

Bergvesenet

Postboks 3021, 7002 Trondheim

Rapportarkivet

Intern Journal nr Internt 275/93		nt arkîv nr	Rapport lokalisering Trondheim	Gradering Fortrolig	
Ekstern rapport n			Fortrolig pga Prospekteringsfondet	Fortrolig fra dato:	
ll, Finntjørn ar	eas.			3842-3846.	
Karen			Bedrift Sulfidmalm A/S		
				1: 250 000 kanblad Kirkenes	
	8		A51		
Råstofftype Emneord Malm/metall Ni Cu Co S					
	Ekstern rapport n , along the Skog ll, Finntjørn ar arer, tabeller og Karen Fylke Finnmark Dokument i Prospekte	Ekstern rapport nr Overs Sulfid , along the Skogfoss arch in ll, Finntjørn areas. arer, tabeller og borseksjone Karen Fylke Finnmark Bergdistrikt Troms og Finnmark Dokument type Prospekteringsfondet Emneord	Ekstern rapport nr Coversendt fra Sulfidmalm a.s. A along the Skogfoss arch in Pasvik, II, Finntjørn areas. Arer, tabeller og borseksjoner og er et Dato Nov 1992 Fylke Finnmark Bergdistrikt Troms og Finnmark Dokument type Prospekteringsfondet Emneord Emneord	Ekstern rapport nr Oversendt fra Sulfidmalm a.s. Fortrolig pga Prospekteringsfondet A along the Skogfoss arch in Pasvik, Finnmark. Il, Finntjørn areas. Arer, tabeller og borseksjoner og er et utdragdrag av BV Outo Bedrift Nov 1992 Bedrift Sulfidmalm A/S Fylke Finnmark Finnmark Finnmark Dokument type Prospekteringsfondet Dokument type Prospekteringsfondet Emneord	

Dette er en rapport for Prospekteringsfondet og omfatter tekstdel med figurer, tabeller og borseksjoner. Den kan betraktes som et utdragdrag av samlerapporten BV 3842-3846.Skogfoss - Oksfjellområdet i Pasvik.

Se også

BV 3842 Tekstdel med figurer og tabeller.

BV 3843 Apendix A. Summary of Oksfjell 1992 Drilling

BV 3844 Apendix B. Drill log and sections

BV 3845 Apendix C. A report on a combined helicopter-borne Mag, EM and VLF-EM survey in Pasvik.

BV 3846 Apendix D. Tecnical report for ground geophysical surves in Skogfoss, Pasvik

1992 EXPLORATION ALONG THE SKOGFOSS ARCII PASVIK, FINNMARK, NORWAY

> A/S Sulfidmalm January, 1993

BERGVESENET
Mottatt:

1 1. 02 93
J.nr. 793
Saksbeh:
Sett Kopi
ON
Bosverest:
J.nr.:
Kodat Arkivnr.:

1992 EXPLORATION ALONG THE SKOGFOSS ARCH
PASVIK, FINNMARK, NORWAY

By Karen Hudson-Edwards, Geological Consultant Daryl Hodges, Falconbridge Limited

Prepared for A/S Sulfidmalm

November, 1992

TABLE OF CONTENTS

i. Summary	İ
ii. Conclusions	i
iii. Recommendations	i
5	
1.0 Introduction	1
1.1 Location, Access, Infrastructure	
1.2 Claim Status	
1.3 Background	
1.4 1992 Exploration and Expenditures	2
2.0 Regional Geology	
2.1 Pechenga	
2.2 Pasvik Correlation	3
3.0 1992 Exploration	
3.1 Purpose	
3.2 Geology and Geochemistry	
3.2.1 Oksfjell Geology	
3.2.1.1 Geology and Petrogra	aphy of Ultramafic Rocks
3.4 Geophysics	4
3.5 Structural Geology	5
3.5 Economic Results	
4.0 Discussion	6
5.0 Conclusions	
6.0 Recommendations	8

FIGURES

Figure 1	Location of Pasvik Properties
Figure 2	Claim Block Location
Figure 3	Pechenga-Pasvik Geology and Deposits
Figure 4	Pechenga Deposits
Figure 5	Plan of Drillholes and Oksfell Geology
Figure 6	Relationship of Structure, Geophysics, Ultramafics
Figure 7	Pechenga Ni-Cu Ore metal profiles
Figure 8	S vs Ni plot for Pasvik Ultramafic Bodies

TABLES

Table 1	Previous Exploration
Table 3	Pechenga-Pasvik Stratigraphic Correlation
Table 4	Summary of Ultramafic Bodies Intersected
Table 5	Selected Samples with enriched metal contents.
Table 6	Average Compositions of Pasvik Ultramafic Rocks

APPENDICES

Appendix A Summary of Oksfjell 1992 Drilling Appendix B Drill Summary Logs and Sections PS-92-42 to -52

i. Summary

Exploration in the Oksfjell area by A/S Sulfidmalm between 1971 and 1982, including 5729 m of diamond drilling in 41 holes, resulted in the discovery of ultramafic rocks similar to the ore hosts at Pechenga, but failed to uncover any significant mineralization.

The Sulfidmalm exploration program was reactivated in 1990 based on more detailed stratigraphic correlation of Pechenga and Pasvik by the Norwegian Geological Survey (NGU) and the possibility to obtain more detailed information on the Pechenga deposits through visits to the Pechenga area. The 1991 exploration program involved a regional airborne geophysical survey followed by regional mapping, drill core re-logging a field excursion to the Pechenga district, and detailed mapping and ground geophysics over Sulfidmalm claims at Oksfjell.

The 1992 follow up drill program was designed to test the potential for nickel mineralization in several previously undrilled magnetic (inferred ultramafic) bodies and to priority rate the bodies in terms of nickel ore potential. Eleven (11) holes (42 to 52) totalling 1918.12 metres were drilled by A/S TerraBor between July 1 and August 14. The drilling was supported by subsidy money from Bergvesnet (Trondheim) and Finnmark Fylke (Vadsø). Geological mapping of the Svartfjell and Finntjørn claim blocks was completed in addition to the drilling.

ii Results and Conclusions

Six differentiated gabbro-ultramafic bodies which are petrologically identical to Type 2b Pechenga ore hosts were defined in the Oksfjell East area. However, no significant Ni-Cu mineralization was intersected. In addition, the bodies' low stratigraphic position, relative to the Productive Formation, lack of Ni-sulphides and the low sulphur content of their ultramafic portions suggests that they are unlikely to host a Ni-Cu deposit and . Type 1a, thin (<5 m) undifferentiated ultramafics, and Type 1b, 5-36 m thick differentiated ultramafics, were tested during the 1992 and previous programs. Although some of the Type 1b bodies, including that at Svartfjell, are weakly mineralized, they were shown to have low Ni-Cu ore potential due to their size and limited extent. Ultramafic boulders at Finntjørn, whose source may be a magnetic (ultramafic) body in Pil'guyarvi volcanics, are geochemically similar to the Oksfjell ultramafics. However, they have low S contents, no Ni sulphides, and low mineralization potential.

On the basis of the above findings, and at our current level of understanding of controls over mineralization at Pechenga, it is concluded that the potential for economic nickel copper deposits at Oksfjell are not sufficient to warrant an immediate follow up drill program.

iii. Recommendations

- * Discontinue follow up drilling at Oksfjell.
- * Reduce the ground position within the Oksfjell claim block, to cover the Type 2a bodies drilled in 1992.
- * Allow the Finntjørn and Svartfjell claim blocks to lapse.
- * Continue assessing data from Pechenga to determine any new potential at Pasvik.

1.0 INTRODUCTION

1.1 LOCATION, ACCESS AND INFRASTRUCTURE

The Oksfjell property is located approximately 45 km directly south-south west of the port of Kirkenes in Sør-Varanger kommune, Finnmark fylke, northern Norway (Figure 1). It is 20 km SW of the Pechenga Kombinat Nikel smelter and refinery complex. The property is accessible by dirt road and track less than 10 km from Highway 885. The Svartfjell claim group is located 6 km ESE of the Oksfjell block, 3 km from Highway 885, near Kobbfoss. The Finntjørn claims are located three kilometres west of Hauge.

1.2 CLAIM STATUS

Fifty-four 25 hectare claims were staked in the Oksfjell area on December 18, 1990. An additional twenty 25 hectare claims were staked on March 11, 1992. Of these, eight claims were staked at Svartfjell, northwest of Skogfoss, and twelve claims were staked due west of Hauge at Finntjorn (Figure 2). Claim locations are depicted in Figure 2.

1.3 BACKGROUND

Between 1971 and 1982 A/S Sulfidmalm, initially in joint venture with A/S Sydvaranger, conducted helicopter electromagnetic (EM) surveys, ground magnetometer, EM and VLF-EM surveys, 1:10,000 scale geological mapping, Quaternary geology, till geochemistry and diamond drilling (40 holes; 5,729 metres) in the Pasvik area (Table 1). This work resulted in the discovery of ultramafic bodies but no significant mineralization.

The A/S Sulfidmalm exploration program was reactivated in 1990 to explore in Pasvik for the extension of the highly productive Pechenga nickel belt. This was due to efforts by the NGU in co-operation with Russian geoscientists and the possibility to visit the Pechenga area. The objective was to trace the favourable Pechenga stratigraphy into Norway and apply an empirical or genetic ore deposit model to guide the exploration efforts.

The 1991 exploration program involved a regional airborne survey, followed by regional (1:10,000) and detailed (1:5000) mapping (see Maps, Back Pocket), limited ground mag and EM, drill core re-logging and importantly, a field excursion to the Pechenga district in Russia to examine ore bodies and geology. The program produced four significant results: (1) the Pechenga Group was correlated across the border into Pasvik, Norway, (2) the importance of the Productive Formation as a host to Ni-Cu deposits was emphasized, (3) a structural history of the region and structural controls on ore bodies were defined and (4) Several previously undrilled magnetic anomalies (probable ultramafic bodies) within the Productive Formation were identified in Pasvik. These results led to the 1992 drill program, designed to test the potential for nickel mineralization in the various inferred ultramafic bodies.

1.4 1992 EXPLORATION AND EXPENDITURES

The 1992 exploration program included diamond drilling, mapping and ground geophysics. Drilling was carried out from July 1 to August 14 by TerraBor A/S. Eleven (11) holes (PS-42 to -52) totalling 1918.12 metres were drilled and are summarized in Appendix A. Results and Expenditures for 1992 are reported in Appendix A.

The following personnel were involved in the 1992 exploration	The fo	ollowing	personnel	were	involved	in	the	1992	exploration
---	--------	----------	-----------	------	----------	----	-----	------	-------------

Oyvind Hushovd	President	A/S Sulfidmalm
Jørn Jacobsen	Accountant	Falconbridge Nikkelverk
Tony Green	Regional Exploration Manager	Falconbridge Limited
Daryl Hodges	Senior Project Geologist	Falconbridge Limited
Karen Hudson-Edwards	Consulting Geologist	
Trond Watne	Senior Geological Assistant	A/S Sulfidmalm
Jon Erik Eriksen	Junior Geological Assistant	A/S Sulfidmalm

In addition to these persons, consultation was conducted with R.D. Stewart, District Geologist, and A. Watts Chief Geophysicist, both with Falconbridge Limited.

2.0 REGIONAL GEOLOGY

2.1 PECHENGA

The Pechenga deposits are situated in Russia at the extreme northwestern corner of the Kola Peninsula, close to the Norwegian border (Figure 1, 3).

The nickel orebodies formed by the intrusion and extrusion of nickeliferous, ultramafic and mafic-ultramafic bodies into the Productive Formation, composed of significant amounts of sulphidic black shale. Two types of ultramafic body are recognized at Pechenga (Gorbunov, 1968):

TYPE 1: ULTRAMAFIC FLOWS AND POSSIBLY INTRUSIONS

Type 1a: undifferentiated, usually thin ultramafic (serpentinite) bodies.

Type 1b: differentiated ultramafic - pyroxenite, generally thicker ultramafic bodies which sometimes display globular and quench textures.

Type 1c: Ni-Cu ore bearing Type 1b ultramafic bodies.

TYPE 2: ULTRAMAFIC-PYROXENITE-GABBRO INTRUSIONS (GABBRO-WERHLITES)

Type 2a: differentiated gabbro-ultramafic (wehrlite) bodies (generally intrusions) consisting in upward succession of altered peridotites (serpentinites), pyroxenites, gabbros and monzonitic gabbros, and

Type 2b: Magmatic Ni-Cu ore-bearing Type 2a gabbro-ultramafic bodies.

2.2 PASVIK CORRELATION

Mapping in the Pasvik area in 1957 by A/S Sydvaranger revealed that the Russian Pechenga Group extends into Norway. This interpretation has been confirmed by A/S Sulfidmalm and NGU efforts in 1991 (Figure 3). The belt of rocks, known as the Skogfoss Arch, extends for 34 kilometres across Norway. It is 5.5 kilometres wide at the Russian border and 1.2 kilometres wide at the Finnish border. Equivalents of the Akhmalahti, Kuetsyarvi, Kolasyoki and Pil'guyarvi Formations and the South Pechenga Group all are present in the Pasvik area (Table 3) about 23 kilometres along strike from the Kaula deposit, in the Pechenga belt (Figure 4). The Productive Formation equivalent in Norway is thickest in the central Oksfjell area where the density and size of magnetic ultramafic bodies also is the greatest (Figure 5).

3.0 1992 EXPLORATION

3.1 PURPOSE

The 1992 diamond drill program had several objectives:

- (a) To confirm the presence of several inferred ultramafic bodies in or near the Productive Formation at Oksfjell.
- (b) To discover Ni-Cu mineralization related to these ultramafic bodies, and/or
- (c) To priority rank the bodies in terms of Ni ore potential.

The purpose of the 1992 ground geophysics was to confirm the location of airborne magnetic targets on the ground for drilling. The purpose of the 1992 mapping was to obtain further detailed structural information to interpret possible controls on mineralization and to determine the potential for prospective ultramafics at Svartfjell and Finntjørn.

3.2 GEOLOGY

3.2.1 Oksfjell Geology

The Oksfjell area is the central part of the Pasvik Skogfoss Arch. Each formation of the Pasvik Pechenga Group is thickest, and ultramafic bodies are most abundant in this area (Figure 5). This thick portion is bounded by faults which could be analogous to the synsedimentary faults bounding the ore - hosting Productive Formation in Pechenga and is intruded by the largest ultramafic bodies.

3.2.1.1 Geology and Petrography of Pasvik Ultramafic Rocks

Several types of ultramafic bodies are present at Pechenga but only the Type 1b and the Type 2b differentiated ultramafic 'gabbro-wehrlite' bodies are ore hosts. Type 2b bodies

make up nearly all of the deposits. An important part of the Pasvik exploration effort has been to identify the prospective bodies and to focus future work on these targets. In this regard, petrographic and geochemical studies were carried out on the ultramafic and related rocks to (1) compare them with ultramafic bodies at Pechenga, (2) define the variation within each body compared to Pechenga, (3) to make comparisons among individual bodies or groups of bodies, to aid in subdividing them for prospecting and (4) compare the metal distribution amongst them and with the Pechenga deposits.

At Pasvik, three types of ultramafic body can be defined and are referred to as: Types 1a, 1b and 2a. One to five metre thick undifferentiated ultramafic Type 1a flows (and possibly intrusions) occur in the lower part of the Lower Productive Formation and at or near the top of the Middle Productive Formation (Table 4, Figure 5). Type 1b bodies range in thickness from 5 to 36 m and occur at the top of the Middle Productive Formation. They show weak differentiation from dunite to probable harzburgite. Several Type 1b bodies were intersected by previous holes 29, 25, 32, 36, 34 and hole 48 in the 1992 drilling (Table 4). Both varieties of Type 1 ultramafics are grey, massive, porphyroblastic, generally intensely sheared and boudinaged, and often carry inclusions of sedimentary rocks.

Three differentiated gabbro-wehrlite Type 2a bodies, each in two parts, are located in the Oksfjell East area. They occur in the upper Kolasyoki Volcanic and Lower Productive Formations, (Table 4, Figures 5, 6), range in thickness from 28 to 109 m, and pass upwards from ultramafic through pyroxenite and gabbro, with local centimetre - wide granophyric portions. The bodies are designated, from west to east, bodies A (parts A1, A2), B (B1, B2) and C (C1, C2) (Figure 5, Table 4). Most bodies are intact, except for the ultramafic portions of bodies A1 and C2 intersected in holes 1 and 52, respectively (Table 4). Body A has the greatest strike length (1.25 km total A1+A2 based on magnetic interpretations), thickness (108.61 m, hole 41 intersection) and ultramafic to mafic ratios (range 3.54 to 19.00). The latter are similar to ratios for Ni-Cu ore-bearing bodies in the western part of the Pechenga ore-field (Kaula, Kotselvaara, Kammikivi, average 2.31, Table 5; Smol'kin, 1974, Table 4). Minor thin upper granophyric portions occur in Bodies A (hole 41) and B (hole 44).

All of the ultramafic rocks are completely metamorphosed to mixtures of iron-rich chlorite, kaersutite, biotite, talc, carbonate, serpentine, magnetite and minor pyrrhotite. The pyroxenites and gabbros are medium- to coarse-grained, monoclinic pyroxene-plagioclase-chlorite-actinolite and lesserilmenomagnetite-sphene-leucoxene-carbonate-epidote and trace chalcopyrite-bearing rocks.

3.3 GEOPHYSICS

Two geophysical surveys were carried out in 1991. These included a 1409.5 line km helicopter-borne AEM survey by Aerodat-NGU and a 47.71 km ground mag and Slingram EM survey by Suomen Malmi OY of Finland. These surveys results are reported in Appendix C.

The Airborne survey covered the Kuetsyarvi, Kolasyoki and Pil'guyarvi Formations and part

of the South Pechenga Group, across Pasvik from Russia to the Finnish border. Magnetic total field and vertical gradient, EM, resistivity and VLF-EM maps were produced.

The Productive Formation is best outlined on EM maps, where it is depicted as a 34 km, 20 to 500 m thick series of strong conductors. The Formation also has a moderately high magnetic expression on the magnetic maps due to significant quantities of magnetic pyrrhotite within its sediments. Gaps in the Formation conductor clusters and magnetic expressions are due to the presence of non-conductive and non-magnetic gabbro-diabase bodies.

Ultramafic bodies are best distinguished on the vertical gradient magnetic maps as prominent circular to elliptical high-amplitude bodies (Figure 6).

Results from the ground Mag and EM survey over the eastern Oksfjell area (Figure 5, 6) correspond well with those from the airborne survey. The ground survey further delineated the Productive Formation, and ultramafic and gabbro-diabase bodies.

3.4 STRUCTURAL GEOLOGY

Structural style in the Pasvik area is considered to be very similar to that at Pechenga.

The latest observed deformational event (D₃?) is localized shear zone/fault zone development. These zones strike approximately N25°E and are characterized by localized, intense to mylonitic schistosity, C- and S-fabrics, mineral lineations, and rotation and boudinage of layers with differing competency. This is believed to be the deformation event which had the final control on the shape of the Type 2a ultramafic bodies at Oksfjell, and would probably control the shape of mineralized ore shoots.

3.6 ECONOMIC RESULTS

1992 Pasvik drill logs and sections are reported in Appendix C.

The drill program had several results:

(1) Ultramafic rocks were intersected in holes PS-92-42, -43, -44, -45, -48, -49, -50, -51 and -52. All of these bodies lie within the Productive Formation, except for the Hole PS-92-44 body which occurs at the Lower Productive Formation/Kolasyoki Volcanic Formation contact.

At Pasvik, as at Pechenga, the ultramafic bodies can be classified into three types: Types 1a, 1b and 2a (after Gorbunov, 1968). These were described in more detail in section 3.2 and it was concluded that these bodies are essentially identical. The Type 2a bodies are the differentiated gabbro - wehrlite bodies which host the vast majority of the nickel - copper ore at Pechenga. 'Type 2a' 'gabbro-wehrlite' bodies were intersected in Holes PS-1, -30, -39, -41 from previous drilling and holes -43, -44, -50, -51 and -52 in the 1992 drilling (Table 4, Appendix C).

Observed mineralization at Pasvik is minor and that has frustrated attempts to prove up any

kind of economic potential in the past, as now. The following is a brief description of where metallic mineralization has been observed in the 1992 drilling. The gabbro-pyroxenite portions of the bodies in holes PS-44, -50 and -51 contain up to 1% disseminated chalcopyrite. Up to 2% disseminated pyrrhotite was observed in the ultramafic portions. Remobilized chalcopyrite occurs in overlying volcanic rocks (hole 43, 11800 ppm Cu over 10 cm; hole 52) and in xenoliths within the ultramafic portion of the bodies (holes 51, 52) (Appendix C, Table 5). The most sulphidic rocks are the carbon-bearing black shales in the Productive Formation which contain 5 to 30% pyrrhotite and trace to 1% chalcopyrite. Some of the black shales and Type 1 ultramafic bodies are weakly enriched in Ni and Cu. The trace metal geochemistry sampling was completed to complete the investigation of metal enrichment at Pasvik. With the absense of significant visible mineralization, one anticipates that 'cryptic' trends or associations in the metals can be observed which support further evaluation.

As has been previously stated, the bulk of the ores in Pechenga are related to the diffentiated massifs, and form typical magmatic or 'syngenetic' ores. The profile in Figure 7a is representative of trends observed in 57 investigated massifs hosting syngenetic mineralization. Of significance are the sympathetic trends of Cu and Ni which show excellent correlation (r=0.79 to 0.99 in Pechenga bodies Kotsel'vaara, Kammikivi, Pil'guyarvi; Kochnev-Pervukhov, 1978). This trend is reported to occur throughout the ore - bearing massifs. In contrast, Pasvik Type 2a Ni and Cu contents and trends show poor correlation (r=0.107). Examination of the metal profiles from Pasvik shows a sympathetic correlation of Ni and Co, which are both elevated in the cumulate portion of the bodies. The ultramafic portions of the Type 2a bodies have very low S contents (generally less than background levels of 50 ppm) in the ultramafic portions of the bodies (Figure 8). Relative increases in S occur only at the bases of Body B1 (hole 44; 105 ppm: 116 ppm anhydrous) and C1 (hole 50; 3010 ppm: 3295 ppm anhydrous and hole 51, 1540 ppm: 1637 ppm anhydrous). These can be accounted for by reaction and weak metasomatism at the contacts, or by structural introduction. The increased S contents are not, however, coincident with high Ni values (Figure 8), supporting the observed lack of Ni-sulphides.

4.0 DISCUSSION

Petrologically, the Pasvik Type 2a gabbro-wehrlites are the most similar of the Pasvik ultramafics to the main Pechenga Ni-Cu ore-bearing Type 2b gabbro-wehrlites. However, no Ni-sulphides have been observed to date in the Pasvik bodies. The lack of Ni-sulphides and low sulphur in the ultramafics suggests that the source Type 2a magma contained little sulphur. The correlation of Ni and Co in the cumulate portions indicates simple fractionation trends whereas the poor Cu - Ni correlation and the low sulphur predicate against magmatic sulphide trends. Also, the results indicate that no contamination by external sulphur sources has occurred therefore it appears that the Type 2a magmas did not assimilate sulphur-bearing sediments from the Productive Formation prior to crystallizing. This is supported by their stratigraphic position in the sulphur-poor Kolasyoki volcanics. Therefore, during crystallization, all of the available Ni in the melt probably partitioned into silicates (olivine).

A late sulphur enrichment is reflected in the gabbro and pyroxenite portions of the bodies. This correlates well with copper and is reflected by the presence of chalcopyrite in these rocks. The cause of this sulphur enrichment is unknown, but could be related to supersaturation of sulphur and copper and subsequent precipitation of Cu-sulphides during the late crystallization stages of the Type 2a gabbro-wehrlites. This is supported texturally by the chalcopyrite grains, which are disseminated and appear to be intercumulus rather than fracture-related. Alternatively, the Cu and S could have come from seperate sources and combined during metamorphism, although this seems unlikely.

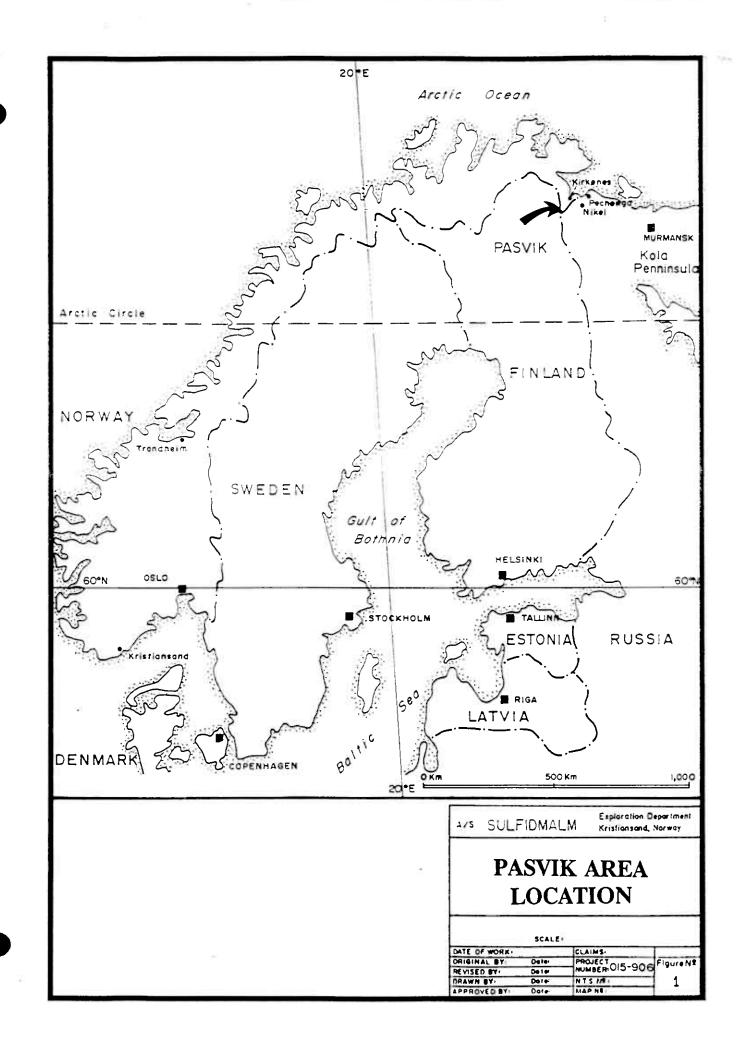
Structural study and drill hole correlations suggest that the Type 2a bodies are boudinaged and rotated, possibly due to shearing, and have a very shallow plunge. Lack of further anomalies on magnetic maps, which would be expected with the shallow depths and plunges of the bodies, suggests that there are no additional Type 2a bodies than the six presently documented.

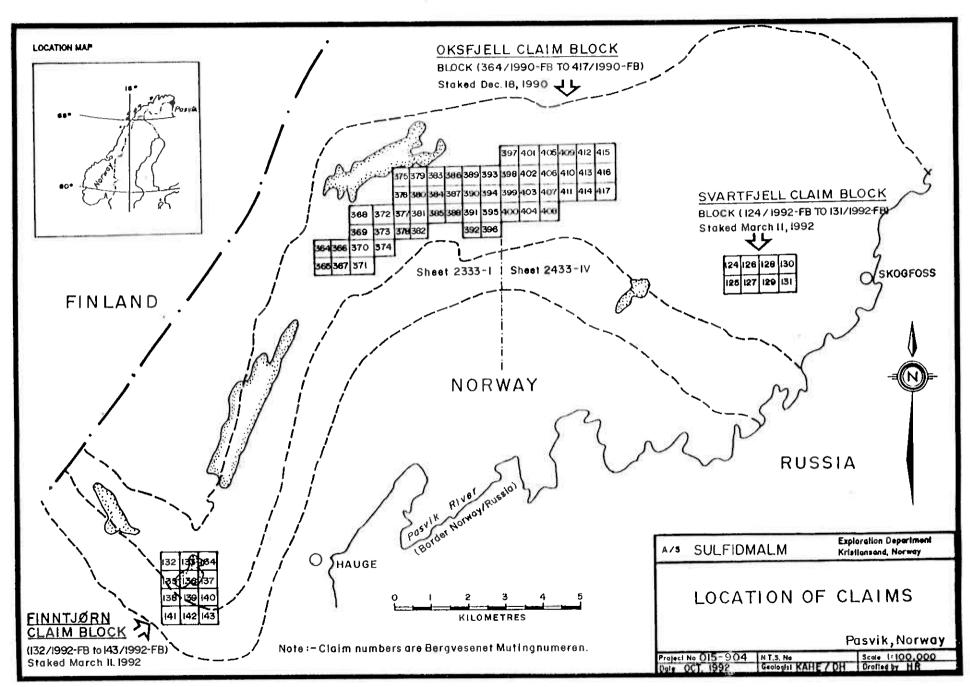
5.0 CONCLUSIONS

The following conclusions are drawn from 1992 drilling in the Oksfjell area, Pasvik, combined with present and previous geological and geophysical data:

- (1) No economic Ni concentrations nor Ni-sulphides have been observed in any of the Pasvik rocks. Pasvik Type 2a ultramafic Ni and Cu contents show poor correlation, in contrast to the Pechenga ore-bearing host rocks. Visible chalcopyrite in the gabbroic portions of the gabbro wehrlite bodies can be expalined by late supersaturation of sulphur and copper which does not partition into silicates as readily as Ni. This and the apparent total silicate partitioning of Co and Ni strongly suggest that the Pasvik Type 2a bodies have a low potential to host an economic Ni-Cu deposit.
- (2) The ultramafic portions of the Oksfjell East Type 2a gabbro-wehrlites have extremely low S contents (generally <50 ppm). Sulphur enrichment is noted only at the basal ultramafic contacts, where it can be explained by metasomatic or structural addition, and in the upper gabbro and pyroxenite portions. In the latter, it is associated with weak Cu enrichment.
- (3) Three types of ultramafic body, 1a, 1b and 2a, are recognized at Pasvik through drilling and magnetic surveys. Type 1a bodies are <5 m thick, undifferentiated flows. Type 1b bodies are 5 to 36 m thick, weakly differentiated ultramafic bodies occurring at the top of the Middle Productive Formation. Type 2a differentiated gabbro-wehrlite bodies are 28 to 109 m thick, and occur in the upper Kolasyoki Volcanic and Lower Productive Formations.
- (4) Type 2a bodies are petrologically most similar to Ni-Cu-bearing Pechenga Type 2b gabbro-wehrlites. Six Type 2a bodies, which probably result from three bodies (A, B, C), boudinaged during shearing, occur in the Oksfjell East area. Bodies A, B and C each have distinct geochemical characteristics and ultramafic to mafic ratios and are considered the only possible Ni ore hosts. The shape of these bodies follow that of regional linear elements, such as rodding, measured in deformed rock units.

(5) The isolated Type 1b ultramafic body intersected by previous drill hole PS-77-32 in the Svartfjell claim block only shows weak Cu and Ni enrichment. Ultramafic boulders on the Finntjørn claim block may have originated from a magnetic (ultramafic) body in Pil'guyarvi volcanics. The boulders have similar general geochemical characteristics to the Oksfjell Type 1a, 1b and 2a bodies, but have low S and Ni contents.


6.0 RECOMMENDATIONS


The recommendations for Pasvik are:

- (1) Discontinue the exploration program at Oksfjell.
- (2) Reduce the Oksfjell claim block to 10 claims of 25 ha each, to specifically cover the location of 1992 drilling of the ultramafic bodies.
- (3) Abandon the claims at Svartfjeilet and Finntjørn.

Respectfully Sulmitted,

(4) Continue to obtain and assess deposit-specific information from Pechenga and compare the Pasvik data to this information.

PASVIK / PECHENGA DEPOSITS

Figure 3

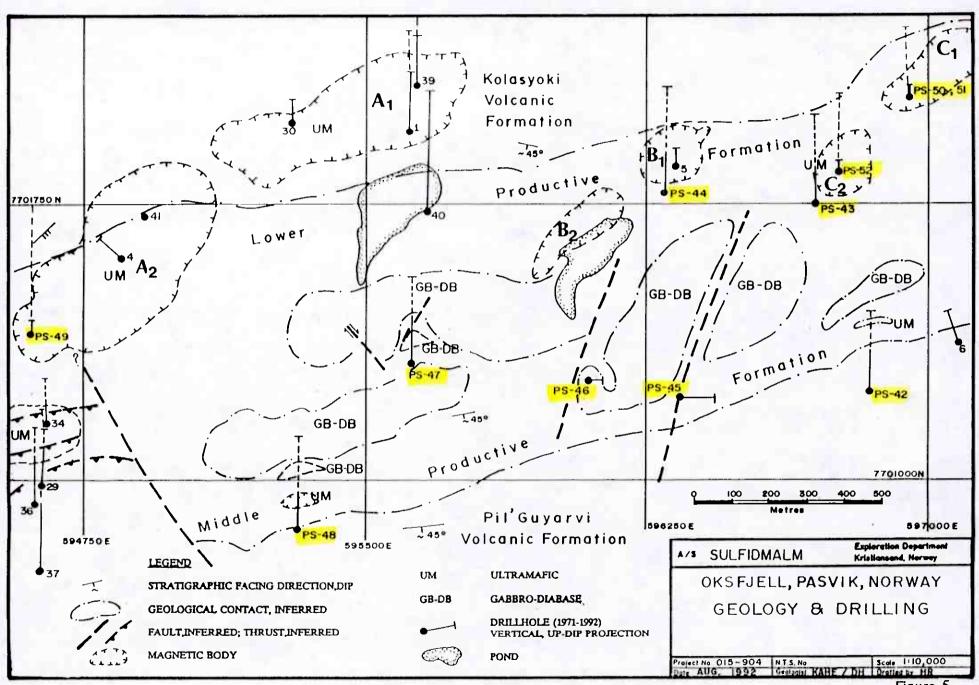
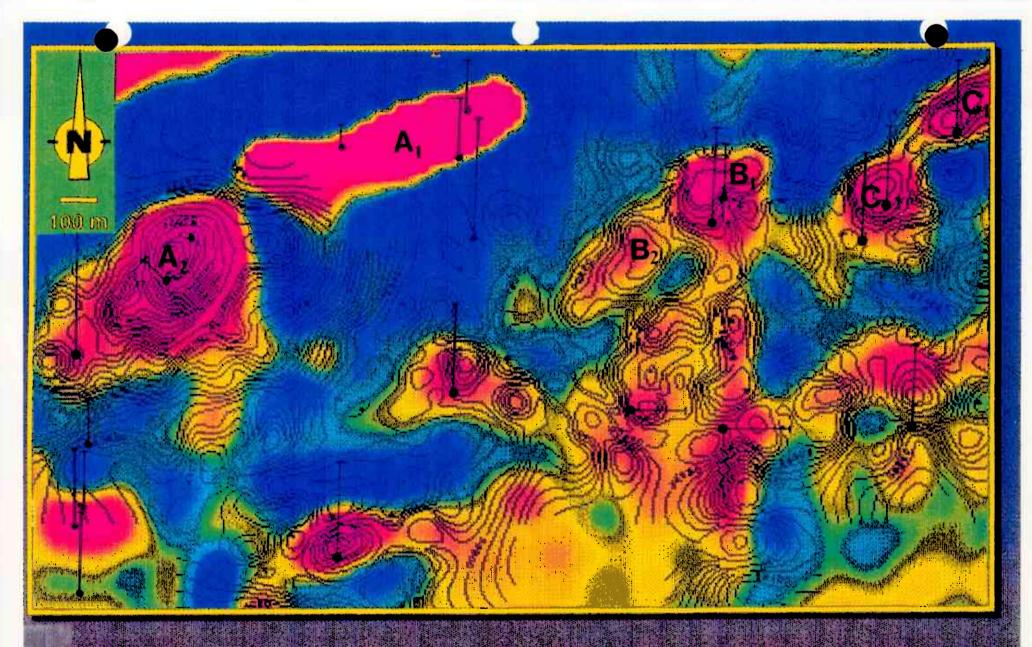
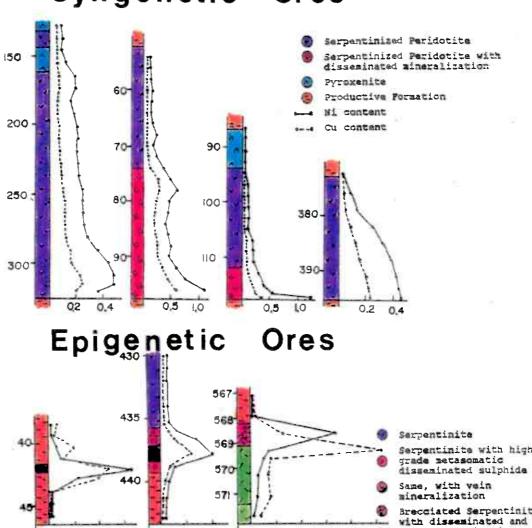
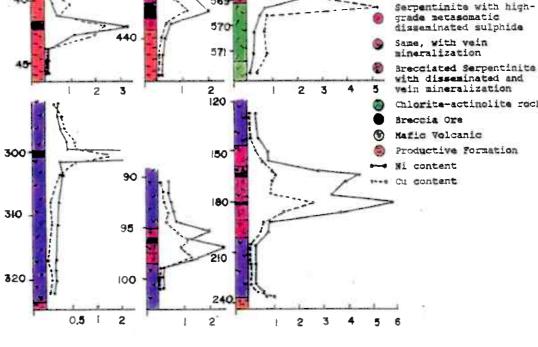
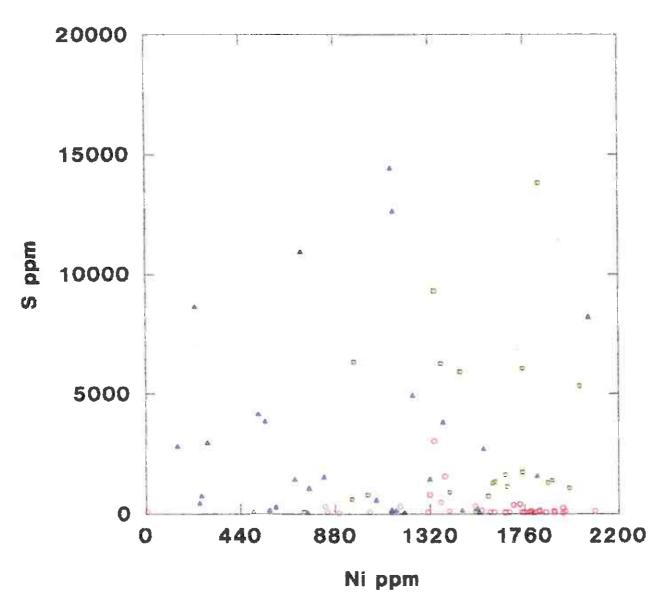



Figure 5





EASTERNIOKSFJELLAREA PASVIK NORWAY CALCULATED VERTICAL GRADIENT


PECHENGA NI-CU ORES

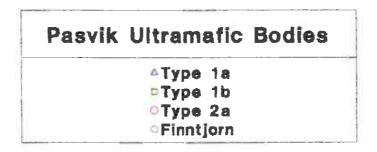


TABLE 1

Year	Activity	Results			
1957	1:20,000 Geological Mapping	Found extension of Pechenga Group in Pasvik			
1960	NGU Airborne Em/Mag Survey	1:50.000 maps showing Pasvik Pechenga Group			
1961	NGU Ground Mag, EM, SP	Cutlined conductive zones			
	NGU Stream Sed Geochemistry	Ni - Cu anomaly near Skogfoss			
1968	Terratest helicopter EM/Mag	1:20,000 maps over most of			
	Survey over 96 km2, 915 line km	Pasvik Pechenga Group			
1971	Drilling of 3 holes (1 to 3) by A/S	Hale 1 intersected 60m of			
	Sydvaranger	unmineralized ultramafic			
1972	Falconbridge became involved				
	Till Geochemistry Survey	Definition of Drill Targets			
	Ground EM, Mag, VLF	Definition of Drill Targets			
	Drilling of 13 holes (4 to 16)	No significant ore-bearing			
		ultramafic bodies			
	Geological Mapping (1:20,000)	Definition of Crude Stratigraphy			
		of Pechenga Group in Pasvik			
	Boulder Tracing	Po-Opy mineralized boulders			
	Chart to Mr.	found at Skjellbekken,			
		Skegfoss and Kobbfoss			
1974	Grid cutting and VLF	Definition of Drill Targets			
	Geological Mapping	Outlining of 50 X 250m ultramafi			
		body in Oksfjell West			
1975	Drilling of 15 holes (17 to 31)	DDH 29 cut 0.332% Ni & 0.15%			
		Cu over 1.7m in a thin ultramatic			
1977	Drilling of 3 holes (32 to 34)	Unmineralized ultramafic bodies			
		intersected in holes 32 and 34			
1981	Detailed Oksfell mapping	Recognition of possible			
		structural control on ultramafics			
	Drilling of 5 holes (36 to 40)	No significant results nor down-			
	8024	plunge extension of mineralized			
		DDH 29 ultramafic found			
1982	Drilling of 1 hole (41)	Large (108.61m) unmineralized			
		ultramafic-gabbroic body			
1991	NGU/Aerodat helicopter	Outlined full extent of Productive			
	AEM survey flown over whole	Formation (from Russia to Fin-			
	Pasvik Pechenga Group	land) and several ultramatics			
	Drill core re-logging	Showed similarity of Pasvik			
		Pechenga Group' to Russian			
		Pechenga Group in terms of			
		stratigraphy and ultramafics			
	Geological Mapping	Refined Geological contacts &			
	1. 2	Russian-Norwegian correlation,			
		and defined structural history			
	Ground EM/Mag	Definition of Drill Targets in			
	, ,	Oksfiell East			

TABLE 3

FORMATION	MEMBER	Thick	ness (m)	Type 2 Gb-Um Bodies		
		PECHENGA	PASVIK	PECHENGA	PASVIK	
Pil'quyarvi Volcanic	Upper	>2500	0-300			
#0.1 TO 6500	Lower	0-500	0-250	1		
Pil'quyarvi Sedimentary (Productive)	Upper (Lammas)	0-700		***		
S-REGIONAL S-REGION IN	Middle	0 400	0-200			
	Lower	0-400	0-300	•••		
Kolasyoki Volcanic	Upper Basalt	0-1000	0-500	***	•••	
and the same of	Graywacke	0 300	0.50			
	Lower Basalt	0-1000	0-100	1 1		
Kolasyoki Sedimentary	Black Shale	0-40	0.50			
Company and executing the rest	Dolomite	0.40	0-30	1 1		
	Red Bed	0-120	0-25	1 1		
Kuetsyarvi Volcanic	Upper Basalt	150 900	20-100			
ACCOUNT OF THE PARTY LAND L	Orshoayvi	100 800	10-500	1 1		
	Lower Basalt	50-100	20-500	1 1		
Kuetsyarvi Sedimentary	Dolomite	0-110	0-20			
A STATE OF THE PROPERTY OF THE PARTY.	Quartzite	0.90	0-30	1		
Akhmalahti Volcanic		800-2000	50-1600			
Akhmalahti Sedimentary		0-200	0-200			

TABLE 4

				1,719	TYPE 1 BO	and the second second	OIES INTER										
Hole	Ultramafic In	ntersection	ns (depth	downhole.					No. of Bodies	Thicknesses	(m)						
YPE 1A B		· · ·															
5	5 59.00-61.00; 63.00-63.50								2	2; 0.5							
6	56.86-57,77; 51.43-56.23; 70.32-70.82; 70.93-72.41							4	0.91; 4.8; 0.5	; 1.47							
16	40,00-42,00						1	2									
25	64.32-70.00; 78.50-80.00						2	5.68; 1.5									
29	45.00-56.42; 63.55-67.78						1	0.73									
33	48.00-50.10; 57.00-62.70; 63.60.68.60						3	2.1; 5.7; 5									
34	46.37-48,00								1 -	1.63							
36	139.55-140.6	-							2	1,1; 0.4							
37	130.9-133.3;			.5-270.4; 2	73.1-273.3				4	2.4; 1.3; 2.9;	0.2						
42	88,10-92.45;								2	4.35; 8.77							
45	92.22-95.50;		-		34.47-138.6	31			4	3.28; 0.72; 3							
48	100					3.7; 2.15; 3.5	5										
49	9.14-14.42								1	5.28							
TYPE 18 B										15.01							
25	32.90-49.14;	51,60-64	1.00						2	16 24; 12.4 24 09							
	29 45,00-56.42						1	36									
	32 30.00-66.00 34 3.85-9.10; 11.40-14.73; 17.25-21.60; 27.03-42.40						130										
		1 40-14 7	3- 17 25-21	60- 27.03	42.40				4	5 25: 3 33: 4	35 15 37						
34	3.85-9.10; 1			.60; 27.03	42.40				4	5.25; 3.33; 4	35; 15,37						
34 36	3.85-9.10; 1° 80.80-100.60			.60; 27.03	42.40				4 2	19 8; 19.1	35; 15.37						
34	3.85-9.10; 1			1.60; 27.03		BODIES			2	The Table 1 and 1 and 1	35; 15.37				PECHENGA T	YPE 28 BOOK	ES
34 36	3.85-9.10; 1° 80.80-100.60 56.20-66.30); 105.30	-124.40		TYPE 2A I	BODIES	Total	Thickness	2	19 8; 19.1 10 1	35; 15,37	Deposit	Total		PECHENGA T	Carlotte Control of the Control	ES
34 36 48	3.85-9.10; 1° 80.80-100.60 56.20-66.30	tersection	-124.40 ons (depth	dawnhole,	TYPE 2A (Total	1111	2 1 (m) / Proporti	19 8; 19.1 10 1 on of Body	35; 15,37 UM:Mufic Rati	Deposit	Total Thickness		A STATE OF THE PARTY OF THE PAR	Carlotte Control of the Control	ES.
34 36	3.85-9.10; 1° 80.80-100.60 56.20-66.30	tersection	-124.40	dawnhole,	TYPE 2A I		Total Thickness		2	19 8; 19.1 10 1 on of Body					Thickness (m)	
34 36 48 Hole/Body	3.85-9.10; 11 80.80-100.60 56.20-66.30	tersection	ns (depth	dawnhole,	TYPE 2A (m) Ultramafic			1111	2 1 (m) / Proporti	19 8; 19.1 10 1 on of Body					Thickness (m)	
34 36 48	3.85-9.10; 11 80.80-100.60 56.20-66.30	tersection	ns (depth	dawnhole,	TYPE 2A (m) Ultramafic			1111	2 1 (m) / Proporti	19 8; 19.1 10 1 on of Body		WESTERN	Thickness	Gabbro 93/38% 55/25%	Thickness (m Pyroxenite	147/60% 155//1%	1.50 2.45
34 36 48 Hole/Body Body A1	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start	tersection	ns (depth	dawnhole,	TYPE 2A (m) Ultramafic Start	Finish	Thickness	Gabbro	2 1 (m) / Proporti	19 8; 19.1 10 1 on of Body Ultramufic 63 65/95% 11.25/100%	UM:Mafic Rati	WESTERN Kaula I	Thickness 246 218 90	Gabbro 93/38% 55/25% 20/22%	Thickness (m Pyroxenite 6/2% 8/4% 5/6%	147/50% 155//1% 65//2%	1.50 2,45 2.57
34 36 48 Hole/Body Body A1	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start	tersection	ns (depth	dawnhole,	TYPE 2A (m) Ultramafic Start 67.65	Finish	Thickness 67.22	Gabbro	2 1 (m) / Proporti	19 8; 19 1 10 1 on of Body Ultramulic 63 65/95%	UM:Mafic Rati	WESTERN Kaula I Kaula II	Thickness 246 216 90	Gabbro 93/38% 55/25%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2%	147/60% 155//1% 65//2% 120/67%	1.50 2.45 2.57 2.03
34 36 48 Hole/Body Body A1	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08	tersection	ns (depth	dawnhole,	TYPE 2A I m) Ultramafic Start 67.65 150.50	Finish 131.00 161.75	Thickness 67.22 11,25	Gabbro 3 57/5%	2 1 (m) / Proporti	19 8; 19.1 10 1 on of Body Ultramufic 63 65/95% 11.25/100%	UM:Mufic Rati	WESTERN Kaulu I Kaulu II Kaulimilidd Western Ortalvi Eastern Ortalvi	Thickness 246 216 90	Gabbro 93/38% 55/25% 20/22%	Thickness (m Pyroxenite 6/2% 8/4% 5/6%	147/50% 155//1% 65//2%	1.50 2,45 2.57
34 36 48 Hole/Body Body A1 1	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73	Finish 67.65	ns (depth	dawnhole,	TYPE 2A (m) Ultramafic Start 67.65 150.50 35.30	Finish 131.00 161.75 62.50	67.22 11,25 34,77	Gabbro 3 57/5% 7.57/22%	2 1 (m) / Proporti	19.8; 19.1 10.1 on of Body Ultramufic 63.65/95% 11.25/100% 27.2/78%	UM:Mafic Rati 19 00 3,54	WESTERN Kaula I Kaula II KammikiM Western Ortalvi	Thickness 246 218 90 180	93/38% 55/25% 20/22% 57/31% 64/71%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0%	147/60% 155//1% 65//2% 120/67% 26/29%	1.50 2.45 2.57 2.03 0.41
34 36 48 Hole/Body Body A1 1 30 39	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73 7.45	Finish 67.65	ns (depth	dawnhole,	TYPE 2A (m) Ultramafic Start 67.65 150.50 35.30	Finish 131.00 161.75 62.50	67.22 11,25 34,77	Gabbro 3 57/5% 7.57/22%	2 1 (m) / Proporti	19.8; 19.1 10.1 on of Body Ultramufic 63.65/95% 11.25/100% 27.2/78%	UM:Mafic Rati 19 00 3,54	WESTERN Kaula Kaula Kaula Kaula KaumikiM Western Ortalvi Eastern Ortalvi EASTERN Soukejorky	246 218 90 180 90	Gabbro 93/38% 55/25% 20/22% 57/31% 64/71%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0%	147/60% 155//1% 65//2% 120/67% 26/29%	1.50 2.45 2.57 2.03 0.41
34 36 48 Hole/Body Body A1 1 30 39 Body A2 41 Body B1	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73 7.45	ritersection Finish 67.65 35.3 16.35	ons (depth Pyroxenite Start	downhole, Finish	TYPE 2A (m) Ultramafic Start 67.65 150.50 35.30 16.35	Finish 131.00 161.75 62.50 67.10 240.10	67.22 11,25 34,77 59.65	Gabbro 3 57/5% 7.57/22% 6.9/15% 15.79/15%	2 1 (m) / Proporti Pyroxenite	19.8; 19.1 10.1 On of Body Ultramufic 63.65/95% 11.25/100% 27.2/78% 50.75/85% 92.82/85%	UM:Mafic Rati 19:00 3:54 5:67 5:67	WESTERN Kaula II Kaumiliki Western Ortalivi Eastern Ortalivi EASTERN Soukejorky Rajsolvy	246 218 90 180 90 185 95	Gabbro 93/38% 55/25% 20/22% 57/31% 64/71% 80/43% 40/42%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0% 0% 5/5%	147,60% 155/1% 65/72% 120,67% 26/29%	1.50 2.45 2.57 2.03 0.41 1.32 1.13
34 36 48 Hole/Body Body A1 1 30 39 Body A2 41 Body B1	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73 7.45	Finish 67.65 35.3 16.35	ns (depth	dawnhole,	TYPE 2A I m) Ultramafic Start 67.65 150.50 35.30 16.35	Finish 131.00 161.75 62.50 67.10	67.22 11,25 34,77 59,65	3 57/5% 7.57/22% 8.9/15%	2 1 (m) / Proporti	19.8; 19.1 10.1 on of Body Ultramufic 63.65/95% 11.25/100% 27.2/78% 50.75/85%	UM:Mafic Rati 19.00 3.54 5.67	WESTERN Kaula Kaula Kaula Kaula KaumikiM Western Ortalvi Eastern Ortalvi EASTERN Soukejorky	246 218 90 180 90	Gabbro 93/38% 55/25% 20/22% 57/31% 64/71%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0%	147/60% 155//1% 65//2% 120/67% 26/29%	1.50 2.45 2.57 2.03 0.41
34 36 48 Hole/Body Body A1 1 30 39 Body A2 41 Bedy B1 44 Body C1	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73 7.45 131.49 89.33	ritersection Finish 67.65 35.3 16.35 147.28 92.95	ns (depth Pyroxenite Start	dawnhole, Finish	TYPE 2A I m) Ultramafic Start 67.65 150.50 35.30 16.35 147.28	Finish 131.00 161.75 62.50 67.10 240.10 150.05	67.22 11,25 34,77 59.65 108.61 60,72	Gabbro 3 57/5% 7.57/22% 8.9/15% 15.79/15% 3 62/6%	2 1 (m) / Proporti Pyroxenite	19.8; 19.1 10.1 On of Body Ultramuffc 63.65/95% 11.25/100% 27.2/78% 50.75/85% 92.82/85%	UM:Mafic Rati 19:00 3.54 5.67 5.67	WESTERN Kaula II Kaumiliki Western Ortalivi Eastern Ortalivi EASTERN Soukejorky Rajsolvy	246 218 90 180 90 185 95	Gabbro 93/38% 55/25% 20/22% 57/31% 64/71% 80/43% 40/42%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0% 0% 5/5%	147,60% 155/1% 65/72% 120,67% 26/29%	1.50 2.45 2.57 2.03 0.41 1.32 1.13
34 36 48 Hole/Body Body A1 1 30 39 Body A2 41 Body B1 44 Body C1 50	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73 7.45 131.49 89.33 7.00	rersection Finish 67.65 35.3 16.35 147.28 92.95 37.12	ns (depth Pyroxenite Start	downhole, Finish	TYPE 2A I m) Ultramafic Start 67.65 150.50 35.30 16.35 147.28	Finish 131.00 161.75 62.50 67.10 240.10 150.05	67.22 11,25 34,77 59.65 108.61 60.72	Gabbro 3 57/5% 7.57/22% 8.9/15% 15.79/15% 3.62/6% 30.12/47	2 1 (m) / Proporti Pyroxenite 15.62/26%	19.8; 19.1 10.1 on of Body Ultramufic 63.65/95% 11.25/100% 27.2/78% 50.75/85% 92.82/85% 41.48/68% 2.64/4%	UM:Mafic Rati 19.00 3.54 5.67 5.67 2.12	WESTERN Kaula II Kaumiliki Western Ortalivi Eastern Ortalivi EASTERN Soukejorky Rajsolvy	246 218 90 180 90 185 95	Gabbro 93/38% 55/25% 20/22% 57/31% 64/71% 80/43% 40/42%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0% 0% 5/5%	147,60% 155/1% 65/72% 120,67% 26/29%	1.50 2.45 2.57 2.03 0.41 1.32 1.13
34 36 48 Hole/Body Body A1 1 30 39 Body A2 41 Body B1 44 Body C1 50 51	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73 7.45 131.49 89.33	ritersection Finish 67.65 35.3 16.35 147.28 92.95	ns (depth Pyroxenite Start	dawnhole, Finish	TYPE 2A I m) Ultramafic Start 67.65 150.50 35.30 16.35 147.28	Finish 131.00 161.75 62.50 67.10 240.10 150.05	67.22 11,25 34,77 59.65 108.61 60,72	Gabbro 3 57/5% 7.57/22% 8.9/15% 15.79/15% 3 62/6%	2 1 (m) / Proporti Pyroxenite	19.8; 19.1 10.1 On of Body Ultramuffc 63.65/95% 11.25/100% 27.2/78% 50.75/85% 92.82/85%	UM:Mafic Rati 19:00 3.54 5.67 5.67	WESTERN Kaula II Kaumiliki Western Ortalivi Eastern Ortalivi EASTERN Soukejorky Rajsolvy	246 218 90 180 90 185 95	Gabbro 93/38% 55/25% 20/22% 57/31% 64/71% 80/43% 40/42%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0% 0% 5/5%	147,60% 155/1% 65/72% 120,67% 26/29%	1.50 2.45 2.57 2.03 0.41 1.32 1.13
34 36 48 Hole/Body Body A1 1 30 39 Body A2 41 Body B1 44 Body C1 50	3.85-9.10; 11 80.80-100.60 56.20-66.30 In Gabbro Start 64.08 27.73 7.45 131.49 89.33 7.00	rersection Finish 67.65 35.3 16.35 147.28 92.95 37.12	ns (depth Pyroxenite Start	downhole, Finish	TYPE 2A I m) Ultramafic Start 67.65 150.50 35.30 16.35 147.28	Finish 131.00 161.75 62.50 67.10 240.10 150.05	67.22 11,25 34,77 59.65 108.61 60.72	Gabbro 3 57/5% 7.57/22% 8.9/15% 15.79/15% 3.62/6% 30.12/47	2 1 (m) / Proporti Pyroxenite 15.62/26%	19.8; 19.1 10.1 on of Body Ultramufic 63.65/95% 11.25/100% 27.2/78% 50.75/85% 92.82/85% 41.48/68% 2.64/4%	UM:Mafic Rati 19.00 3.54 5.67 5.67 2.12	WESTERN Kaula II Kaumiliki Western Ortalivi Eastern Ortalivi EASTERN Soukejorky Rajsolvy	246 218 90 180 90 185 95	Gabbro 93/38% 55/25% 20/22% 57/31% 64/71% 80/43% 40/42%	Thickness (m Pyroxentte 6/2% 8/4% 5/6% 3/2% 0% 0% 5/5%	147,60% 155/1% 65/72% 120,67% 26/29%	1.50 2.45 2.57 2.03 0.41 1.32 1.13

Sample	Drill Hole	Intersectio	D METAL-EN	Ni	Cu	Co	As	S
Sample	Dtill Hole	From	To	181	Cu	Co	AS	3
1a ULTRA	MARIC	1 10111	10		-			
NW00240	45	134.58	135.00	1950	848	110	37	17600
NW00240	48		66.30	1840	715	117	37	1350
NW00361	48		38.60	1820	920	110	67	1240
NW00371	48		38.05	1460	743	92	66	1140
1b ULTRA		37.50	36.03	1400	740	92	- 00	1140
AF09149	32	58.16	58.60	2640	291	160		1690
NW0027	near 25		36.00	2020	342	153		5330
NW0027	near 25	Ť		2790	303	180		471
NW0029	11ear 25 48	1	60.50	3290	12	138		5
2a GABB		00.00	00.50	3290	12	130		
NW00431	50	37.00	38.00	189	845	87	3	123
NW00400	51			349	149	110	3	14
2a PYRO		27.00	20.00	043	143			
NW00392		60.50	61.50	384	722	62	3	72
NW00404	1	46.50		482	1140	69	3	138
NW00440	1	22.00		205	678	93	3	50
NW00442				387	720	57	3	94
	-DIABASE	12.00	10.00		7.20			
NW00244		129.00	129.90	763	903	90	3	5060
	TIVE FORM							
NW00215		,		136	847	34	3	2110
NW00246		1		531	1700	52	3	4020
NW00249				276	978	24	3	3760
NW00410	51	62.33	62.65	308	1720	54	3	752
NW00351	47	27.49	1 1	280	294	124	117	1530
PRODUC	TIVE FORM	ATION MA	AFIC TUFF					
NW00214				43	11800	73	3	2520
NW00417				47	604	24	3	82

			PASVIK U	LTRAMAFIC	ROCKS			
	Type 1a							(n = 13)
	Average	Range	Average	Range	Average	Range	Average	Range
SiO2	42.18	35.4-51.7	39.25	34.3-47.2	38.53	35.9-43.6	41.61	36.6-46.
Al2O3	6.21	2.97-16.6	3.86	2.35-11	3.60	2.77-5.38	4.06	2.07-8.7
CaO	5.46	0.18-14.4	2.71	0.24-6.44	4.09	1.86-7.33	7.97	4.52-12
MgO	19.09	12.3-24.5	24.95	20.3-30.9	23.07	15.8-26.7	22.77	18.4-27.
Na ₂ O	0.07	0-0.12	0.07	0-0.10	0.02	0-0.07	0.07	0-0.24
K20	0.11	0-0.71	0.01	0-0.02	0.03	0-0.23	0.03	0-0.16
Fe2O3	16.03	12.4-23.6	16.05	11.3-20.1	18.26	16.00-20.1	15.26	12.4-18.
MnO	0.19	0.07-0.34	0.19	0.08-0.33	0.21	0.18-0.24	0.21	0.19-0.2
TiO2	1.42	0.237-2.41	1.08	0.187-1.59	1.76	1.33-2.46	1.02	0.538-1.7
P2O5	0.12	0.02-0.21	0.1	0.02-0.18	0.16	0.11-0.23	0.05	0.02-0.1
Cr2O3	0.25	0.03-0.37	0.42	0.27-0.72	0.22	0.12-0.28	0.23	0.12-0.3
LOI	7.23	3.08-14.8	10,51	5.23-15.8	9.24	4.00-11.3	5.71	2.85-10.
SUM	98.35	94.8-100.63	99.27	95.9-100.77	99.10	96.5-100.22	99.1	97.6-100
S	7799	53-26000	2908	77-13800	363	<50-3010	314	<50-88
Ni	961	228-2060	1717	734-3290	1649	1310-1950	1090	776-119
Cu	144	0-647	188	12-468	101	68-141	230	54-507
Co	86	48-146	130	85-180	139	100-162	98	69-175
Rb	12	0-31	18	0-31	8	<10-28	6	3-14
Sr	68	0-165	38	0-105	159	95-237	146	38-487
Zr	101	28-173	83	20-206	123	90-151	47	26-75
Nb	21	6-38	27	0-107	20	15-33	12	3-30
Ва	98	19-197	102	73-133	133	67-172	99	51-150

APPENDIX A SUMMARY OF OKSFJELL 1992 DRILLING

TABLE 1. DRILL RESULTS PASVIK, NORWAY (OKSFJELL) (1)

Hole	TABLE 1. DRILL RES	Az/Dip/Length	Target/Result	
PS-42			T: Ultramafic #3, located within Upper	
		,,,	Productive Fm, tested toward boudined end.	
			R: Hole intersected 4.36m Ultramafic w/ 1%	
			dissem Po in Middle Productive Formation	
PS-43	596710E / 7701740N	0000 / 55 /100 00		
3-40	5907 10E / 7701740IN	000 / -55 / 163.23	540	
			Penetration from upper faulted contact.	
	Í		R: Hole intersected 3.52m Ultramafic Body	
			w/in Lower Productive Formation; 1-2% Vein	
			Cpy in sediments above UM; & wide	
		and the same of th	hornfelsed zone (2.36m above, 0.9m below)	
PS-44	596298E / 7701765N	000° / -55 /189.9 m	T: Ultramafic #2, at north intersection of	
	7/1		N-S conductive zone and Lower	
			Productive Formation.	
			R: Hole intersected 60.72m Gb-Wehrlite	
			Body (41.48m Ultramafic) with 2 carbonate-	
DC 45	E00050E (7704000N	0000 / 50 /467 40	magnetite Bx zones (.37 & 1.2m) w/ 2-3% Cp	
PS-45	596350E / 7701230N	090. \ -20 \ 164.40	T: Intersection of N-S conductive zone,	
			strong N-S fault (?), Upper Productive	
			Formation and possible tectonized	
			extension of Ultramafic #3.	
			R: Hole intersected 3 UM bodies (3.28, 3.09,	
		1	4.34m) in Mid Prod Fm, 2 w. 3-4% Po, Tr Cpy	
PS-46	596100E /7701282.5	090° / -80 /175.45	T: Test magnetic body within N-S	
	1	51 57	conductive zone.	
			R: Hole intersected 82.33m Gabbro-Diabase	
			body in Middle Productive Formation	
PS-47	595625E / 7701320N	000° / 55 /171 18	· · · · · · · · · · · · · · · · · · ·	Air
. 0-41	0300230 / 170132014	000 / -55 / 17 1.16	R: Hole intersected Middle Productive Fm	4/10
				10 6
DC 40	LEGEOGE / TTOOGERN	0000 / 55 /400 00	and ended in 73m of Gabbro-Diabase	De Studie Sand James
PS-48	595325E / //00850N	000° / -55 /180.80	T: Ultramafic #2 or #3 in the Upper Prod Fm	13
			R: Hole int 4 UM bodies (3.70, 2.15, 3.55,	
			10.10m) in Middle Productive Formation	
PS-49	594600E / 7701400N	0 0 0° / -80 / 27 5 .3	T: Down plunge (faulted?) extent of	
		5	Ultramafic #1. Complex pinchout,	
			irregular EM conductor at surface.	
			R: Hole intersected 5.28m Ultramafic Body	
			within Lower Productive Formation, but	
			failed to intersect proposed extension of	
		l _y	Hole 41 ultramafic	
S-50	596954E / 7702032N	0000 / -20 / 150 9	T: Test strong magnetic body (Ultramafic)	
. • • • •	00000427110200214	000 7 -00 7 103.0	1 1 1	
			within Lower Productive Formation.	
			R:Hole intersected 64.46m Gabbro-Wehrlite	
			Body w/ Tr-1% Cpy in Pxenite & Tr-1% in UM	
PS-51	596954E / 7702032N	000° / -80 / 86.0 m		
	1		body (Ultramafic) intersected in Hole 50	
			within Lower Productive Formation	
			R: Hole collared in and intersected 55.85m	
			Gabbro-Wehrlite body w/ Tr Cpy specks	
			& Tr-2.5% Po in UM	
S-52	596770F / 7701820N	000° / -80 / 165 56	T:Follow-up DDH PS-43: continue to test	
UJE	300770E / 17010ZUN	000 / -00 / 100.30		
			strongly magnetic Ultramafic in Lower	
			Productive FormationProductive Formation	
		li)	R: Hole intersected 28.84m Ultramafic Body	
			with Tr-2% Po over 4.15m near base of body	
			and 1-2% Cpy in 0.5m qtz zone above body	
	A			
	TOTAL:	1918.12m		

Hole	UTM E	UTM N	Elev (m)	Az	Dlp	Length(m)	Start	Stop	Logged	Contract Cost(NOK)	NOK/m
PS-92-42	596850	7701275	128	000*	-55*	163,50	1 Jul	4 Jul	KAH-E	75669	463
PS-92-43	596710	7701740	141	000*	-55*	183.23	4 Jul	7 Jul	KAH E	80315	438
FS-92-44	596298	7701765	141	000	-55*	189,90	7 Jul	10 Jul	KAH-E	64140	443
PS-92-45	596350	7701230	130	090*	-50*	167.40	10 Jul	13 Jul	KAH E	74515	445
PS-92-46	596100	7701282	141	090	-80*	175.45	13 Jul	16 Jul	KAH-E	79035	450
PS-92-47	595625	7701320	148	000	-55*	171.18	16 Jul	19 Jul	DH	78561	459
FIS-92-48	595325	7700850	130	000	-55	180.80	20 Jul	23 Jul	KAH-E	80814	447
FS-92-49	594600	7701400	210	000	80*	275.30	27 Jul	1 Aug	KAHE	126908	461
PS-92-50	596954	7702032	130	000*	80*	159.80	5 Aug	9 Aug	KAH E	71805	449
PS-92-51	596954	7702032	130	000*	-45	86.00	9 Aug	11 Aug	KAHE	39849	463
PS-92-52	596770	7701820	141	000*	-80	165.56	11 Aug	14 Aug	KAHE	73079	441
Mobilization			-							56000	
e-mobilization										50000	1
					TOTAL	1918.12			TOTAL.	970690	AV:451

* ED-SU right UTH Kourd

A/S SULPIDMALM

Recapitulation of Pasvik Area Exploration Expenses

Pasvik (904) and Sout Pasvik

Expenditure	Proposed Project 904	Actual Project 904
SALARIES		220,000 904
Geology	150,000	290,172
Geophysics Drilling	70,000 280,000	23,345
Subtotal	500,000	126,597 440,114
TRAVEL	80,000	64,094
FIELD EXPENSES	3	
Geology	80,000	143,936
Geophysics	25,000	21,406
Drilling Subtotal	120,000 225,000	98,457 263,799
SYKBEK		
Geology	25,000	0
Drilling	100,000	21,720
Subtotal	125,000	21,720
GEOLOGY CONTRI	ACTS 0	128,700
GEOPHYBICS		
CONTRACTS Ground	180,000	0
Airborne	0	0
Subtotal	180,000	ō
DIAMOND DRILL	(MG	
CONTRACTS	1,000,000	1,174,226
ENVIRONMENTAL	٥	15,451
PROPERTY	90,000	
Acquisition Maintenance		0
Subtotal	90,000	14,150 14,150
TOTALS	2,200,000	2,122,254
		100

Daryl Hodges Senior Geologist

APPENDIX B SUMMARY DRILL LOGS AND SECTIONS

SUMMARY LOG AND DESCRIPTION PS-92-42

LOCATION: 596850E, 7701275N, elevation 128m

AZIMUTH: 000° DIP: -55°

TOTAL DEPTH: 163.5 m **PROPOSED DEPTH:** 150.0 m **STARTED:** 1 July 1992 **COMPLETED:** 4 July 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: Test 'Ultramafic #3', located within Upper Productive Formation, tested toward boudined end.

RESULTS: Hole intersected (A) ultramafic tuff in Upper Productive Formation with 3% vein Po+Tr Cpy over 72 cm & 70% massive Po+Tr Cpy over 3 cm; (B) three ultramafic bodies in Middle Productive Formation with Tr-1% Po+Tr Cpy over 25 cm in middle body.

DIRECT DRILLING COST: 68,825 NOK

SUMMARY LOG:	
0.00 - 5.78m	Overburden
5.78 - 66.07m	Pil'guyarvi Volcanic Formation
	Mafic tuff and flow
66.07 - 66.49m	Fault Zone
66.49 - 66.91m	Pil'guyarvi Volcanic Formation Mafic tuff and flow
66.91 - 67.14m	Fault Zone
67.14 - 79.31m	Pil'guyarvi Volcanic Formation
	Ultramafic tuff, carbonate-rich. 67.14-67.86m: 3-5% vein Po+Tr Py+Cpy; 69.57-69.60m: ~70% massive Po+Tr Cpy
79.31 - 88.10m	Middle Productive Formation 81.00-82.52m & 83.64-84.60m: Ultramafic Tuff (talc- carbonate); rest graphitic black shale, 82.52-83.64m: 50- 60% Po-Py breccia+Tr Cpy
88.10 - 92.46m	Ultramafic Body (tale-carbonate) Tr-4% disseminated Po
92.46 - 100.45m	Middle Productive Formation
	95.94-97.61m: Ultramafic Tuff (talc-carbonate); rest black shale & mafic tuff
100.45 - 109.22m	Ultramafic Body
	Talc-carbonate rock. 107.55-108.00m: 3-4% Po+Tr Cpy in shear zone
109.22 - 115.20m	Middle Productive Formation
	Dominantly black shale
115.20 - 120.10m	Ultramafic Body
	Talc-carbonate, Tr-2% finely disseminated Po
120.10 - 121.05m	Middle Productive Formation
	Mainly graphitic black shale, 1-5% Po
121.05 - 161.82m	Mainly Gabbro-Diabase
	153.14-154.80m: Black shale, 3-5% Po; 154.52-154.67m:

161.82 - 163.50m

80% Po breccia Middle Productive Formation Black shale, ~3% Po veinlets Geochemical Samples: 10; Whole rock Samples: 4.

Elevation a.s.l. 250m	77012+00mN	77013+00mN	77014+00mN	<u>2</u> 50m
200m		*	135 nT above background of 53500 nT	<u>200</u> m
150m	PS-92-4 77012+75m 5968+50mi Az. 0	2 N E 5968+50nE Pilv	(Surface Geology based on Airborne Geophysical Interpretation) Prod Fm	150m Gb-0b
100m	970		Mag. Model Oneted Openth 19/ UM + migth	100m
50m		Production of the control of the con	Tr Po-Cay	_50m
Om	<u>LEGEND</u> O/B □ Cverburden	(\$ CD	5963×50mE	Om
_50m	LProd Lower Productive For MProd Middle Productive For Upper Productive For Gb Gabbro Gabbro Gabbro Utramafic Body UMI Utramafic Intrusion	ormation G	63.50m.	<u>50</u> m
-100m	F	Formation nite roxenite	A/S SULFIDMALM EXPLORATION DEPARTMENT PRISTIANSAND, NORMY	-100m
<u>-150m</u>	Mag Peak on profile EM Peak on profile	7013+00mN	DRILL SECTION PS-92-42 (looking west) Section 59850E aced by : # Fisher	ж (% ф., 80

SUMMARY LOG AND DESCRIPTION PS-92-43

LOCATION: 596710E, 7701740N, elevation 141m

AZIMUTH: 000° **DIP:** -55°

TOTAL DEPTH: 183.23m PROPOSED DEPTH: 175.0 m STARTED: 4 July 1992 COMPLETED: 7 July 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: To test offset of proposed 'Ultramafic #2'. Penetration from upper faulted

contact.

145.38 - 146.32m

RESULTS: Hole intersected 3.52 m of Ultramafic within Lower Productive Formation. Width of hornfelsed zone suggests ultramafic body is larger than the intersection shows. 1-2% Cpy and 1-2% Po in veins over 10 cm in mafic tuff 0.72 m above ultramafic body.

DIRECT DRILLING COST: 79,415 NOK

SUMMARY LOG:	
0.00 - 5.00m	Overburden
5.00 - 20.00m	Middle Productive Formation
	Black shale w/ 3-5% Po + Tr Cpy
20.00 - 37.90m	Lower Productive Formation
	Mafic tuff and black shale (1-3% veinlet Po + Tr Py)
37.90 - 43.95m	Gabbro-Diabase
43.95 - 4 7 .91m	Lower Productive Formation
	Black shale (Tr-2% Po) and lesser mafic tuff
47.91 - 56.95m	Gabbro-Diabase
56.95 - 58.62m	Lower Productive Formation
	Mafic tuff and lesser black shale (1% Po veinlets)
58.62 - 61.38m	Gabbro-Diabase
61.38 - 66.17m	Lower Productive Formation
	Black shale (1-2% Po threads), sandstone & mafic tuff
66.17 - 77.48m	Gabbro-Diabase
77.48 - 78.93m	Lower Productive Formation
	Sandstone with Tr Po specks
78.93 - 94.22m	Gabbro-Diabase
94.22 - 97.60m	Lower Productive Formation
	Mafic tuff and lesser sandstone/black shale (Tr Po)
97.60 - 105.61m	Gabbro-Diabase
105.61 - 121.54m	Lower Productive Formation
	Mafic tuff, black shale and sandstone (2% Po); 1-2%
	vein Cpy w/ 1-2% Po in mafic tuff over 10 cm (120.72-
	120.82m); hornfelsed zone 119.01-121.37
121.54 - 125.06m	Ultramafic Body, Tr dissem Po
125.06 - 145.38m	Lower Productive Formation
	Amygdaloidal mafic flow and lesser sandstone/siltstone
	(Tr Po); Hornfelsed zone in mafic flow @125.60-
	126.50m

Gabbro-Diabase

146.32 - 146.50m	Fault
146.50 - 158.40m	Gabbro-Diabase
158.40 - 163.69m	Lower Productive Formation
	Sandstone (Tr Po) and mafic tuff
163.69 - 182.33m	Gabbro-Diabase
182.33 - 183.23m	Lower Productive Formation
	Black shale, 2-3% Po veinlets
183.23m	End of Hole

Geochemical Samples: 2; Whole rock Samples: 1.

Elevation a.s.l. 250m	77017+00mN	77018+00mN	Nm00+61077
200m		26nT ab of 5	200m pave backgraund 3506 n T
150m	PS-92-43 77017+40mN 5967+10mE Az. 0 696 MP.	rod L Prod + Sh-25	(Surface Geology based on Airborne Geophysical Interpretation) 150m 2 Kal V
10Cm	"Rog"		Mag. Madel
50m	Section of the sectio	1970db 11-2% vein Cpy	to A Width of UM
Om	<u>LEGEND</u> O/B Overburden	Prod S	get tions on
_50m	LProd	(prod 183.2)	1.
_100m	UMI Ultramafic Intrusion F Fault Zone PitV Pliguyard Volcanic Formation KolV Kolasyoki Volcanic Formation bsh Black Shale ss Sandstone PI Px Plaglociase Pyroxenite	A/S SUL EXPLORATION	DEPARTMENT
-150m	Br Px Bronzite-bearing Pyroxenite Mt Px Magnetite pyroxenite Mag Peak on profile EM Peak on profile	DRII DRII PS-92-	LL SECTION 43 (looking west) section 5007 ME
	77017+00mN	Drove by : H Right As	/2/2/2 Approved by : /2/2/2 Plos te. : /2/2/2 Setin : 20 1 : 2000 (gettree)

LOCATION: 596298E, 7701765N, elevation 141m

AZIMUTH: 000° **DIP:** -55°

TOTAL DEPTH: 189.90m **PROPOSED DEPTH:** 175.0 m **STARTED:** 7 July 1992 **COMPLETED:** 10 July 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: To test Ultramafic #2, at north intersection of N-S conductive zone and Lower

Productive Formation.

RESULTS: Hole intersected a 60.72m gabbro-wehrlite intrusion (41.48m Ultramafic, 15.62m Pyroxenite, 3.62m Gabbro), with two carbonate-titano magnetite breccia zones with 2-3% vein Cpy over 0.37m and 1.20m in the ultramafic.

DIRECT DRILLING COST: 82,745 NOK

SUMMARY LOG:	
0.00 - 6.00m	Overburden
6.00 - 14.24m	Lower Productive Formation
	Mafic tuff (Tr Py) and black shale (2-3% veinlet Po)
14.24 - 20.99m	Gabbro-Diabase
20.99 - 22.92m	Lower Productive Formation
	Black shale, 3-5% Po+Py veinlets
22.92 - 26.32m	Gabbro-Diabase
26.32 - 57.20m	Lower Productive Formation
	Interbedded mafic tuff and black shale (2-3% veinlet Po)
57.20 - 70.82m	Gabbro-Diabase
70.82 - 74.75m	Lower Productive Formation/Kolasyoki Volcanic Formation
	Amygdaloidal mafic flow and tuff
74.75 - 89.33m	Gabbro-Diabase
89.33 - 150.05m	Gabbro-Wehrlite Body
89.33-92.95m	n Gabbro
	@ 89.33-89.52 1% Cpy
92.95-94.30m	Plagioclase Pyroxenite
	1-2% Po & Tr dissem Cpy
94.30-98.40m	Bronzite-bearing Pyroxenite
98.40-108.57	m Plagioclase Pyroxenite
	@ 108.40 Tr-1% dissem Cpy + Bornite
108.57-150.03	
	1% Po; @ 135.48-135.86 & 140.80-142.00
	carbonate-Ti magnetite breccia zones w/ 1-2%
	patchy Cpy
150.05 - 189.90m	Kolasyoki Volcanic Formation
	Mafic flow and tuff
189.90m	End of Hole

$\overline{}$				
Elevation a.s.l. 250m	77017+00шN	77018+60mм	77019+00mN	250m
200m			204 nT above background of 53600 nT	200m
150m		PS-32-44 77017+65mH 5962+98mE Az. 0 5962-98mE	(Surface Geology based an Airborne Geophysical Interpretation)	150m Kal V
10 0 m		Prod		10Cm
50m		The of Koly	Carb-Mr bx w / 2-3% Cpy	50m
Om	<u>u</u> 0/8 🗆	Gabbro Val Wehrlite Body Overburden	5962.498mE	<u> </u>
-50m	UProd UProd Gb Gb-Cb UM UMI UM	Lower Productive Formation Middle Productive Formation Upper Productive Formation Gabbro Gabbro-Clabase Ultramatic Body Ultramatic intrusion	189.90m.	<u>-5Cm</u>
_100m	F	Fault Zone Pilgryaryl Volcanic Formation Kolasyoki Volcanic Formation Black Shale Sandstone Plagiociase Pyroxenite Bronzite-bearing Pyroxenite Magnetite pyroxenite	A/S SULFIDMALM EXPLORATION DEPARTMENT DRISTIANSAND, NORMY	- <u>100m</u>
_150m	77017+00mN	Mag Peak on profile EM Peak on profile Num00+81022	DRILL SECTION PS-92-44 (looking west) Section 598396 Traced by : # Fisher	(80 too) 80

LOCATION: 596350E, 7701230N, elevation 130m

AZIMUTH: 090°

DIP: -50°

TOTAL DEPTH: 167.40 m

PROPOSED DEPTH: 175.0 m

STARTED: 10 July 1992 COMPLETED: 13 July 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: To test intersection of N-S conductive zone, strong N-S fault (?), Upper

Productive Formation and possible tectonized extension of Ultramafic #3.

RESULTS: Hole intersected black shale- and sandstone-dominant Middle Productive Formation, with three ultramafic zones (3.28m, 3.09m, 4.34m thick), latter two have 3-4%

Po, Tr Cpy disseminated.

DIRECT DRILLING COST: 64,520 NOK

SUMMARY LOG:

0.00 - 8.00m

Overburden

8.00 - 167.40m

Middle Productive Formation

Dominantly sandstone and Po-rich (Tr-40%) contorted & brecciated black shale, @ 28.85-29.20, 41.92-42.92, 48.83-49.80, 55.06-55.72, 63.76-64.23, 153.78-154.18: Po-

rich (15-60%) black shale breccia

92.22-95.50m Ultramafic, Tr-1% dissem Po 95.68-96.40m Ultramafic, Tr Po specks

126.72-129.81m

Ultramafic, 3-4% Po, Tr dissem Cpy

134.47-138.81m

Ultramafic, 3-4% Po, Tr dissem Cpy

167.40m

End of Hole

Geochemical Samples: 14; Whole rock Samples: 5.

Elevation	5963+00мЕ	5964+00mE	5965+00mE	050-
250m			₽ ±	250m
200m		#ICAT above by of 53550 nT	ackground	200m
150m	PS-92 77012+ 5963+5 Az. 9	-45 COMP TO TENENT M Prod	(Surface Geology based on Airborne Geophysica) Interpretation) WM 9704	150m
100m	0,0	13	?	100m
50m		Whood In the	July 1 - 3-4% Po, Tr Cpy	50m
Om	MProd Middle Pr	en couctive Formation couctive Formation couctive Formation couctive Formation	101. MProd E.O.H 167.40m.	Om .
-50m	Gb Gabbro Gb-Db Gabbro-D UM Ultramafic UMI Ultramafic F Fault Zon	elabase : Body : Intrusion	s. =	_50m
—100т	KorV	Voicanic Formation ale se Pyroxenite bearing Pyroxenite s pyroxenite	A/S SULFIDMALM EXPLORATION DEPARTMENT IRISTIANSMO, INDIANY DRILL SECTION	-100m
_150m		5964+00mE	PS-92-45 (look lag sorth) Section 7701230N Traced by :# Fisher	(8an) so

. .

LOCATION: 596100E, 7701282.5N, elevation 141m

AZIMUTH: 090°

DIP: -80°

TOTAL DEPTH: 175.45 m

PROPOSED DEPTH: 175.0 m

STARTED: 13 July 1992 COMPLETED: 16 July 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: To test magnetic body within N-S conductive zone.

RESULTS: Hole intersected 47.57m of sulphidic Middle Productive sandstones and black shales above and 47.45 m of sulphidic (3-5% Po) Middle Productive Formation black shale

beneath 82.33m of Gabbro-Diabase.

DIRECT DRILLING COST: 75,927.50 NOK

SUMMARY LOG:

0.00 - 5.00m

Overburden

5.00 - 47.57m

Middle Productive Formation

Mainly sandstone and black shale, 2-5% Po overall; fault

zone @ 10.92-13.99

47.57 - 129.90m

Gabbro-Diabase

129.45-129.72: Po 2-10%

129.90 - 175.45m

Middle Productive Formation

Mainly black shale w/ 3-5% Po, up to 1% Py, Tr Cpy

175.45m

End of Hole

Geochemical Samples: 6; Whole rock Samples: 0.

Elevation a.s.l. 250m	5960+00mE	5961+00mE		250m
200m			290nT above background of 53500nT	200m
150m		PS-92 77 0 128 5961+ Az.	82.5N (Surface Bealogy is based on Airborne) COME Geophysical Interpretation)	150m
100m		o/b Fault (1 VProd	+ 2-5% Po /	100m
50m		<i>C</i> >-C⊅		50m
Om	0/8 [po 5 + 10% bsh 3-5% Po, 1%Py, Tr Cpy	Om
_50m	LProd C MProd C UProd C Gb C Gb-Cb C UM C UMI C	Middle Productive Formation Upper Productive Formation Gabbro Gabbro-Clabase Ultramafic Body Ultramafic Intrusion	7701282.5N	-5 0 m
100m	KolV E	Fault Zone Paguyarvi Volcanic Formation Kolasyoki Volcanic Formation Black Shale Sandstone Plagioclase Pyroxenite	A/S SULFIDMALM EXPLORATION DEPARTMENT	100m
—150m	Br Px E	Bronzite-bearing Pyroxenite Magnetite pyroxenite Mag Peak on profile EM Peak on profile	DRILL SECTION PS-92-46 (looking north) Section 7701252.59	y
	5960+00mE	5961400mF	Trood by : # Fisher 04/12/27 Approved by : Orem by : # Right 04/12/27 Plot 10. : Supervised by :# Hetter 04/12/27 Scale : 20 1 : 2000 (88) Revised by :	tres) s

SUMMARY LOG AND DESCRIPTION

PS-92-47

LOCATION: 595625E, 7701320N, elevation 148m

AZIMUTH: 000° **DIP:** -55°

TOTAL DEPTH: 171.18 m PROPOSED DEPTH: 175.0 m

STARTED: 16 July 1992 **COMPLETED:** 19 July 1992

LOGGED BY: Daryl Hodges

PURPOSE: To test Ultramafic #2 in Middle Productive Formation

RESULTS: Hole did not intersect ultramafic body, but intersected Middle Productive

Formation and a large Gabbro-Diabase body

DIRECT DRILLING COST: 78,561.50 NOK

SUMMARY LOG:

0.00 - 11.23m	Overburden
11.23 - 44.27m	Middle Productive Formation
	Dominated by tuffaceous mafic volcanics with lesser
	black shale, average 10% Po
44.27 - 67.27m	Gabbro-Diabase
67.27 - 75.6 7 m	Bull Quartz/Fault Zone
75.67 - 85.15m	Gabbro-Diabase
85.15 - 98.90m	Middle Productive Formation
	Dominated by black shale-sandstone turbidites, 5-10%
	Po
98.90 - 171.18m	Gabbro-Diabase
171.18m	End of Hole

Geochemical Samples: 1; Whole rock Samples: 0.

Elevation a.s.l. 250m	77013+00mN	77014+00mN	Nm00+31077
200m		94 nT above background of 53500 nT	200m
150m	PS-92 €47 770 13+20mN 5956+25mE Az. 0 5956	(Surface Sealogy To from Airborne Ge	nterpreted (ophysics) Gb-Db 150m
100m	0/0 000		100m
50m	æ æ _{zzo}	Read	
Om	LEGEND C/B	63-50 5355 P.	Om
_50m	LProd	on	<u>-50m</u>
-100m	F		-100m
-150m	Br Px Bronzite-bearing Pyroxenite Mt Px Magnetite pyroxenite Mag Peak on profile EM Peak on profile	DR [1]	
	77013+00mN	Drove by : N. A. App. Al.	72/32 Approved by : 72/32 Plan 10. : 72/32 Scale : 70 1 : 2000 (pg tree) 80

LOCATION: 595325E, 7700850N, elevation 130m

AZIMUTH: 000°

DIP: -55°

TOTAL DEPTH: 180.80 m PROPOSED DEPTH: 175.0 m

STARTED: 20 July 1992 COMPLETED: 23 July 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: Test Ultramafic #2 or #3 in the Upper Productive Formation.

RESULTS: Hole intersected 4 Ultramafic bodies (3.70m, 2.15m, 3.55m, 10.10m) within Middle Productive Formation, 2.15m body has 3-4% disseminated Po, in veinlets and 5-7mm

clots w/ Tr-1% Cpy.

DIRECT DRILLING COST: 80,814 NOK

SUMMARY LOG:	
0.00 - 6.80m	Overburden
6.80 - 14.65m	Gabbro-Diabase
14.65 - 23.50m	Pil'guyarvi Volcanic Formation
	Mafic tuff and flow
23.50 - 27.60m	Middle Productive Formation
	Mafic tuff w/ minor black shale (1-3% stringer Po)
27.60 - 31.30m	Ultramafic body
	2-3% Po disseminated and veinlet
31.30 - 37.45m	Middle Productive Formation
	Black shale and black shale Po breccia (10-15% Po)
37.45 - 39.60m	Ultramafic body
	3-4% Po disseminated, in veinlets and 5-7mm clots w/
	Tr-1% Cpy
39.60 - 50.10m	Middle Productive Formation
	Black shale (10-15% Po), sandstone (2-4% 1-3mm
	stringer Po) and mafic tuff
50 .10 - 53 .65m	Ultramafic body
	1-2% clots of 3-4mm Po @ 50.30-53.65
53.65 - 56.20m	Middle Productive Formation
	Mafic flow, biotite-rich
56.20 - 66.30m	Ultramafic Body, nil-Tr Po
66.30 - 10 7 .27m	Middle Productive Formation
	Black shale (<1-10% Po, except in rare Po breccia zones
	(75-80% Po) and mafic volcanoclastics (Tr-3% dissem
	Po)
107.27 - 136.78m	Gabbro-Diabase
136.78 - 166.95m	Middle Productive Formation
	Black shale (1-5% veinlet Po), mafic tuff (rare Po
	stringers) and lesser sandstone (3-5% Po veinlets)
166.95 - 180.80m	Gabbro-Diabase
180.80m	End of Hole

Geochemical Samples: 25; Whole Rock Samples: 7; Thin Sections: 1; Polished Thin Sections: 2.

Elevation a.s.l. 250m	77008+00mN	77009+00mN	77010 1 00m
200m		8.	<u>200m</u>
150m	770	-92-48 -92-48 108+50mN 53+25mE vz. 0 company	Mb Gb-Db MProd
100m	ol6		sem/vein 100m
50m	20	William Welod	2. <u>50</u> n
Om	<u>LEGENO</u> O/B	an Go. oo	e OriverOn
-50m	MProd Middle Pro UProd Upper Pro Gb Gabbro Gb-0b Gabbro-0 ÜM Ultramafic UMI Ultramafic	Body	EO.H 180.80m.
-100m	K-V Sacycki bsh Black Sha ss Sandston PI Px Plagfociss Br Px Brotzlie- Mt Px Magnetta	Volcanic Formation Volcanic Formation Pyroxenite Pyroxenite Pyroxenite Pyroxenite	A/S SULFIDMALM EXPLORATION DEPARTMENT PRISTIAGNO, SECURITION
-150m	Mag Peak EM Peak	Z G Tracel by	PS-92-48 (looking west) Section 565222 2 / Pader Approved by : 2 / Approved by : 2 / Approved by : 3

-

LOCATION: 594600E, 7701400N, elevation 221m

AZIMUTH: 000°

DIP: -80°

TOTAL DEPTH: 275.3 m **PROPOSED DEPTH:** 275.0 m **STARTED:** 27 July 1992 **COMPLETED:** 1 August 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: Test down plunge (faulted?) extent of Ultramafic #1. Complex pinchout,

irregular EM conductor at surface.

RESULTS: Hole intersected 5.28m ultramafic body within Lower Productive Formation, but

failed to intersect proposed extension of "ultramafic #1" (Hole 41 ultramafic).

DIRECT DRILLING COST: 121,082.50 NOK

SUMMARY LOG:	
0.00 - 1.50m	Overburden
1.50 - 9.14m	Lower Productive Formation
	Sandstone (1-2% flecks Po) and mafic tuff; fault zone @
	4.36-5.42 & 9.00-9.14
9.14 - 14.42m	Ultramafic body
	2-3% wispy Po @ 13.60-14.42m
14.42 - 98.76m	Lower Productive Formation
	Dominantly sandy black shale (3-5% dissem/veinlet Po),
	w/ lesser sandstone (3% wispy Po) & one mafic tuff
	horizon (3-4% dissem Po)
98.76 - 107.99m	Gabbro-Diabase
107.99 - 110.29m	Lower Productive Formation
	Black shale w/interbedded sandstone (1-2% fine veinlet
	Po)
110.29 - 275.30m	Kolasyoki Volcanic Formation
	Mafic flow, gabbro-diabase and minor tuff
275.30m	End of Hole

Geochemical Samples: 2; Whole rock Samples: 1.

77013+00mN 77015+00mN 210nT above background of 53700nT Elevation 0.5.1. 250m 250m PS-92-49 77014+00mN A Surface Geology interpreted from 5946+00mE Az. 0 Outcrop & Airborne Geophysics) 5946+00DE Gb-Ob + KOLV Prad Fm 210 m 0/8 LProd . 200m 200m UMD Forod-150m 150m CP-Db 100m 100m 50m 50m KOIV LEGENO Om 0m C/B Overburden Lower Productive Formation LProd. MProd Middle Productive Formation **UProd** Upper Productive Formation Gb Gabbro E.O.H -50m 5945+00#E -50mGb-Db Gabbro-Diabese Ultramatic Body UM E.O.H 275.30m. Ultramatic intrusion UMI Fault Zone PTV Pliguyarvi Volcanic Formation KoN Kolasyold Volcanic Formation -100m -100mBlack Shale bsh Sandstone 53 A/S SULFIDMALM PI PX Proprieta Pyroxenite
Br PX Bronzile bearing Pyroxenite
Mt PX Magnetia pyroxenite
Mag Peak on profile EXPLORATION DEPARTMENT ERISTIAGAD, KIRINY DRILL SECTION -150mEM Peak on profile PS-92-49 (looking west) Section 504800E 77013+00mN 77014+00mN M/M/M Approved by : I Paler : 1 1947 4/4/4 ervised by : Albeha Socia

LOCATION: 596953.8E, 7702031.5N, elevation 130m

AZIMUTH: 000° **DIP:** -80°

TOTAL DEPTH: 159.80 m PROPOSED DEPTH: 175.0 m

STARTED: 6 August 1992 COMPLETED: 9 August 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: Test strong magnetic body (Ultramafic) within Lower Productive Formation **RESULTS:** Hole intersected a 64.64m Gabbro-Wehrlite body with Tr-1% Cpy in zones in

Pyroxenite and Tr-1% Po in Ultramafic DIRECT DRILLING COST: 71,805 NOK

SUMMARY LOG:

0.00 - 7.00m	Overburden
7.00 - 71.64m	Gabbro-Wehrlite Body
7.00-37.1	2m Gabbro
	Tr Cpy @ 7.00-26.50m
37.12-50.3	20m Pyroxenite
	Tr-1% Cpy
50.20-66.	61m Plagioclase Pyroxenite
	1% dissem Cpy 60.8-61.2; 65-66.0m
66.61-69.	00m Bronzite-bearing Pyroxenite
69.00-71.	64m Ultramafic (Peridotite)
	Tr-1% dissem Po
71.64 - 81.15m	Lower Productive Formation
	Equal parts black shale (1% wispy Po) and mafic tuff
81.15 - 116.15m	Gabbro-Diabase
116.15 - 116.71m	Lower Productive Formation
	Contorted black shale (nil sulphide)
116.71 - 159.80m	Kolasyoki Volcanic Formation
	Mainly mafic flow with lesser mafic tuff, nil sulphide
159.80m	End of Hole

Geochemical Samples: 24; Whole rock Samples: 8; Thin Sections: 2; Polished Thin Sections: 6.

Elevation a.s.l. 250m	77020+00mN	77021+00mN	77022+00mN	250m
200m		×	E) (4)	200m
150m	7702 PS-32-50 5969 77020+32 =N Az	92-51 0+32mN 9+54eE 10-969+54mE	ckground OnT (Surface Geology Interpreted from Airporne Geophysics) KolV	<u>150m</u>
100m	SABBRC- WEHRLITE SODY	3 6 4 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Baktake .	100m
50 m	STATE OF THE STATE	5.0 86.0	н	50m
Om	LEGEND C/B Overburden LProd Lower Productive Formation		Ē	Om
-50m	MProd	5969+54mE. E.O.H. 159.80m.		<u>~50m</u>
-100m	F Fault Zone PiV Pliquyarvi Volcanic Formation KolV Kolasyold Volcanic Formation bsh Black Shale ss Sandstone Pi Px Programme Pyroxenite Br. Dr. Broggan Pyroxenite		A/S_SULF_IDMALM EXPLORATION DEPARTMENT PRISTURENCE, TOWN	-100m
—150m	Mt Px Magnetite pyroxenite Mag Peak on profile EM Peak on profile	Tressed by Bruss by Supervised	DRILL SECTION PS-92-50, 51 (looking west) Section Se	200 (Man) *

LOCATION: 596953.8E, 7702031.5N, elevation 130m

AZIMUTH: 000°

DIP: -45°

TOTAL DEPTH: 86.05 m PROPOSED DEPTH: 80.0 m

STARTED: 9 August 1992

COMPLETED: 11 August 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: Test up-dip projection of strong magnetic ultramafic body intersected in Hole

50 within Lower Productive Formation

RESULTS: Hole collared in and intersected 55.85m gabbro-wehrlite body with Tr Cpy

specks and Tr to 2.5% Po in ultramafic portion.

DIRECT DRILLING COST: 41,239 NOK

SUMMARY LOG:

0.00 - 11.80m

Overburden

11.80 - 67.65m Gabbro-Wehrlite Body

11.80-16.86m Gabbro

Tr Cpv overall & blob of Cpv @ 13.50

16.86-24.45m Plagioclase-bearing Pyroxenite

24.45-30.00m Magnetic Pyroxenite

9% magnetite (after chromite)

30.00-49.73m Plagioclase-bearing Pyroxenite

Tr Cpy @ 36.00-44.00 & 1% Cpy in quartz vein

@ 38.80 & 46.85-46.90

49.73-51.00m Bronzite-bearing Pyroxenite

51.00-61.46m Ultramafic (Peridotite)

Tr Po @ 60.00-61.52

61.46-62.70m Xenolith of sandy black shale, 1% Cpy veins @ 62.33-

62.55

61.70-67.65m Ultramafic (Peridotite)

Tr Po 62.67-65.67; 1% Po 65.67-66.72; 2.5%

dissem Po 66.72-67.22

67.65 - 73.58m

Lower Productive Formation

Black shale (<1% veinlet Po) and lesser mafic tuff

73.58 - 86.05m

Gabbro-Diabase

86.05m

End of Hole

Geochemical Samples: 23; Whole rock Samples: 6; Polished Thin Sections: 3.

Elevation a.s.l. 250m	77020+00mN	77021+00mN	77022+00mN	250m
200m		×,	<i>3</i> 0	2 0 0m
150m	PS-92- 77020+32 PS-92-50 5969+54 77020+32aN Az. 0 LProd 5969+54pE 34569+6	E Airborne	ieology interpreted fram Geophysics) KolV	150m
100m	0/8 54	The State of the S	4	100m
50m	Brow UM	E.O.H. 86.05m.		50m
<u>Om</u>	LEGEND C/B	_ 5969+54 eE		Om
-50na	UProd Upper Productive Formation E.O.	80m.		_50m
_100m	PiV Pliguyarvi Volcanic Formation KolV Kolesyold Volcanic Formation bsh Black Shale ss Sandstone Pi Px Plagioclase Pyroxenite Br Px Bronzie-bearing Pyroxenite	QUE IN	SULFIDMALM ATION DEPARTMENT ISTURBED, MISSEL DRILL SECTION	-100m
-150m	Mt Px Magnetite pyrocenite Mag Peak on profile EM Peak on profile		DRILL-SECTION 2-50, 51 (looking west) Section	(882mm) Sc

LOCATION: 596770E, 7701820N, elevation 141m

AZIMUTH: 000°

DIP: -80°

TOTAL DEPTH: 165.56 m PROPOSED DEPTH: 175.0 m

STARTED: 11 August 1992 COMPLETED: 14 August 1992

LOGGED BY: Karen Hudson-Edwards

PURPOSE: Follow-up DDH PS-43: continue to test strongly magnetic Ultramafic in Lower

Productive Formation.

RESULTS: Hole intersected 28.84m Ultramafic Body with Tr-2% Po over 4.15m near base

of body and 1-2% Cpy in 0.5m quartz zone above body.

DIRECT DRILLING COST: 73,079 NOK

SUMMARY LOG:	
0.00 - 5.88m	Overburden
5.88 - 15.91m	Gabbro-Diabase
15.91 - 16.36m	Lower Productive Formation Black shale with 2-3% stringer Po
16.36 - 25.61m	Gabbro-Diabase
25.61 - 26.75m	Lower Productive Formation Black shale (1-2% veinlet Po) and mafic tuff
26.75 - 32.62m	Gabbro-Diabase
32.62 - 33.90m	Lower Productive Formation Black shale w/ < 1% veinlet Po
33.90 - 48.51m	Gabbro-Diabase
48.51 - 51.14m	Lower Productive Formation Mainly black shale, 1-2% dissem Po
51.14 - 61.60m	Gabbro-Diabase
61.60 - 65.10m	Lower Productive Formation Mafic tuff, 1% Po veinlets
65.10 - 66.88m	Ultramafic flow(?) (or part of larger body below) Tr-1% finely disseminated Po
66.88 - 72.81m	Lower Productive Formation Biotite-bearing mafic tuff, @67.00-67.50, 1-2% Cpy, Tr Po
72.81 - 101.65m	Ultramafic body @80.50-81.25, 97.50-101.65 Tr-2% Po
101.65 - 113.67m	Lower Productive Formation Interbedded mafic flow & black shale (5% Po @ 101.08-101.19; 1-2% Po @ 101.55-101.72)
113.67 - 115.29m	Quartz/Fault Zone
115.29 - 119.51m	Gabbro-Diabase
119.51 - 120.23m	Lower Productive Formation Black shale (1% veinlet Po) & mafic tuff; fault zone @ 128.55-128.82 & 140.56-141.00
120.23 - 128.55m	Gabbro-Diabase
128.55 - 141.00m	Lower Productive Formation

Black shale, mafic tuff & siltstone, generally 1% veinlet

& dissem Po

141.00 - 165.56m

Kolasyoki Volcanic Formation
Mainly mafic flow, nil sulphide
End of Hole

165.56m

Geochemical Samples: 8; Whole rock Samples: 4.

Elevation a.s.L 250m	77017+00mN	77018+00mN	N=00+610/2
200m			200m 120nT above background of 53500 nT
150m		PS-92-52 77018+20=N 5967+70=E Az. 0	(Surface Geology interpreted from Airborne Geophysics) 150m LProd UM Kaiv
100m		GB-DD -LProd -LProd -GB-DD -CProd -GB-DD -CProd -GB-DD -CProd	100m
50m		1-2% Cpy dissem.	
0=	LEGEND	///	KoIA Du
-50m	O/B Overburden LProd Lower Productive Formation MProd Middle Productive Formation UProd Upper Productive Formation Gb Gabbro Gabbro Gb-Ob Gabbro-Diabase UM Utrametic Body	E.C 165	5967+70mE D.H. .58m.
100m	UMI Utrametic intrusion F Fault Zone PIV Pliguyard Volcanic Formation KolV Kolasyold Volcanic Formation bsh Black Shale ss Sandstone PI Px Plagoclase Pyroxenite Bt Px Bronche bearing Pyroxenite	EXPLORAT TRIST	-100m
-150m	Magnette pyroxenta Mag Peak on profile EM Peak on profile	PS 6	RILL SECTION 2-52 (looking west) Section SECTION
22.25	77017+00mN	Tread by 1.8 Fiber Dress by 18 Fiber Supervised by 18 Mether Sevined by 1	### 1 1 2000 (gg/res) 1 2000 (gg/res) 3

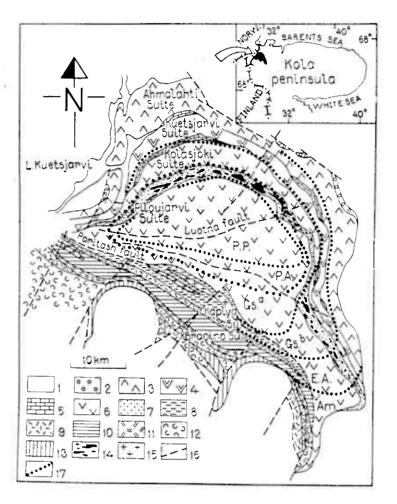


Fig.1. Geological map of the Pechenga area, after Zagorodny et al.(1964), Predovsky et al. (1974), Hanski & Smolkin (1989). Metamorphic zones after Petrov et al.(1986), modified by the authors. 1, Archaean gneisses; 2-15, Proterozoic Pechenga Complex: 2, conglomerates; 3, andesites and basalts; 4, trachybasalts, trachyandesites; 5, quartzites, dolomites: 6, basalts, picrites; 7, Productive Zone: sandstones, silt-stones, pelites and tuffs, with abundant sulphides and carbonaceous matter (gabbro-diabases, intruding the Productive Zone not shown); 8, phyllites, dolomites; 9, basalts; 10, psammites, siltstones; 11, picritic tuffs and tuffites, basalts; 12, andesites, dacites; 13, basalts, andesites, dacites; 14, Ni-bearing gabbro-wehrlite intrusions; 15, extrusive andesitic porphyrites; 16, faults; 17, boundaries of metamorphic facies and subfacies: P.P.- prehnite-pumpellite, P.A.- prehnite-actinolite, Gs-greenschist (a - muscovite-chlorite and b - biotite-chlorite subfacies), E.A.epidote-amphibolite, Am.- amphibolite.

basalts are abundant with minor felsic volcanites, whereas the upper volcanic suites contain minor picrites (Predovsky et al. 1974, Hanski & Smolkin 1989).

The South-Pechenga series, comprising the Bragino and Kaplya suites, is situated south of the Poritash Fault and is composed of volcentral interintend tells

The age of the rocks of the Pechenga racrustal belt ranges from c.2.4 Ga to c. Ga. The lower age boundary is an empla ment age for a layered gabbro-norite intrus on Mt.Generalskaya, situated in the Archa basement and overlain by rocks of the Pech ga belt (Bakushkin et al. 1990). The upper boundary is provided by a U-Pb zircon for the Litsa-Araguba granites (Pushkare) al. 1978). Regional metamorphism in the chenga belt varied from prehnite-pumpe facies in the central part of the structure (Fig to amphibolite facies on the flanks (Petrov al. 1986).

The supracrustal rocks are cut by gabt diabase intrusions and differentiated ma ultramafic sills of the gabbro-wehrlite associated tion (Hanski 1986) bearing Cu-Ni sulphide or The age of the gabbro-wehrlite intrusions a comagmatic picrites of the Pilgujarvi suite I been determined by different methods (Har et al. 1990) and is c.1.99 Ga.

Metamorphism led to intensive serpentini tion and talc-carbonate alteration of the ult mafic rocks. Metamorphosed intrusions co ain numerous hydrothermal veins of vary compositions. Carbonate and talc-carbon veins are more or less ubiquitous where serpentine and rodingite veins are rather le common (Smolkin & Abzalov 1990). Roding veins have been dated by the Pb-Pb who rock method (Pushkarev et al. 1985) and ga an age 1.81 \pm 0.03 Ga for the metamorp alteration of the Ni-bearing intrusions.

Most of the ore-bearing intrusions and ass ciated Cu-Ni deposits are confined to sedime tary units of the Pilgujarvi suite (Fig.1), t so-called Productive Zone (Gorbunov et 1985). The majority of the Cu-Ni deposits a located in one small area, in the part of t Productive Zone situated to the northwest the Luotna Fault (Figs.1 & 2). This area (Fig. is known (Gorbunov 1968) as the Pechenore-field.

The Cu-Ni deposits contain three princip types of ores: (1) high-grade massive at breccia ores, situated in the basal parts of the massifs and along tectonic zones;(2) dissen