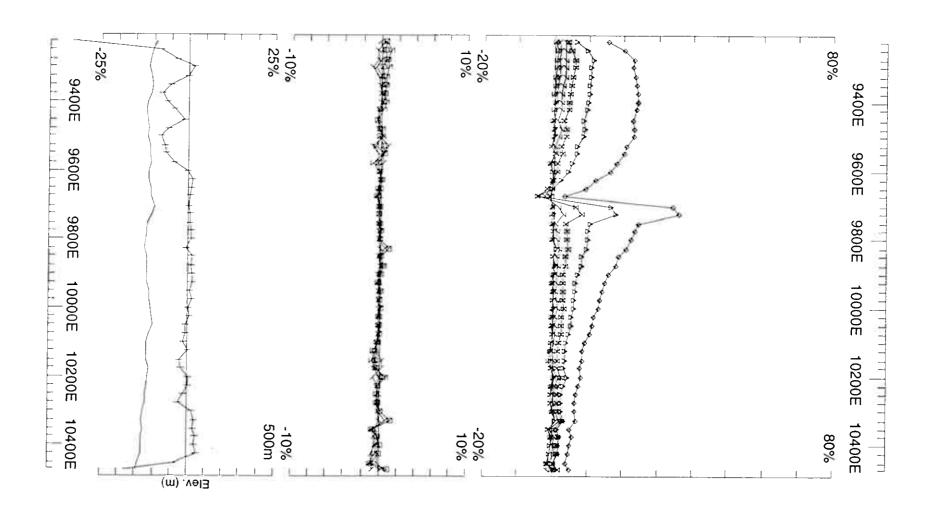
UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

MONTAGNE GEOPHYSICS LTD JOB 0616

Loop: 02S Line: 2100N

Compt: Hz


Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (9850,2650,150) Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

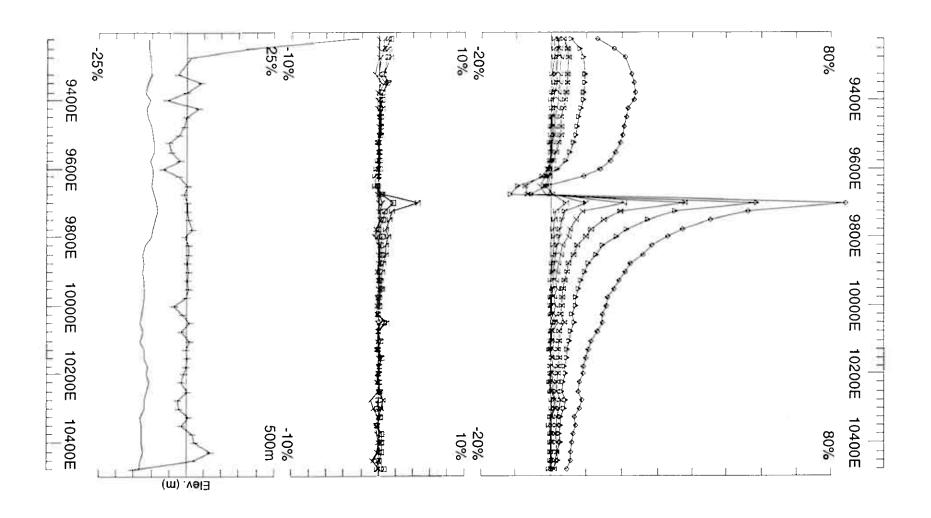
TAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616

Line: 2200N Po

Secondary, (Chn - Ch1)/IHpl Point Norm.at x,y,z

Compt: Hz

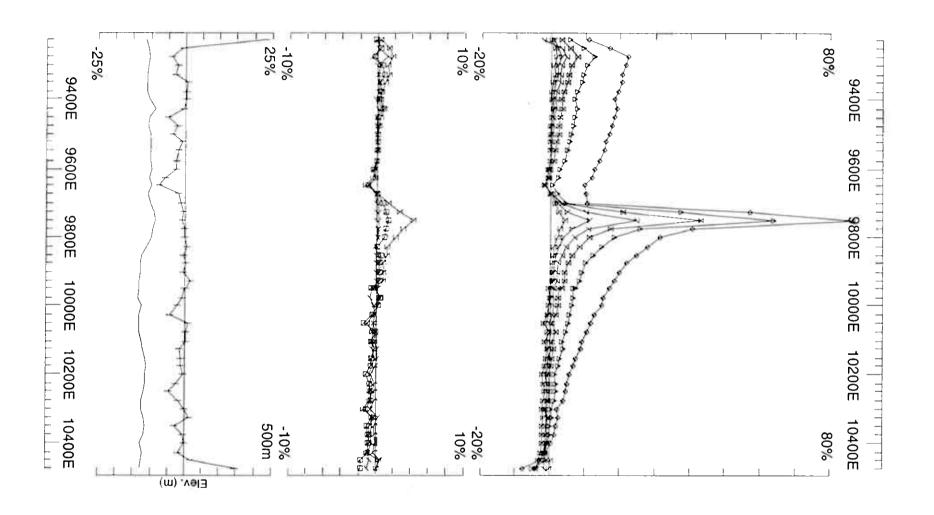

(9850,2650,150) Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

AMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job Surve Redu 0616 Plotte

Surveyed : 4/7/6 Reduced : 6/9/6 Plotted : 6/9/6

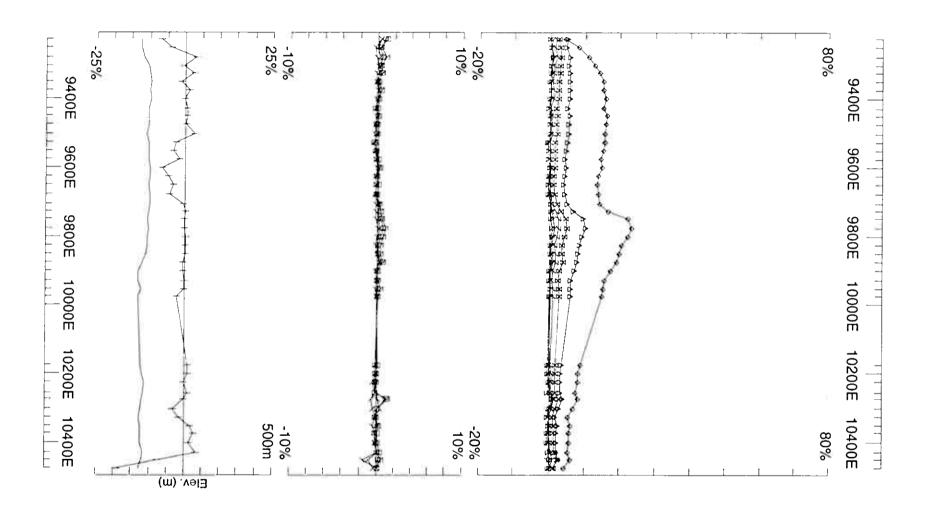

Secondary, (Chn - Ch1)/IHpl Point Norm.at x,y,z

Line: 2300N

(9850,2650,150) Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE


Compt: Hz

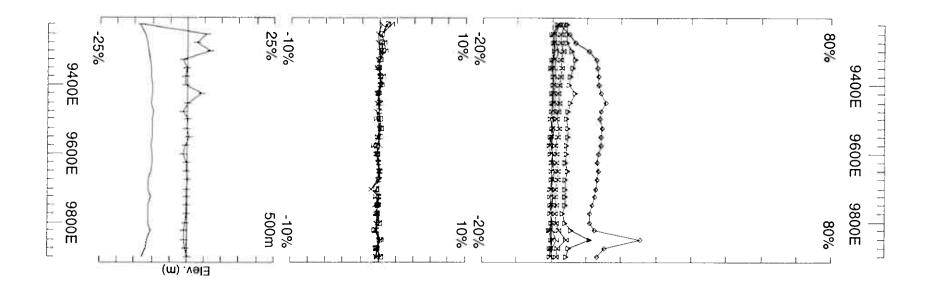
Secondary, (Chn - Ch1)/IHpl

Line: 2400N

Point Norm.at x,y,z (9850,2650,150) Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE 0616 Plotted 6/9/6

Secondary, (Chn - Ch1)/IHpl Point Norm.at x,y,z


Line: 2500N

(9850,2650,150)

Compt: Hz Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

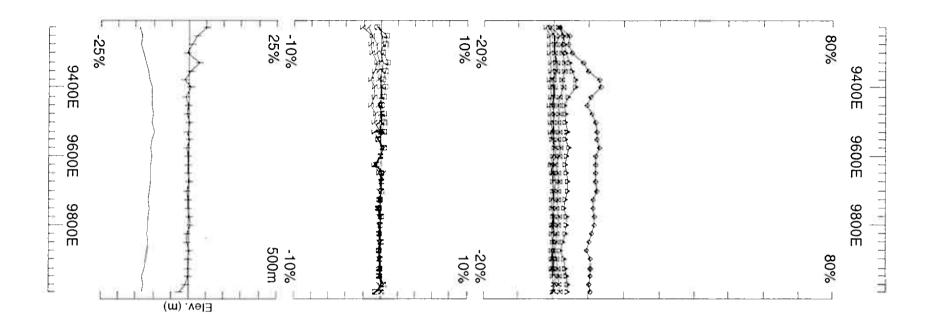
For: A/S Sulfidmalm

GEOPHYSICS LTD Job GEOPHYSIQUE LTEE 0616 Plotted 6/9/6

Line: 2600N

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

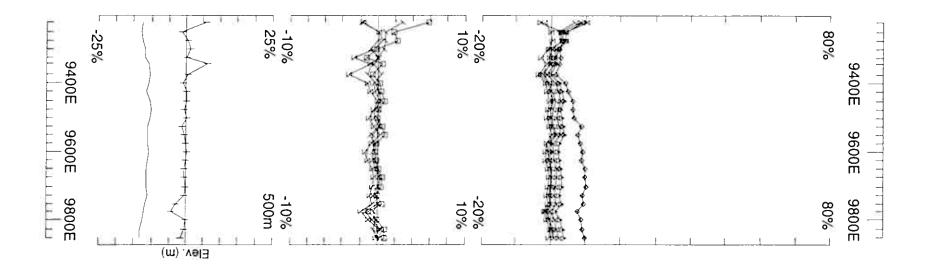

Point Norm.at x,y,z (9850,2650,150)

Base Freq. 3.251 Hz

UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

GEOPHYSICS LTD GEOPHYSIQUE LTEE


Line: 2700N

Compt: Hz

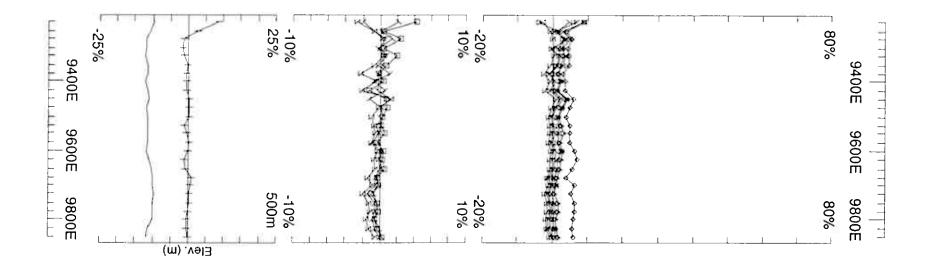
(9850,2650,150) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid Foint Norm.at x,y,z (1985) 2650 150)

MONTAGNE GEOPHYSICS LTD Job O616 Plated 6/9/6

Loop: 02S Line: 2800N

Compt: Hz


Point Norm.at x,y,z (9850,2650,150) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid

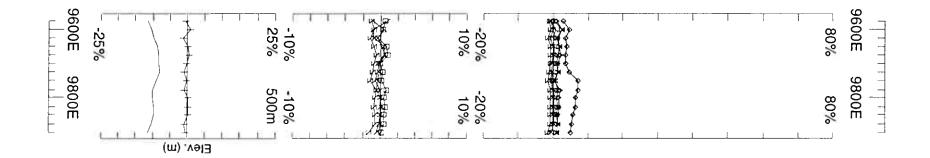
For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed 7/5/6
Reduced 6/9/6
Plotted 6/9/6

Loop: 02S Line: 2900N

Compt: Hz


Point Norm.at x,y,z (9850,2650,150) Base Freq. 3.251 Hz

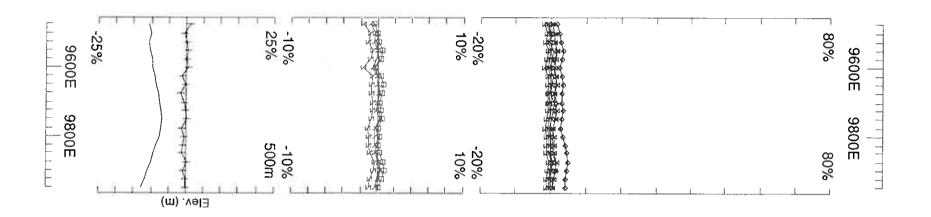
Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

GEOPHYSICS LTD GEOPHYSIQUE LTEE

Job 0616

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid

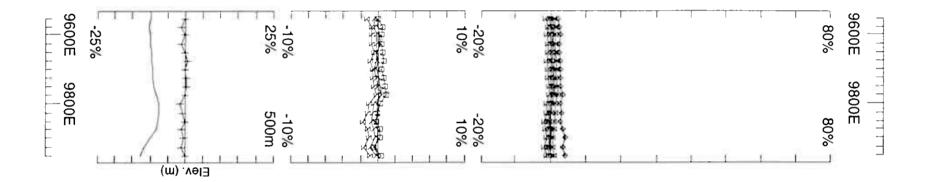

Line: 3000N

Point Norm.at x,y,z (9850,2650,150)

For: A/S Sulfidmalm LAMONTAGNE GEOPHYSICS LTD Job 0616

Compt: Hz

Base Freq. 3.251 Hz



Compt: Hz

Line: 3100N Point Norm.at x,y,z (9850,2650,150) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job O616

Line: 3200N

Compt: Hz

Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (9850,2650,150) Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

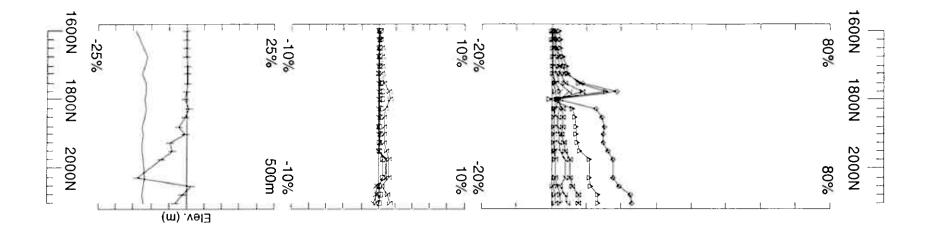
LAMONTAGNE GEOPHYSIQUE LTEE 0616

Seljaasen

Loop 03S

Hz @3.251 Hz frequency

point norm


@

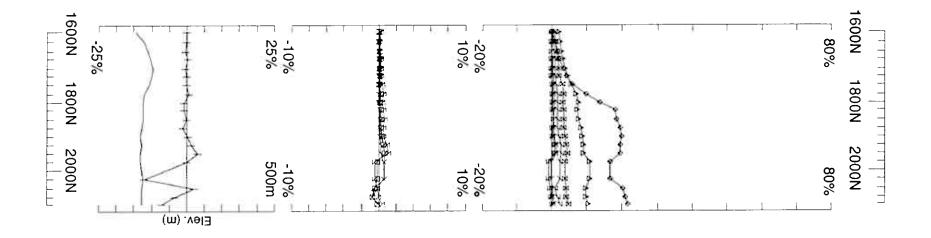
(x,y,z) = (478350E, 6482700N, 150 m.a.s.l.)

Ch1 reduced

Loop 03S	Line 9350E Line 9400E	1600N - 2100N	500m
	Line 9450E	1600N - 2100N 1600N - 2100N	500m
	Line 9500E	1500N - 2100N	500m 600m
	Seljaasen	Loop 03S Total	2100m

Loop 03S - point norm

Line: 9350N


Compt: Hz

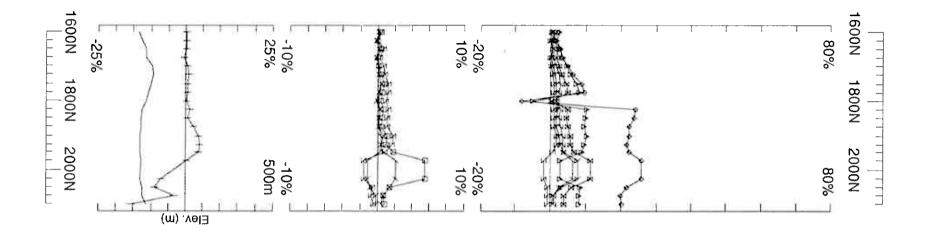
Secondary, (Chn - Ch1)/IHpl

Point Norm.at x,y,z (9850,2700,150) Base Freq. 3.251 Hz UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD Job 0616

Compt: Hz


Line: 9400N Point Norm.at x,y,z (9850,2700,150) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

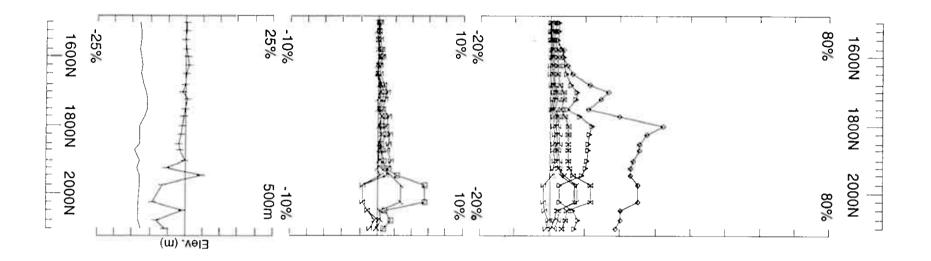
LAMONTAGNE GEOPHYSICS LTD GEOPHYSIQUE LTEE 0616

Surveyed : 6/7/6 Reduced : 6/9/6 Plotted : 6/9/6

Line: 9450N

Compt: Hz

Point Norm.at x,y,z


(9850,2700,150) Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid

For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed 67/6
Reduced 6/9/6
Plotted 6/9/6

Line: 9500N

Compt: Hz

(9850,2700,150)

Base Freq. 3.251 Hz

Secondary, (Chn - Ch1)/IHpl UTEM Survey at: Seljassen Grid For: A/S Sulfidmalm

LAMONTAGNE GEOPHYSICS LTD
GEOPHYSIQUE LTEE

Job Surveyed 67/6
Plotted 69/6
Plotted 69/6

Appendix B

0616 Production Diary

UTEM 3 Surface Survey

Bamble/Seljaasen Norway

for

A/S Sulfidmalm

Production Log (0616) UTEM Survey - Bamble/Seljaasen Norway A/S Sulfidmalm

			140 Sumumum		
<u>Date</u>	Rate	<u>Production</u>	<u>Comments</u>		
up to June 04		-	Discussions, signing of the contract, assembly of crew and equipment.		
June 05	Mob	(equip)	Equipment packed up and labelled. Picked up from Kingston. Shipping address is: Wilhelmsen Agencies AS P. Box 14 NO 2061 Gardermoen Norway		
<u>June 11</u>	Mob	-	The LGL crew -Rob Langridge, John Frost, Kevin Arsenault and Pat Foley - travel from Canada->Frankfurt(FRA)->Oslo (OSL).		
June 12	Mob	-	Continuation of air travel. The gear clears customs and meet with Falconbridge geologist Trevor Blair and crew. The group drives to the southern field house and then on to the project site arriving ~22:15.		
June 13	L(4)	D.I. amani da	Unpack gear and get ready for looping. Do a tour of the site with Trevor Blair, have lunch and loop. Problems locating the northern edge of the loop and the northwest corner stretch out the day. Crew back in camp ~20:30.		
Crew:R.Langridge, J.Frost, K.Arsenault, P.Foley					
June 14	P(2)-4	4900m	Get gear ready and head out to the grid. Read two lines each without incident. Return to camp and head into Kragero to grocery shop. Crew back in camp ~19:30. Loop 02		
	Crev	w:R.Langridg	Line 4100E 650N - 800N Hz Rx05 Line 4200E 575N - 1750N Hz Rx05 Line 4300E 525N - 1750N Hz Rx04 Line 4400E 525N - 1750N Hz Rx05 Line 4500E 625N - 1750N Hz Rx04 je, J. Frost, K. Arsenault, P. Foley Total to date:		
			4.900km		

<u>Date</u>	Rate	Production	Comments			
June 15	P(2)-4	3700m	Get gear ready and head out to the grid. Read until 11:00 when the loop was broken by a moose or two. Repair the loop and read without further incident. Crew back in camp ~18:30. Loop 02			
			Line 4100E	1750N - 2250N	Hz Rx05	
			Line 4200E	1750N - 2250N	Hz Rx05	
			Line 4300E Line 4400E	1750N - 2250N 1750N - 2250N	Hz Rx05 Hz Rx05	
			Line 5000E	900N - 1750N	Hz Rx04	
			Line 5050E	900N - 1750N	Hz Rx04	
	Crev	w:R.Langridg	ge,J.Frost,K.Arsenau 8.600km		al to date:	
June 16	P(2)-4	3600m	Get gear ready and broken by a mood further incident. Crew back in cam Loop 02	d head out to the grid. se. Repair the loop and np ~17:00.	The loop was I read without	
			Line 4600E Line 4700E	700N - 1750N 875N - 1750N	Hz Rx05 Hz Rx05	
			Line 4800E	900N - 1750N	Hz Rx04	
	Crev	w:R.Langridg	Line 4900E ge,J.Frost,K.Arsenau 12.200km	925N - 1750N ult,P.Foley Tot	Hz Rx04 al to date:	
June 17	P(2)-4		Head out to the gr Crew back in cam	rid. Pick up Loop 2 and	lay out Loop 1.	
	Crev	v:R.Langridg	ge,J.Frost,K.Arsenau 12.200km		al to date:	
June 18	P(2)-4	4700m	Get gear ready and further incident - stations Crew back in cam	d head out to the grid. a portion of Line 3700	Read without was read @50m	
			Loop 01	ιp ~17.40		
			Line 3700E	400N - 550N 700N - 1725N	Hz Rx05 Hz Rx06	
			Line 3800E	475N - 1725N	Hz Rx06	
			Line 3900E	600N - 1725N	Hz Rx05	
	C	u.D. I. amadili i	Line 4000E	575N - 1725N	Hz Rx05	
	Crev	v.K.Langridg	e,J.Frost,K.Arsenau 16.900km	iit,r.roiey Tot	al to date:	

<u>Date</u>	Rate Produc	tion Comments				
June 19	P(2)-4 4350m	Get gear ready and rain in the mornin the loop and foun ground. Re-set up rain started again Called it a day. Paduring the evenin	Get gear ready and head out to the grid. Read through rain in the morning. Transmitter shut down - walked the loop and found it was either overheating or in wet ground. Re-set up Tx and read till 17:15 when heavy rain started again and the Transmitter shut down again. Called it a day. Patti Tirschmann stopped through during the evening and discussed further work. Crew back in camp ~17:40			
		Line 3300E Line 3400E	825N - 1725N 550N - 1725N	Hz Rx05 Hz Rx06		
		Line 3500E	700N - 1725N	Hz Rx05		
	Crew:R.Lang	Line 3600E ridge,J.Frost,K.Arsenau 21.250km	475N - 1725N lt,P.Foley T	Hz Rx05 otal to date:		
June 20	P(2)-4 2050m	rain in the mornin the loop and foun ground. Re-set up rain started again Called it a day. Pa during the evenin	Get gear ready and head out to the grid. Read through rain in the morning. Transmitter shut down - walked the loop and found it was either overheating or in wet ground. Re-set up Tx and read till 17:15 when heavy rain started again and the Transmitter shut down again. Called it a day. Patti Tirschmann stopped through during the evening and discussed further work. Crew back in camp ~17:40			
		Line 3100E	875N - 1725N	Hz Rx06		
		Line 3200E Line 3400E	875N - 1725N 450N - 550N	Hz Rx05 Hz Rx05		
	C. Di	Line 3500E	450N - 700N	Hz Rx06		
	Crew:R.Lang	ridge,J.Frost,K.Arsenau 23.300km	lt,P.Foley To	otal to date:		
June 21	P(2)-4	Grid. The day star morning. Lay out progressively wet of the loop out bu cliff in the SE corn laying out these so decision is made t	Get gear ready and head out to the Nystein-Vissestad Grid. The day started as cloudy but rain came ~midmorning. Lay out wire and flag the loop in on Loop 4 in progressively wetter conditions. By 14:00 we have most of the loop out but the section remaining crosses a large cliff in the SE corner and a christmas tree farm. We start laying out these sections and the rain increases - the decision is made to stop work for today. Crew back in camp ~15:20			
	Crew:R.Langi	ridge,J.Frost,K.Arsenaul 23.300km	t,P.Foley To	otal to date:		

<u>Date</u>	Rate	<u>Production</u>	<u>Comments</u>			
June 22	P(2)-4		was complete and ~12:00. The rain very hard so we determining section we packed up an Crew back in can	n the SE section of d we were back al picked up by 13:00 decided to scout o n of Loop 3. When d headed home. np ~16:40	Loop 4 in rain t the truck for 0 it was still rap out and flag in	n - this lunch ining the
	Cre	w:K.Langridş	ge,J.Frost,K.Arsenau 23.300km	ılt,P.Foley	Total to dat	te:
June 23	P(2)-4	4825m	Get gear ready and head out to the grid. Read all midsummer day with little incident Crew back in camp ~17:00 Loop 04			l
			Line 7700E Line 7900E Line 8550E Line 8650E Line 8700E Line 8750E Line 8800E	1725N - 307 1850N - 307 2400N - 282 2450N - 282 2500N - 307 2475N - 282 2550N - 307	5N Hz 5N Hz 5N Hz 5N Hz 5N Hz	Rx05 Rx05 Rx06 Rx06 Rx06 Rx06 Rx06
	Cres	w:R.Langridફ	ge,J.Frost,K.Arsenau 28.125km	ılt,P.Foley	Total to dat	e:
June 24	P(2)-4	2825m	Read on Loop 4. Loop was broken overnight. Loop repaired and is broken again (~1500m from first break) while we are setting up. Read one line each. Crew back in camp ~19:00 Loop 04			oop break)
		D. L.	Line 8200E Line 8300E Line 8300E Line 8400E	1725N - 307 1725N - 247 2650N - 307 1725N - 202	5N Hz 5N Hz	Rx05 Rx06 Rx06 Rx06
	Crei	w:K.Langridg	ge,J.Frost,K.Arsenau 30.950km	ılt,P.Foley	Total to dat	e:
June 25	P(2)-4	5700m	Read on Loop 4 wi Crew back in cam Loop 04 Line 8000E Line 8100E Line 8450E Line 8500E Line 8550E		0N Hz 5N Hz 5N Hz 5N Hz	Rx05 Rx06 Rx06 Rx06 Rx05
				1770II 200	014 112	Rx05

UTEM Survey 0616 - A/S Sulfidmalm Bamble/Seljaasen Projects, Norway Appendix B pg B4

<u>Date</u>

Rate Production Comments

Line 8600E 2425N - 3075N Hz Rx06 Crew:R.Langridge,J.Frost,K.Arsenault,P.Foley Total to date: 36.650km

<u>Date</u>	<u>Rate</u>	Production	Comments				
June 26	P(1)-3	2500m	One receiver reads on Loop 4 without incident. Kevin Arsenault has an irritation and infection in his eye from a stick impact in the bush. Rob Langridge takes him into town to have it looked at and treated. He also purchases safety glasses and a SIM card for a second cell phone to improve communication in the field. Kevin is treated and returned to the crew cottage. Construction on the access road means that returning to the field is longer than usual ~26km. Rob returns and lays out wire on Loop 3 until surveying is completed Crew back in camp ~17:30 Loop 04				
			Line 8500E Line 8600E Line 8650E Line 8700E Line 8750E	1725N 1975N 1725N	- 2250N - 2300N - 2275N - 2250N - 2225N	Hz Hz Hz Hz Hz	Rx05 Rx05 Rx05 Rx05 Rx05
	Crev	v:R.Lang rid g	Line 8800E e,J.Frost,K.Arsenault,I 39.150km		- 2175N Tota	Hz I to date	Rx05 e:
June 27	P(2)-4 Crew	v:R.Langridg	We find out that our of loops. Head out to to up Loop 4 and lay out to GPS data. When to and headed home. Crew back in campace, J. Frost, K. Arsenault, I. 39.150km	the Nyste ut Loop 3 this was ~15:40	ein-Vissestad 3 in the rain. completed w	Grid ar Added	nd pick details d up
June 28	P(2)-4	6700m	Out early to avoid conto complete the loop Crew back in camp Loop 03	in a day ~18:40	· .	-	
	Crew	v:R.Langridg	Line 6500E Line 6700E Line 6900E Line 7100E Line 7300E Line 7500E J.Frost,K.Arsenault,I 45.850km	1725N 1725N 1725N	- 2725N - 2975N - 3075N - 3075N	Hz Hz Hz Hz Hz Hz I to date	Rx05 Rx05 Rx05 Rx5/6 Rx06 Rx06
June 29	P(2)-4		Head out to the Nyste 3. Start to pack for the Crew back in camp	he move	stad Grid an to the Arend	d pick ι dal area	ıp Loop
	UTEM Sur	rvey 0616 - A/S	S Sulfidmalm Bamble/Selj	aasen Proj	ects, Norway	Appendix	к В рg В б

<u>Date</u>

Rate Production Comments

Crew:R.Langridge,J.Frost,K.Arsenault,P.Foley 45.850km

Total to date:

<u>Date</u>	Rate Productio	n Comments
June 30	P(2)-4 Crew:R.Langrid	Pack and head to the Arendal areaDrop a load off at the new house and go out to the Seljaasen Grid. Find the grid numbering to be confusing but lay out Loop 01S. Head back to Stavnes. Crew back in camp ~18:00 Ige,J.Frost,K.Arsenault,P.Foley Total to date: 45.850km
July 01	S (2)-4 Crew:R.Langrid	Pack, scrub the house to the satisfaction of the owner and head to the Arendal areaArrive ~15:00 to take possession. Unpack and shop. lge,J.Frost,K.Arsenault,P.Foley Total to date: 45.850km
<u>July 02</u>	P (2)-4 2975m Crew:R.Langrid	Out to the Seljaasen Grid to try to complete the loop in a day. We do despite one loop break. Crew back in camp ~15:40 Loop 01S Line 1200N
July 03	P(2)-4 Crew:R.Langrid	Out to the Seljaasen Grid to put out Loop 2S. Wire is swum across a lake in the NE corner. Loop is completed and a small portion of Loop 1S is collected. Crew back in camp ~16:30 lge,J.Frost,K.Arsenault,P.Foley Total to date: 48.825km
July 04	P (2)-4 6075m Mob (BI-I equip)	Out to the Seljaasen Grid to survey on Loop 2S. Crew back in camp ~17:45 Loop 02S Line 2000N 9200E - 10500E Hz Rx06 Line 2100N 9200E - 10500E Hz Rx06 Line 2200N 9200E - 10500E Hz Rx05 Line 2300N 9200E - 10500E Hz Rx05 Line 2400N 9950E - 10500E Hz Rx06 Line 2500N 10175E - 10500E Hz Rx05 Borehole equipment packed up and labeled. Picked up from Kingston.

UTEM Survey 0616 - A/S Sulfidmalm Bamble/Seljaasen Projects, Norway Appendix B pg B8

<u>Date</u>

Rate Production Comments

Crew:R.Langridge,J.Frost,K.Arsenault,P.Foley 54,900km

Total to date:

<u>Date</u>	Rate Produ	uction Comments		
July 05	P (2)-4 5525r Mob (BH equip)	n Out to the Seljaase Crew back in cam	n Grid to survey on Lo np ~17:15	op 2S.
		Loop 02S Line 2400N Line 2500N Line 2600N Line 2700N Line 2800N Line 2900N Line 3000N Line 3100N Line 3200N ngridge,J.Frost,K.Arsenau	9200E - 9950E 9200E - 9975E 9200E - 9900E 9200E - 10000E 9200E - 9850E 9200E - 9850E 9575E - 9900E 9475E - 9950E 9550E - 9950E alt,P.Foley Tot	Hz Rx06 Hz Rx06 Hz Rx05 Hz Rx05 Hz Rx06 Hz Rx05 Hz Rx05 Hz Rx05 Hz Rx06 Hz Rx06 Hz Rx06 hz Rx06 hz Rx06
July 06	P (2)-4 2100r Mob (BH equip)	to allow surveyin up the remainder Crew back in can Loop 03S Line 9350E	np ~16:15 1600E - 2100N	n Loop 3S. Pick Hz Rx05
	Crew:R.La	Line 9400E Line 9450E Line 9500E ngridge,J.Frost,K.Arsenau 62.525km	1600E - 2100N 1600E - 2100N 1500E - 2100N alt,P.Foley Tot	Hz Rx05 Hz Rx06 Hz Rx06 al to date:
July 07	P (2)-4 Mob (BH equip)		n Grid to pick up Loop osh arrives to help mov	
	• •	Crew back in c an ngridge,J.Frost,K.Arsenau 62.525km		al to date:
July 08	P(2)-4	Move to Tyristran Kevin's tickets.	d. Stop at airport to cla	rify Pat and
	Crew:R.La	ngridge,J.Frost,K.Arsenau 62.525km	ılt,P.Foley Tot	al to date:
<u> July 09</u> - July	21	Crew working on	other grids in Norway	
July 22	Cwosse D.I	shuffle of field tre to Gardemoen.	equipment to Gardemoucks for maintenance. I	
	Crew.K.La	ngridge,J.Frost		

UTEM Survey 0616 - A/S Sulfidmalm Bamble/Seljaasen Projects, Norway Appendix B pg B10

Date Rate Production Comments

<u>July 23</u> Crew makes the journey back to Canada. Demob Equipment (borehole and surface) in transit. (all equipment)

<u>Date</u>	Rate Production	
July 24 ->July 27	Demob - (all equipment)	Equipment (borehole and surface) in transit.
July 28	Demob (surface equipment)	Equipment (borehole) arrives in Kingston. Equipment (surface) in transit.
July 29 ->August 07	Demob - (surface equipment)	Equipment (surface) in transit.
August 08	Demob	Equipment (surface) arrives in Kingston.
	LEGEND	N

P(n)-x PB(n)-x	Surface Production (# of receivers) - # of personnel BHUTEM3 Production (# of receivers) - # of personnel
L(n)-x	Looping (# of receivers) - # of personnel
S(n)-x	Standby (# of receivers) - # of personnel
D(n)-x	Down (# of receivers) - # of personnel
DB(n)-x	Down BHUTEM3 (# of receivers) - # of personnel
SES	Surface Equipment Standby
BES	Borehole Ėquipment Standby

Appendix C

The UTEM SYSTEM

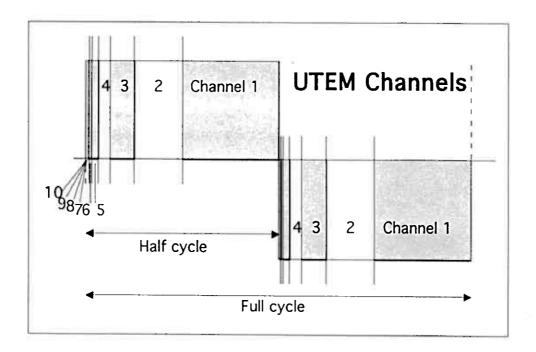
The UTEM System

UTEM Data Reduction and Plotting Conventions

Data Presentation

The UTEM SYSTEM

UTEM uses a large, fixed, horizontal transmitter loop as its source. Loops range in size from 300m x 300m up to as large as 4km x 4km. Smaller loops are generally used over conductive terrain or for shallow sounding work. The larger loops are only used over resistive terrain. The UTEM receiver is typically syncronized with the transmitter at the beginning of a survey day and operates remotely after that point. The clocks employed - one in each of the receiver and transmitter - are sufficiently accurate to maintain synchronisation.


Measurements are routinely taken to a distance of 1.5 to twice the loop dimensions, depending on the local noise levels, and can be continued further. Lines are typically surveyed out from the edge of the loop but may also be read across the loop wire and through the centre of the loop, a configuration used mainly to detect horizontal conductors. BHUTEM - the borehole version of UTEM -surveys have been carried out to depths up to 3000+ metres.

System Waveform

The UTEM transmitter passes a low-frequency (4 Hz to 90 Hz) current of a precisely regulated triangular waveform through the transmitter loop. The frequency can be set to any value within the operating range of the transmitter, however, it is usually set at 31 Hz to minimise power line (60 Hz in North America) effects. Since a receiver coil responds to the time derivative of the magnetic field, the UTEM system really "sees" the step response of the ground. UTEM is the only time domain system which measures the step response of the ground. All other T.D.E.M. systems to date transmit a modified step current and "see" the (im)pulse response of the ground at the receiver. In practice, the transmitted UTEM waveform is tailored to optimize signal-to-noise. Deconvolution techniques are employed within the system to produce an equivalent to the conceptual "step response" at the receiver.

System Sampling

The UTEM receiver measures the time variation of the magnetic field in the direction of the receiver coil at 10 delay times (channels). UTEM channels are spaced in a binary, geometric progression across each half-cycle of the received waveform. Channel 10 is the earliest channel and it is $1/2^{10}$ of the half-cycle wide. Channel 1, the latest channel, is $1/2^{1}$ of the half-cycle wide (see Figure below). The measurements obtained for each of 10 channels are accumulated over many half-cycles. Each final channel value, as stored, is the average of the measurements for that time channel. The number of half-cycles averaged generally ranges between 2048 (1024 full-cycles - 1K in UTEM jargon) to 32768 (16K) depending on the level of ambient noise and the signal strength.

System Configurations

For surface work the receiver coil is mounted on a portable tripod and oriented. During a surface UTEM survey the vertical component of the magnetic field (Hz) of the transmitter loop is always measured. Horizontal inline (Hx) and cross-line (Hy) components are also measured if more detailed information is required. The UTEM System is also capable of measuring the two horizontal components of the electric field, Ex and Ey. A dipole sensor comprised of two electrodes is used to measure the electric field components. This is generally used for outlining resistive features to which the magnetic field is not very sensitive.

BHUTEM surveys employ a receiver coil that is smaller in diameter than the surface coil. The borehole receiver coil forms part of a down-hole receiver package used to measure the axial (along-borehole) component of the magnetic field of the transmitter loop. Due to the distance between coil and receiver in borehole surveys the signal must be transmitted up to the receiver. In BHUTEM the signal is transmitted to surface digitally using a kevlar-reinforced fibre-optic cable as a data link. Using a fibre-optic link avoids signal degradation problems and allows surveying of boreholes to 3000+m. The cable is also very light - the specific gravity is nearly 1.0 - making the cable handling hardware quite portable.

The EM Induction Process

Any time-varying transmitted ("primary") field induces current flow in conductive regions of the ground below and around the transmitter loop (i.e. in the earth or "half-space"). This current flow produces a measurable EM field, the secondary field, which has an inherent "inertia" that resists the change in primary field direction. This "inertial" effect is called self-inductance; it limits the rate at which current can change and is only dependent on the shape and size of a conductive path.

It takes a certain amount of time for the transmitted current flow to be redirected (reversed) and reestablished to full amplitude after the rate-of-change of the primary field reverses direction. This measurable reversal time is characteristic for a given conductor. In general, for a good conductor this time is greater than that of a poor conductor. This is because in a good conductor the terminal current level is greater, whereas its rate of change is limited by the inductance of the current path. The time-varying current causes an Emf in the sensor proportional to the time derivative of the current. This Emf decays with time - it vanishes when the reversal is complete - and the characteristic time of the Emf decay as measured by the sensor is referred to as the decay time of the conductor.

The large-scale current which is induced in the half-space by the primary field produces the half-space response as seen in typical UTEM profiles. This background response is influenced by the finite conductivity of the surrounding rock. Other currents may be induced in locally more conductive zones (conductors) that have longer decay times than the half-space response. The responses of these conductors are superimposed upon the background response. The result is that the UTEM receiver detects:

- the primary field waveform, a square-wave

- the half-space (background) response of the surrounding rock

- a slight-to-large response due to any conductors present.

The result is that in the presence of conductors the primary field waveform is substantially (and anomalously) distorted.

UTEM DATA REDUCTION and PLOTTING CONVENTIONS

The UTEM data as it appears in the data files is in total field, continuously normalized form. In this form, the magnetic field data collected by the receiver is expressed as a % of the calculated primary magnetic field vector magnitude at the station. These are total field values - the UTEM system measures during the "on-time" and as such samples both the primary and secondary fields.

For plotting purposes, the reduced magnetic field data (as it appears in the data file) are transformed to other formats as required. The following is provided as a description of the various plotting formats used for the display of UTEM data. A plotting format is defined by the choice of the *normalization* and *field type* parameters selected for display.

NORMALIZATION

UTEM results are always expressed as a % of a normalizing field at some point in space.

In **continuously normalized** form the normalizing factor (the denominator) is the magnitude of the computed local primary field vector. As the primary exciting field magnitude diminishes with increasing distance from the transmitter loop the response is continuously amplified as a function of offset from the loop. Although this type of normalization considerably distorts the response shape, it permits anomalies to be easily identified at a wide range of distances from the loop.

Note: An optional form of continuous normalization permits the interpreter to normalize the response to the magnitude of the primary field vector at a fixed depth below each station. This is useful for surface profiles which come very close to the loop. Without this adjustment option, the normalizing field is so strong near the loop that the secondary effects become too small in the presence of such a large primary component. In such circumstances interpretation is difficult, however; by "normalizing at some depth" the size of the normalizing field, near the loop in particular, is reduced and the resulting profile can be more effectively interpreted to a very close distance from the transmitter wire. The usual choice for the depth is the estimated target depth is used.

In **point normalized form** the normalizing factor is the magnitude of the computed primary field vector at a single point in space. When data is presented in this form, the point of normalization is displayed in the title block of the plot. Point normalized profiles show the non-distorted shape of the field profiles. Unfortunately, the very large range in magnitude of anomalies both near and far from the loop means that small anomalies, particularly those far from the loop, may be overlooked on this type of plot in favor of presenting larger amplitude anomalies.

Note: Selecting the correct plot scales is critical to the recognition of conductors over the entire length of a point normalized profile. Point normalized data is often used for interpretation where an analysis of the shape of a specific anomaly is required. Point normalized profiles are therefore plotted selectively as required during interpretation. An exception to this procedure occurs where surface data has been collected entirely inside a transmitter loop. The primary field does not vary greatly inside the loop, therefore, the benefits of continuous normalization are not required in the display of such results. In these cases data is often point normalized to a fixed point near the loop centre.

FIELD TYPE

The type of field may be either the **Total field** or the **Secondary field**. In general, it is the secondary field that is most useful for the recognition and interpretation of discrete conductors.

UTEM Results as Secondary Fields

Because the UTEM system measures during the transmitter on-time the determination of the secondary field requires that an estimate of the primary signal be subtracted from the observations. Two estimates of the primary signal are available:

1) UTEM Channel 1

One estimate of the primary signal is the value of the latest time channel observed by the UTEM System, channel 1. When Channel 1 is subtracted from the UTEM data the resulting data display is termed *Channel 1 Reduced*. This reduction formula is used in situations where it can be assumed that all responses from any target bodies have decayed away by the latest time channel sampled. The Channel 1 value is then a reasonable estimate of the primary signal present during Channels 2....10.

In practice the *Channel 1 Reduced* form is most useful when the secondary response is very small at the latest delay time. In these cases channel 1 is indeed a good estimate of the primary field and using it avoids problems due to geometric errors or transmitter loop current/system sensitivity errors.

2) Calculated primary field

An alternate estimate of the primary field is obtained by computing the primary field from the known locations of the transmitter loop and the receiver stations. When the computed primary field is subtracted from the UTEM data the resulting data display is termed *Primary Field Reduced*.

The calculated primary field will be in error if the geometry is in error mislocation of the survey stations or the loop vertices - or if the transmitter loop current/system sensitivity is in error. Mislocation errors from loop/station geometry may give rise to very large secondary field errors depending on the accuracy of the loop and station location method used. Transmitter loop current/system sensitivity error is rarely greater than 2%. Primary Field Reduced is plotted in situations where a large Channel 1 response is observed. In this case the assumption that the Channel 1 value is a reasonable estimate of the primary field effect is not valid.

Note: When UTEM data is plotted in the *Channel 1 Reduced* form the secondary field data for Channel 1 itself are always presented in *Primary Field Reduced* form and are plotted on a separate axis. This plotting format serves to show any long time-constant responses, magnetostatic anomalies and/or geometric errors present in the data.

Mathematical Formulations

In the following expressions:

Rnj is the result plotted for the nth UTEM channel,

R1; is the result plotted for the latest-time UTEM channel, channel 1,

Chn; is the raw component sensor value for the nth channel at station i.

Ch1; is the raw component sensor value for channel 1 at station j,

 $H^{P_{j}}$ is the computed primary field component in the sensor direction

 $|H^{\mathbf{P}}|$ is the magnitude of the computed primary field at:

- a fixed station for the entire line (point normalized data)

- the local station of observation (continuously normalized data)

- a fixed depth below the station (continuously normalized at a depth).

Channel 1 Reduced Secondary Fields: Here, the latest time channel, Channel 1 is used as an "estimate" of the primary signal and channels 2-10 are expressed as:

$$Rn_j = (Chn_j - Ch1_j) / |H^P| \times 100\%$$

Channel 1 itself is reduced by subtracting a calculation of the primary field observed in the direction of the coil, $\mathbf{H}^{\mathbf{P}}$ as follows:

$$R1_j = (Ch1_j - H^P_j) / |H^P| \times 100\%$$

Primary Field Reduced Secondary Fields: In this form all channels are reduced according to the equation used for channel 1 above:

$$Rn_{i} = (Chn_{i} - H^{P}_{i}) / |H^{P}| \times 100\%$$

This type of reduction is most often used in cases where very good geometric control is available (leading to low error in the calculated primary field, H^P_j) and where very slowly decaying responses result in significant secondary field effects remaining in channel 1 observations.

UTEM Results as a Total Field

In certain cases results are presented as a % of the Total Field. This display is particularly useful, in borehole surveys where the probe may actually pass through a very good conductor. In these cases the shielding effect of the conductor will cause the observed (total) field to become very small below the intersection point. This nullification due to shielding effects on the total field is much easier to see on a separate *Total Field* plot. In cases where the amplitude of the anomalies relative to the primary field is small, suggesting the presence of poorly conductive bodies, the *Total Field* plot is less useful.

The data contained in the UTEM reduced data files is in *Total Field*, continuously normalized form if:

$$Rn_j = Chn_j / |H^P| \times 100\%$$

DATA PRESENTATION

All UTEM survey results are presented as profiles in an Appendix of this report. For BHUTEM surveys the requisite Vectorplots, presented as plan and section views showing the direction and magnitude of the calculated primary field vectors for each transmitter loop, are presented in a separate Appendix.

The symbols used to identify the channels on all plots as well as the mean delay time for each channel is shown in the table below.

10 Chann	el Mode @ 31 hz	.(approx.)
(base freq:	30.974	hertz)
Channel #	Delay time (ms)	Plot Symbo
1	12.11	
2	6.053	1
3	3.027	
4	1.513	_
5	0.757	_
6	0.378	Ž
7	0.189	_
8	0.095	<i>4</i>
9	0.047	$\hat{\lambda}$
10	0.024	Σ 7 Δ

Notes on Standard plotting formats:

10 channel data in *Channel 1 Reduced* form - The data are usually displayed on three separate axes. This permits scale expansion, allowing for accurate determination of signal decay rates. The standard configuration is:

Bottom axis - Channel 1 (latest time) is plotted alone in *Primary Field Reduced* form using the same scale as the center axis.

Center axis - The intermediate to late time channels, ch5 to ch2 are plotted on the center axis using a suitable scale.

Top axis - The early time channels, ch10 to ch6 and a repeat of ch5 for comparison are plotted on the top axis at a reduced scale. The earliest channels, ch8 to ch10, may not be plotted to avoid clutter.

10 channel data in Primary Field Reduced form: The data are displayed using a

single axis plot format. Secondary effects are plotted using a Y axis on each data plot with peak to peak values up to 200%.

BHUTEM data plotted as total field profiles: Data are expressed directly as a percentage of the *Total Field* value. The Y axis on each single axis data plot shows peak values of up to 100%. These departures are always relative to the measured total field value at the observation station.

BHUTEM data plotted as secondary field profiles: Check the title block of the plot to determine if the data is in *Channel 1 Reduced* form or in *Primary Field Reduced* form.

Note that on all BHUTEM plots the ratio between the axial component of the primary field of the loop and the magnitude of the total primary field strength (dc) is plotted as a profile without symbols. In UTEM jargon this is referred to as the "primary field" and it is plotted for use as a polarity reference tool.

Appendix D

Note on sources of anomalous Ch1

Note on sources of anomalous Ch1

This section outlines the possible sources of anomalous channel 1 which is not correlated to the Ch2-10 data plotted on the upper axes of a *channel 1 normalized* plot.

1) Mislocation of the transmitter loop and/or survey stations

Mislocating the transmitter loop and/or the survey stations results in an error in the calculated primary field at the station and appears as an anomalous Ch1 value not correlated to *channel 1 normalized* Ch2-10. The effect is amplified near the loop front. This can be seen in the profiles - the error in Ch1 generally increases approaching the loop. As a rule a 1% error in measurement of the distance from the loop will result in, for outside the loop surveys, an error in Ch1 of:

- 1% near the loop front (long-wire field varies as 1/r)

-3% at a distance from the loop front (dipolar field varies as $1/r^3$)

- 2% at intermediate distances (intermediate field varies as $\sim 1/r^2$)

Errors in elevation result in smaller errors but as they often affect the chainage they accumulate along the line.

The in-loop survey configuration generally diminishes geometric error since the field gradients are very low. At the centre of the loop the gradient in the vertical field is essentially zero so it is difficult to introduce geometric anomalies near the loop centre. Near the loop sides and at the closest approach of the lines to the wire mislocation of the loop and the station becomes more critical. Typically loop sides are designed to be >200m from any survey stations.

2) Magnetostatic UTEM responses

Magnetostatic UTEM responses arise over rocks which generate magnetic anomalies. Such magnetic materials will amplify the total (primary + secondary) field of the UTEM transmitter which is sensed by the receiver coil. The secondary field is generated by subtracting a computed primary which does not include magnetic effects. This can give rise to strong and abrupt channel 1 anomalies when the source of the magnetics is at surface. This is the case in a number of places on these grids. UTEM magnetostatic anomalies differ from DC magnetic anomalies in the following three major ways:

- 1) In the case of DC magnetics the field is dipping N and is very uniform over the scale of the survey area while the UTEM field inside the loop is vertical and it is stronger near the loop edges.
- 2) Most aeromagnetics are collected as total field while with UTEM we measure a given (in this case generally z,x) component.
- 3) DC magnetic instruments observe the total magnetization of the causative body which is due to its susceptibility as well as any remnant magnetization. An AC method such as UTEM will not respond to the remnant portion of the magnetization.

The larger amplitude of the UTEM Ch1 response is explained by the fact that the UTEM primary field is often more favourably coupled (magnetostatically speaking) to

magnetic mineralization as compared to the earths field. Another factor could be the presence of a reverse remnant component to the magnetization. Note that positive magnetic anomalies will cause:

- positive Ch1 anomalies in data collected outside the loop
- negative Ch1 anomalies in data collected inside the loop

3) Extremely good conductors

An extremely good conductor will be characterized by a time constant much longer than the half-period (@ 30Hz >>16ms). This will give rise to an anomalous Ch1 which is not correlated to the Ch2-10 data plotted on the upper axes of a *channel 1 normalized* plot.

Appendix E

Note on 4 Hz UTEM data: The effect of the presence of a 60-cycle powerline.

Note

While this Appendix uses data collected in the presence of a 60Hz powerline the issue dealt with applies equally to UTEM data collected in the presence of a 50Hz powerline.

Note: The standard presentation in Appendix A has Ch2-5 plotted on the middle axis. An alternative presentation - with Ch2 and Ch3 on the middle axis - is sometimes chosen when a powerline cuts through the surveyed area. This Appendix is a brief discussion of why the alternative presentation is chosen.

Note on 4 Hz UTEM data: The effect of the presence of a 60-cycle powerline.

This appendix outlines and discusses the effect of the presence of a 60-cycle powerline on ~4Hz (3.872Hz) UTEM data. This line is from a series of loops with a powerline cutting across the survey area. The UTEM data is affected by the presence of the powerline.

example data:

Figure E1(a) is the example data as presented in Appendix A - an alternative presentation with Ch2 and Ch3 on the middle axis. The standard presentation is shown in Figure E1(b) - with Ch2-5 plotted on the middle axis. The alternative presentation was chosen for a series of loops (including this loop) with a powerline cutting through the surveyed area. Figure E1(c) shows why - Ch4 and Ch5 show a pattern where when one is up the other is down and vice versa. The amplitude of the pattern decreases with distance away from the powerline. It was felt that this pattern obscured the information in Ch2 and 3 and the alternative presentation was chosen.

explanation:

Figure E2a) shows the UTEM waveform at ~4Hz with a 60Hz waveform superimposed on it. Roughly 16 cycles of the 60-cycle waveform fit into the full UTEM waveform. On a channel-by-channel basis:

~4 cycles fit into Ch1

~2 cycles fit into Ch2

~1 cycle fits into Ch3.

The multiple cycles tend to cancel out. Earlier channels are narrower - only part of a cycle wide. In particular Ch4 is ~half a cycle wide and Ch5 falls in the opposite halfcycle. The result is the pattern shown in Figure 1(c): Ch4 and Ch5 tending to diverge from one another - more strongly near the powerline.

other presentations:

Figures E3(a) and (b) show the example data in two other presentations where several channels are combined to give fewer, cleaner channels:

Figure E3(a): In this presentation Ch4 and 5 are combined to give a combined Ch"4" that is ~1.5 times as wide as the original Ch4. The Ch"4" is cleaner than the original. The original Ch5-10 are shown on the upper axis.

Figure E3(b): In this presentation Ch4-10 are combined to give a combined Ch"4" that is 2x as wide as the original Ch4 (equal in width to the original Ch3). The Ch"4" is as clean as the original Ch3. Note that Ch10 is added in twice to make the 2x factor exact. The original Ch5-10 are shown on the upper axis.

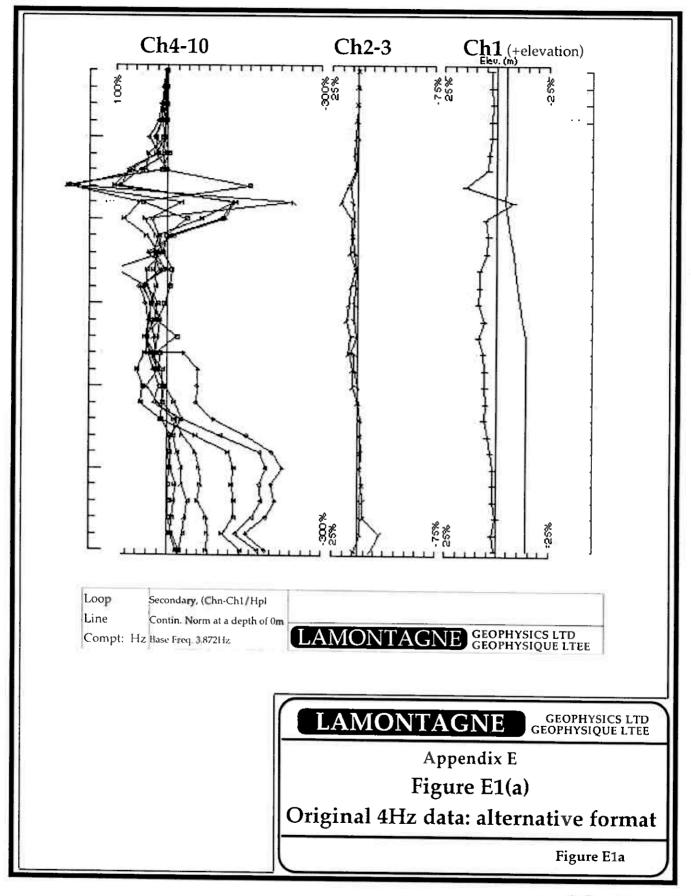
Discussion:

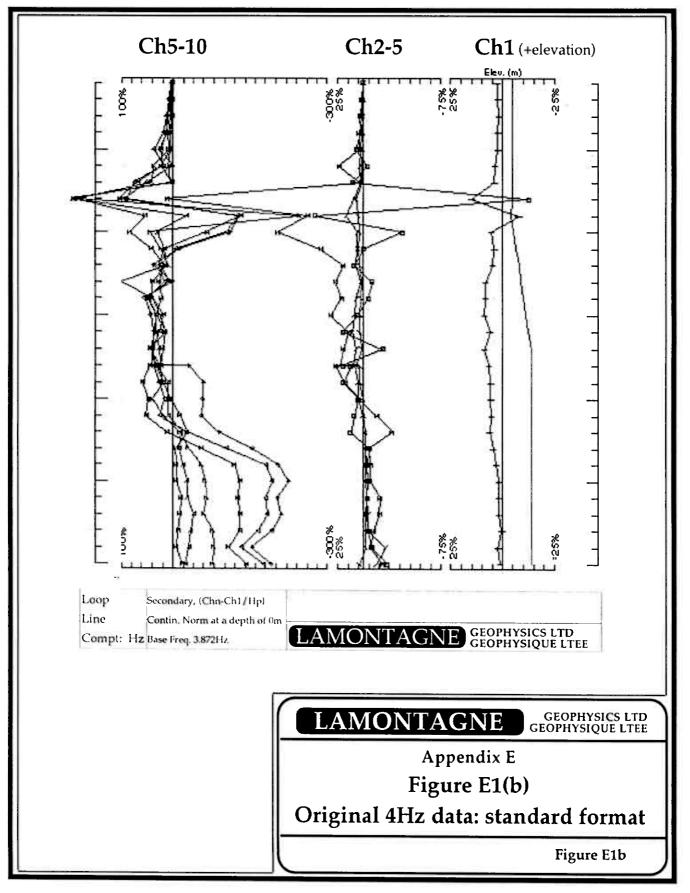
Several elements of UTEM survey design and procedure will have an affect on the number of useful channels in the final data set. These would include:

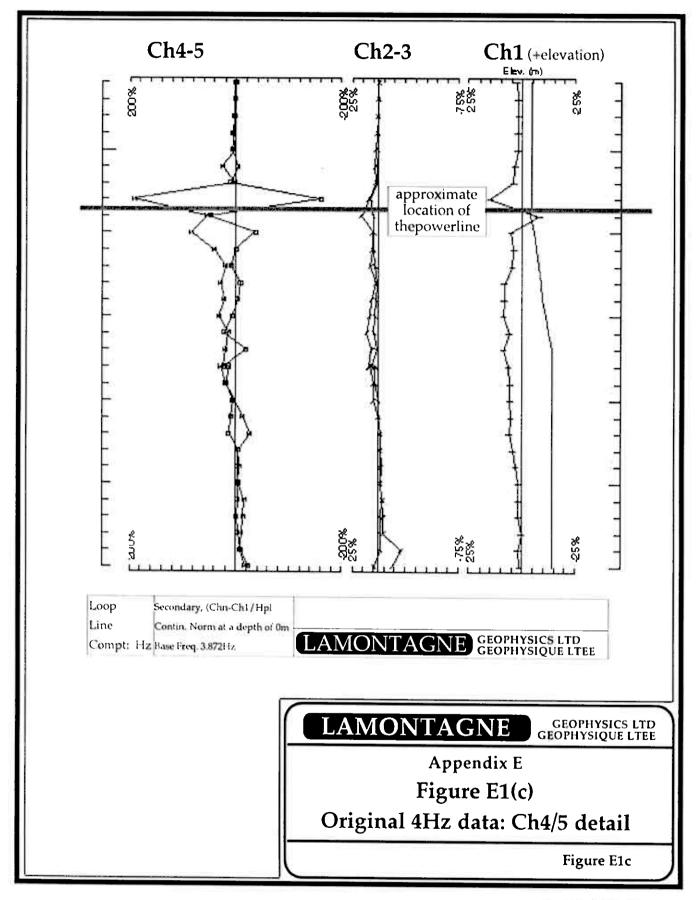
- careful positioning of the transmitter loops relative to the powerline(s)

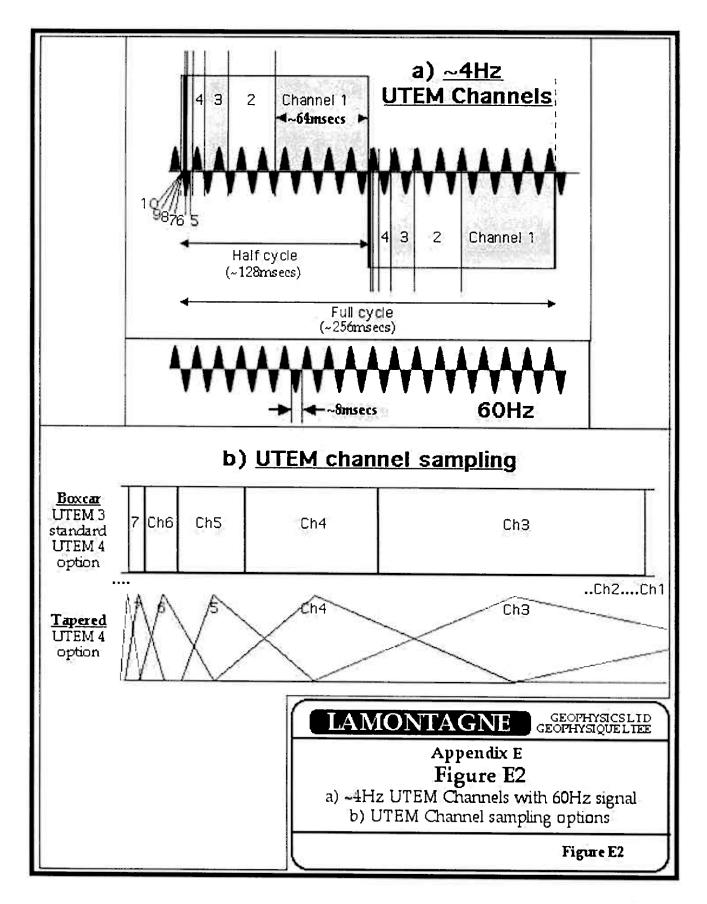
- increasing the transmitter current (and the signal-to-noise ratio)

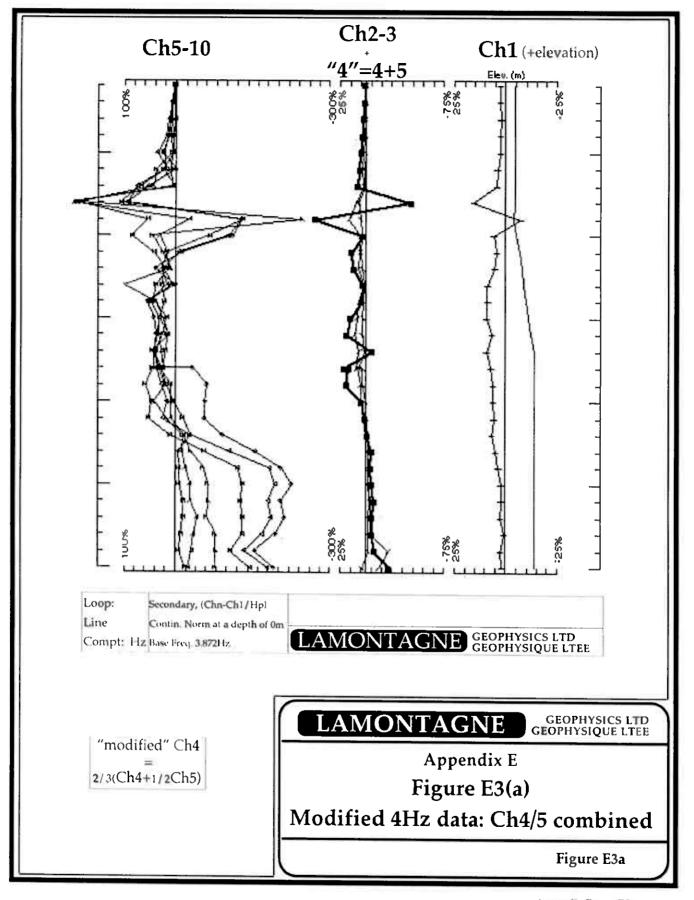
- care in the selection of gains during surveying. Near a source of coherent noise (eg powerline) the signal gain should be selected to minimize data rejections.

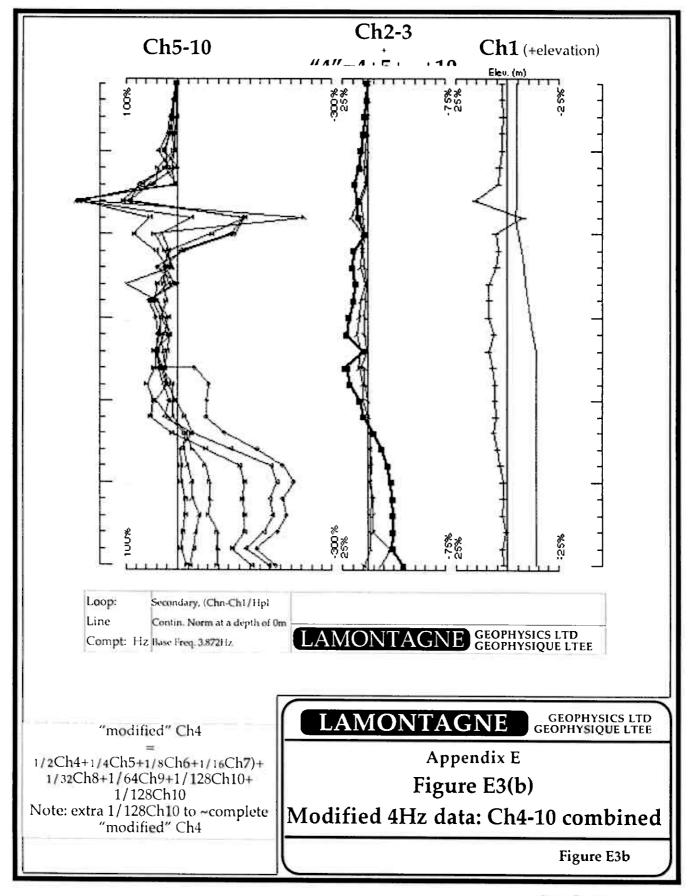

Consideration should also be given to increasing the station spacing in the vicinity of the powerline. This allows additional stacking to be done (at fewer stations) without much of an increase in surveying time.


Several other ways to increase the number of channels free of the powerline affects are:


- <u>lowering the frequency</u>: each factor of two lower in frequency would add a channel relatively free of the affects of the powerline. The cost would be increased stacking time at each station.
- taking multiple readings each reading starts at a different (random) point on the 60-cycle waveform. The sum of several readings will tend to better average out any affect.
- <u>alternative channel sampling</u>: Figure E2b) shows the standard UTEM 3 Boxcar channel sampling. An alternative tapered channel sampling is available (and often used) with UTEM 4. In this case if tapered sampling had been available it would likely have been used. The result would have been:


- a slightly noisier Ch3- a considerably improved Ch4- an improved Ch5


The choice of which sampling to use on a UTEM 4 survey depends on the frequency of the survey, the proximity and the frequency of any local powerline and the type of decay seen.



Appendix F

Discussion of Noise Issue in Very Resistive Terrains

Discussion of noise issue in very resistive terrains

From the standpoint of data collection during a UTEM survey there are a number of different sources of "noise" - natural, cultural, coil motion, instrumental and geological. For the purpose of this discussion the following distinction is made:

- "true" noise - results in poor repeatability and is due to:

- a noise field composed of: power line fields, sferic fields due to thunderstorm activity worldwide, other natural EM sources (micropulsations, etc), or

- coil motion due to the effect of wind either: moving the the coil directly, causing movement in the ground near trees or undulating the ice surface of a large frozen lake. In the case of poor repeatability increased stacking time will improve things.

- geological noise - in resistive areas profiles show scatter but features are repeatable. The scatter in the data is due to short-wavelength geological responses which are spatially undersampled. In this case increased stacking time will not improve things. Repeat readings that are in agreement, however, serve to confirm that the scatter represents geological noise.

Note that if the features are of interest a finer station spacing may resolve them.

So repeated readings should tell whether noisy-looking data is due to poor repeatability or short-wavelength geological responses.

UTEM surveys carried out at the Ertelien Project area in early 2006 and on projects in northern Norway in late 2005 were carried out over very resistive terrain and ran into very noisy conditions. The following is a discussion of the noise issue as it affects these surveys and the strategies/changes that have been employed/made to combat it.

Overall the high noise issue as it affects UTEM surveys carried out over very resistive terrain - including the 2006 Ertelien Project UTEM survey and the 2005 northern Norway surveys - can be resolved into three factors:

- surveying in/over very resistive terrain
- the nature of the target(?) conductor(s) in very resistive terrain
- the combination of the response of a powerline and the noise associated with a powerline

A look at each of these factors follows. Note that there is some overlap between the three factors.

Surveying in/over very resistive terrain

When conductive overburden or a typically conductive country rock is present very little of the natural sferic field penetrates to the geological conductors. The noise field at the earth's surface is ~horizontally-polarized. In terms of how this affects a typical UTEM survey it means that:

- when measuring Hz the vertical component and the component most often measured - noise levels are typically lower and stacking times are chosen to allow accurate measurement of the smaller secondary field in the presence of the (typically) stronger primary field.
- when measuring Hx/Hy horizontal components noise levels are typically higher

 Appendix F pg F1

and stacking times are chosen to allow accurate measurement of the small secondary field in the presence of higher noise levels. In relatively flat terrain the horizontal component of the primary field is typically weak.

Over very resistive terrain the noise field becomes somewhat less horizontally-polarized. A significant component of the noise field penetrates to the geological conductors. The result is a tilted noise field - more noise is in the vertical component.

In addition over very resistive terrain there is an increase in geological noise due to induced current channeling in discrete faults and overburden channels. The vertical noise field in particular is amplified by current channeling anomalies.

Result: stacking times for Hz measurements must be increased to allow accurate measurement of the secondary field in the presence of higher noise levels. Increased stacking time will not affect scatter in the data that represents geological noise. Repeat readings will serve to confirm if the scatter represents geological noise.

The nature of the target(?) conductor(s) in very resistive terrain

The presence of a good, consistent conductive feature will make UTEM data look very clean - secondary currents flow in a "well organized" fashion and give a good response. A larger response forces the use of a coarser plotting scale - visually "suppressing" noise even further.

In very resistive areas there is little or no background response present. If there are no local features of appreciable size present to give rise to a response then virtually all you see on a profile is a combination of "true" noise and geological noise. In this instance plotting scales are often blown up in an attempt to reveal whether subtle responses are present - and noise is visually "amplified".

Weakly-conductive features - especially those that are broken up and vary in character/orientation along strike - produce geological noise on a profile. In very resistive terrain even very weakly-conductive features will channel current. The overall result can be line-to-line variable, "scattered" responses that give the profiles the appearance of an increase in noise in general. These weakly-conductive variable features also affect the noise field. The vertical noise field in particular is amplified by current channeling anomalies in very resistive terrain.

Very long geological conductors tilt the natural (for our purposes noise) field in their vicinity giving rise to cross-over tilt angle anomalies - more noise in the vertical component. Since the natural fields are very large scale and the conductors very long the response of very long geological conductors is much greater in proportion than what the UTEM data would lead us to believe.

The net affect on an off-loop UTEM survey appears in one of two fashions:

- locally high noise levels at one or more stations near the "geologically-noisy" feature.

Result: stacking times for Hz measurements must be increased at the noisy stations to allow accurate measurement of the secondary field but stacking times can be reduced again once the noisy section is passed. If there is an indication that the noise is geological then repeat readings should be taken.

- high noise levels that start abruptly at the "geologically noisy" feature and persist beyond it.

Result: stacking times for Hz measurements must be increased abruptly at the "geologically noisy" feature and increased stacking must be continued at all stations beyond (further from the loop). If there is an indication that the noise is geological then repeat readings should be taken.

Note that in the field it may take a while for an operator to determine the correct procedure to follow. Abruptly increasing the stacking time and doing repeat readings can add significantly to the survey time. For reference at 3.251Hz approximate reading times are as follows for single readings and to cover 100m (4 stations):

	single	100m @25m
512 stack	~2min 50secs	~11min 20secs
$x^2 = 1K$ stack	~5min 40secs	~22min 30secs
x2 = 2K stack	~11min 10secs	~44min 50secs
x2 = 4K stack	~22min 20secs	~89min 25secs
x2 = 8K stack	~44min 40secs	~178min 40secs

As an example increasing from a 512 stack to a 1K stack and doing a repeat reading will take the stacking time from ~2min 50secs (~11min 20secs/100m) to ~~11min 20secs (~44min 50secs/100m). Note also that to the operator in the field abruptly noisy data looks very much like an instrument problem. In checking for instrumental problems some additional delay will occur.

The combination of the response of a powerline and the powerline noise

A typical UTEM survey is affected by the presence of a powerline in two ways:

- There will be a response due to the powerline. The response will be coincident with the powerline and can serve to mask other conductive features. The nature of a powerline response varies depending on the powerline's: characteristics, location with-respect-to the transmitter loop and geological setting. Note that in resistive terrain all power line return currents are concentrated in long geological conductors rather than being dispersed throughout the conductive earth. The option of "stripping" the powerline response exists - this can reveal the presence of any masked conductive features. Data used in "stripping" the response is typically collected on a more detailed traverse across the powerline.

- **Result:** surveying time will be increased somewhat because of the increased stacking required to collect data accurate enough to allow "stripping" to reveal any masked features. In some cases a few additional stations will be surveyed.
- There will be EM noise present due to any operating powerline. Noise levels increase as the powerline is approached. Power line noise normally is strongest on the vertical component near a power line and becomes more horizontal at a distance because of induction in the earth. This rotation towards the horizontal occurs much farther away from the power line in resistive terrain than in a conductive area. In very resistive terrain powerline noise in the vertical component will persist to a considerably distance.

For some powerlines the noise levels will be high enough to force the data to be collected at a lowered signal gain. For many larger powerlines noise levels very close to the powerline are high enough that data cannot be collected at all.

Result: surveying time will be increased because of the increased stacking required to overcome the higher noise levels. Some coverage in the immediate vicinity of the powerline may be missed due to very high noise levels.

Strategies/changes that have been employed/made to combat the noise issue

In order to overcome the noise a number of strategies/changes have been employed/made:

- stacking increased improves data quality when dealing with "true" noise but @3.251Hz readings can become quite long
- readings repeated where there are indications that the noise is geological repeat readings that are in agreement serve to confirm that scatter in the data represents geological noise.
- increased station spacing at some chosen distance from the loop front
 a trade off between improved data quality and station sampling when readings
 @3.251Hz become quite long see above.
- higher pre-whitening levels used where possible improves noise rejection but the UTEM 3 transmitter is required to run close to the rise-time limit - transmitter operation can be finicky at this level, especially if there are powerlines in the vicinity.
- the use of heavier gauge wire larger wire = allows higher current = improves signal-to-noise ratio
 Improved signal-to-noise ratio means that less stacking is required for the same level of data quality.
- where possible a switch to in-loop surveying in-loop = considerably stronger applied field = improved signal-to-noise ratio Note: in-loop surveying is less sensitive to small, steeply-dipping conductors.