

Bergvesenet Postboks 3021, 7002 Trondheim

Rapportarkivet

THE RESIDENCE OF A CONTROL OF THE PARTY OF T		Macanta Maria (Maria Maria		<u> </u>			
Bergvesenet rapport nr BV 3461	1		nt arkiv nr	Rapport lokalisering Nordland	Gradering		
Kommer fraarkiv	Ekstern rapport	nr Overs	endt fra	Fortrollig pga	Fortrolig fra dato:		
ittel BP NORGE A/S l Helgeland Project		Annual Repo	rt				
Forfatter			Dato 1984	Bedrift BP Norge Minerals			
Kommune			ke	1: 50 000 kartblad	1: 250 000 kartblad		
Fagområde	Dokumer	t type	Foreko	mster			
Råstofftype	Emneord						
Sammendrag							

Cho Hatt 30/1-86

BP NORGE a.s. MINERALS NORSK HYDRO

HELGELAND PROJECT

ANNUAL REPORT 1984

SECTION 1: SUMMARY

SECTION 2: RESULTS OF DETAILED FOLLOW UP 1984

SECTION 3: RAUVATNET DRILLING PROGRAMME

SECTION 4: RECOMMENDATIONS FOR DETAILED FOLLOW UP 1985

SECTION 5: ORIENTATION MAPS

BY: H.H.BERCHELMANN J.E.TRÄGÅRDH During 1983 follow-up some 1500 stream sed. (sieved) samples were collected, of which approx 15% contained Au. (7% of the samples were anomalous in As and 8% in W). These are resamples of 1982 Au anomalies which were collected predominantly at lower altitudes, delineating ~170 claim areas. As a result of 1983 work 25-30 areas were considered as interesting for further investigation. From these areas, 15 were selected as high priority targets and followed-up in 1984 (+Eitraga). Factors governing the selection of areas were such as:

- 1) consistency of Au anomalies,
- 2) structures and geology
- 3) anomalous path finder element (arsenic).

Areas followed-up 1984 are listed below with results and recommendations for future work. A deep overburden VLF survey was carried out March/April 1984 in following areas:

- 1) Bjorknes,
- 2) Vesterelva,
- 3) Tomasvatn,

Approx. 200 spls. were collected of which none contained Au. The pathfinder As, was highly anomalous in Vesterelva (4 spls. 100-200 ppm) and in Bjorknes (53 ppm). (For further information see report on this).

In total 368 rock samples, 100 soil samples, 55 stream sed. samples and 30 pan conc. were collected during summer 1984.

Rock samples containing Au are listed below. A strong correlation between Bi, Au, As and Sb in high temperature hydrothermal fractures, with or without quartz, exists. In some cases Au and Bi associates without arsenopyrite being present (e.g. Grondalen, Skomoviken). When Bi and Sb are absent strong arsenopyrite mineralizations usually carry little gold (Grundvatn qtz-vein, Skomoviken apy-fractures, qtz-vein in Holm granite, Svartvatnet qtz-apy vein exemplify this).

Stratiform diss. sulphide mineralizations and iron formations were found to contain very little Au (usually 50-100 ppb).

Future work is recommended in following areas which were not followed up in 1984:

- 1) Reinfjell
- 2) Vistfjell
- 3) Leka
- 4) Sordalen-Husvika
- 5) Nedre Kvanlivatn
- 6) Hatten

Structural maps based on aerial photos have been prepared for these areas showing the correlation with Au and As anomalies.

(STRATIFORM) DISSEMINATED SULPHIDE MINERALIZATIONS

AREA	(ppb) Au 	As	Sb	Bi	Cu	Pb	Zn	COMMENT
HJARTSK A RMO	 53 20	0	0	17 6 281	972 1317	82 9 2287	30162 36634	Hosted by amphi- bolites, marbles
FELLINGFORS	45 28	0	0	112 61	1317	425	41216	Hosted by calcail- icates, marbles
STABBFORSMOEN	 28 	13	0	 0 	 	i	Pyrr.	Hosted by calc- silicates
SORENSKOGVATN	 37 	620	0	6	219	45	Pyrr.	Hosted by horn- blende-mica schist
BJORNDALEN	. 60 	23	0	331	1199	10882	31625	Thin bands in marble
EITRAGA	0 0 	0	8	27	44% Ba	1500	3.6%	Sulphide bands in quartzite hosted by marble
	li							

IRON FORMATIONS

ĕ EA	(ppb) Au 	As	Sb	Bi	Other	COMMENT
TUSTVATNET	49	0	0	0	Magnetite	Bands in calcite marble
HERRINGBO TN	0	15	0	0	 Magnetite	Hosted by hornblende schist
EITERAVALLEY	0	 14 	1 0 	9	Magnetite	Qtz-magnetite bands in amphibolite

ROCK-CHIP ANALYSIS OF VEIN TYPE MINERALIZATION

SAMPLE	AREA	Au 	As	Sb	Bi	OTHER	COMMENTS
MJ3401	MJAVATN	0.09	0	0	21	734 Ba 31 W	lm thick qtz- vein. No sulph.
FF2401	SVENNINGDAL MINE DUMP	5.0 4.6 	55349	1002	173	2272 Cu 16861 Pb 17398 Zn	Polymetallic qtz-vein
ET9401 ET9402	EITERASEN II	0.30 0.29 0.35 0.34	2079	28 39	1 0	!	ldm wide hydro- thermal fract. Chloritization
H03404 H03405	HOLM GRANITE	 0.490 0.090 0.070 	146	38 0	 59 6 	4645 Pb 200 Pb High Zn	100
TN9401	GRUNDVATN .	0.042	15065	5	20	330 Pb 41 W	1.5 thick and 200m long qtz- vein. 37 Mo in
SK3402	GRONDALEN	2.3 2.5	11	0	421	976 C u	
SK3403	 	0.472 0.490	9	0	330	1287 Cu	fracture w/car- bonate, chlor. cpy (l0cm thick)
SK3411	SKOMOVIKEN	0.254 0.264	27	0	301	191 3 Pb	 3dm thick sulf- bear. qtz-veins
SK3412 SK3415		0.178 0.178 0.925 0.833 0.148 0.129	25 3 14547	0 1	167 475 27	1184 Pb 46 Pb 91 Pb	in granodiorite. Fract. in meta- sed. close to Skomoviken gran.
KL3405 KL3406 KL3411 KL3420 KL3421 KL3424 KL3424 KL3426 KL3445 KL3445 KL3452 KL3453 KL3454	KLAUSMARKELVA	1.04 1.04 .//. 0.13 0.13 0.16 0.16 0.35 0.32 0.15 0.32 0.40 0.72 0.70 0.148 0.025 0.042 0.033 0.153 0.129 0.425 0.393	188046 2200 5202 10447 22254 20163 18359 64125 11225 47 15336 47192 108689	76 3 3 3 9 6 6 14 14 10 10 10 10 10 10	1.93 1 0 1 4 1 5 1 19 1 23 1 12 77 1 14 1 97 1 30 1 43 1 133		l-2m thick qtz- veins w/fract., aspy mineral- ized, contacts. Also aspy diss. along fractures in granodiorite (No qtz.)

N.B.: ALL VALUES IN PPM!

FIRE OF AFEAS FOLLOWED UP 1 9 8 4 (for detailed description see follow-up sheets)

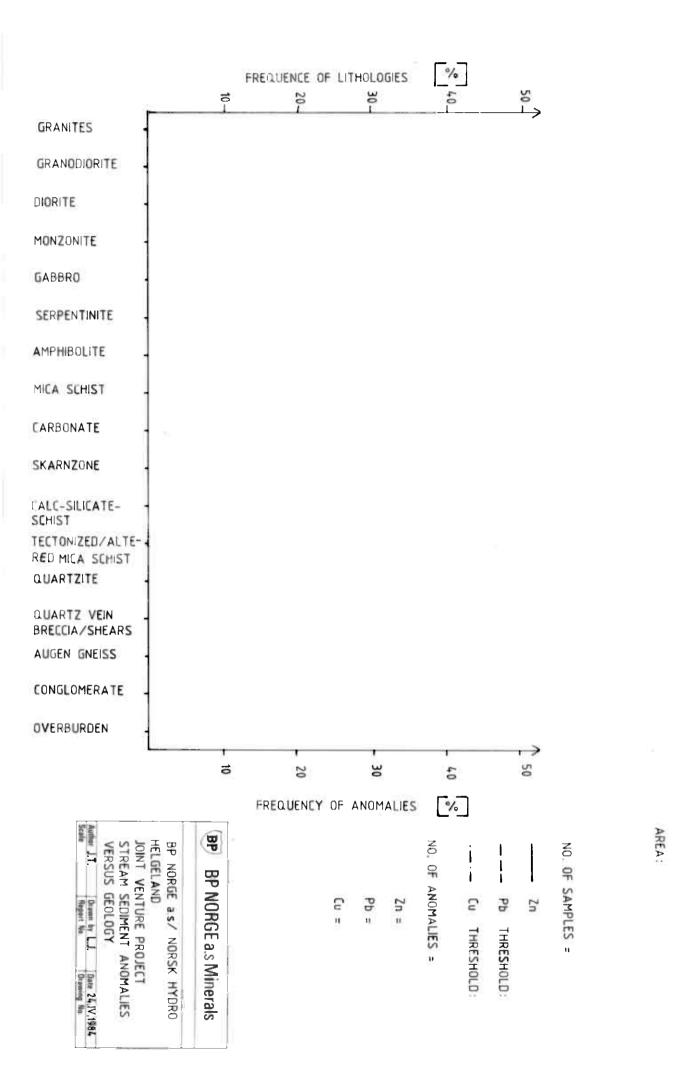
Strong corr. between Augment in stream sed, and structures. Further closely over specific areas where with tractures.	i ido chies and in other i stramm than previous)y sampled: (1.3 ppm, ASC and theil (400 387	Lithosamples:		Resamples contained Au Sesamples in 5 Au anomalies in southername. (3 high range) Tributary from this contained beneatly high As. (56,54,124 ppm) 2 Au anom. in northername.	Area covered by till	Vestelelva III 3261 GRANE
Both lithe samples that con- tained hu wase taken trom strong pyrthotite diss. in calcaplicate horizons close to dioritic intruden. Further follow-up of trac- ture/breccia zones close to intrusion. Closely spaced soil spl. on alopes and in the vicinity of Au- bearing streams in order to detect the pathlinder As.	Au: 37, 15 ppb. One 1008 apl. returned highly anom. in As (53 ppm)	Mapping Nethers: Rock samples: BRZ401-8; BR3404-11 BR Z501, 3502-3505 BR Z501, 3502-3505 BR Z501, 862-65: BR3404-11 B	I:5.000 Geology Based on economical I:5.000 Geology	Resamples were anomal- ous, Northern stream 2 high range anom, South ern stream 2 high range, 1 medium. Weak As anomalies,	Contained 345, 22 ipp Au. Glacioflu- ipp Au. Glacioflu- vial mit: common.	Hjorknes 1926 IV DREVJA
Rock spl. from dtz vein con- tained 90pph Au. 21 Bi. The Vein was found above the 652 pph stream sed, anomaly, Other rock spl. from sulphide- bearing quartilies & shear Clear correlation between structures & Au anomalies, structures & Au anomalies, attuctures & Au anomalies,	anomalous of which a set resamples of a set resamples of non-anomalous as set sen sed. Fan a sed. Snom. A without Au a stream sed. anom. I nock spl. returned	(Resamples of 1983	1:5.000 Spl. overlay Ceochem. 1:5.000 Geology, Structures (Based on economical Mapsheet)	bigh kange anomaly	Orivinal spl. 69 ppb au. Taken in fluvio-	Mjavatn 1928 IV AEVJA
Fock spl. taken from pyrr- bearing fractured diz-veins contained no Au. No future work recommended.	(qdd 65() snolemoue (gdd 65() snolemoue	WPbbING	1:5.000 Spl Overlay Scochem Scochem Structures Structures Mapsheet) Mapsheet Structures Struc		ppb) in fluvioglacial sed. at lower alti-	ALVERDA VI 926 IV
COMMENTS	EESAIPLE (MOBE DONE	MAPS ATTACHED	BESOFIE BESOFIE	SITE STATE	HAFSHEET CLAIM ABEA

MAPSHEET CLAIM AREA	1 982 RESULTS	1 9 8 3 REBULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
'lausmarkelva 1826 III VEVELSTAD	One Au, 4 As and 2 W anomalies in stream sed.	Three rock samples contained Au (254, 284,26 pph). Samples taken from arseno- pyrite min. qtz-vein	1:20.000 geology, structures, sample loc.	, 54 rock samples of arsenopyrite min- eralized fractures and qtz-veins. KL3401-3454	Eleven rock samples con- tained over 100 pph Au Strong correlation with Sb and Bi. All gold bearing rocks from 3 to 7 localities sampled.	The samples were collected along a major N-S trending fault zone, which host a 1-2m thick qtz-vein. The qtz-vein is arseonpyrite mineralized at fractured contacts. The highest Au values are in samples significantly high in Sb, Bi (77, 17) ppm; as well as As (10%). The structure is extending several km. Further following of similar structures in the region especially close to the gabbro body. Blasthole sampling along the structure sampled this year incommended. Also recommended in marble stripe northeast of this.
Mo-Troms itraga diss. Zn-Fb-Ba ineralization STORFORSHEI 2027 IV	Rock sampling (Massive sulphide programme).	Three Au anomalies in stream sed. (190, 124, 224 ppb).	1:50.000 sample	Rock samples: MT3401-5 MT9401-2 Stream sed: MT9301-7	One stream sed. Au anom. (Resample of 1983 anom.) No Au in rock.	No further work is recommended.
Gronf jeldet Massive sulphide STORFORSHEI 2027 IV				DN 3401-12 (Rock spls.)	One rock spl. contained ~30 pph Au. 	One sample returned with background Au value for a massive sulphide in this part of the world (~30 ppb). No further work is recommended.

MARSHEET CLAIM AREA	1 9 8 2 FESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
Vasbotn (Sausvatn) 1825 IV VELFJORD	The area was stream sed. sampled but no Au anomalies.	Rock samples from qtz- arsenopyrite-tourma- line-breccia returned with 800ppb Au. Chlor- itization of immediate wallrock (25 ppb Au). One visible Au grain was found in pan conc. Further follow-up of this stream by collec- ting pan conc. resul- ted in 7 consistent Au anomalies (max. 1150 ppb).	1:5.000 sample point overlay, geochem. 1:5.000 Geology (Based on economical mapsheet). Vertical profile of Au anomalous stream showing stream sed. versus pan concentrates.	above 83 anomaly (N09501-9503) Soil samples:	sed. spls. are anomalous of which one is a resam- ple of a 1982 sample. All soils barren. Sa. No. 9303 = 43opb Au	Fock samples NO3407-9,11.12 are taken from qt2-vein/breccia immediately above 1150 ppb anom. in order to compare pan conc. and stream sed. resamples were collected (see vertical profile). The two lowermost stream sed. samples collected from finergrained mtrl. at lower altitudes were anomalous. Increasing Au, As values in pan conc. upstream where stream sed. are barren. No further work i recommended.
Skomovik & Grondalen 1825 IV VELFJORD 1826 III VEVELSTAD	Original stream sed. sample for Grondalen stream 41 ppb Au. Original stream sed. sample for Skomovik- en B Z ppb Au.	system draining Gron- dalen Au-vein (83, 78 ppb) RESAMPLE NOT ANOMALOUS	See report from Dr. Schoenfeld	Detailed geological mapping and structural interpretation by Clausthal University team. Rock spls: Sk 3401-17	Au (925, 264, 187 ppb) and very high Bi concen- tration up to 475 ppm. See also report from Dr. Schoenfeld.	Skomovik granodiorite ore thought to be derived from surrounding metased.,

MARSHEET CLAIM AFEA	1 9 8 7 PESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	PESULTS	COMMENTS
Spelrem 1926 III GRANE	Au anomaly in stream draining diss. sul- phide horizon.	Rock spls. were taken from stratiform diss. pyrite min. No Au, 114 As, 700 ppm Pb High chromium. Approx. 10-15m thickness. Fur- ther litho-sampling considered necessary	Sketch map of sample loc.	Stream sed.: SP 2301 Rock spls, blasted: SP 9401-19 SF 2401-2 Soil spls: SP 2601-7	Stream sed. spl. anoma- lous (~262 ppb) Rock samples contained no gold. Soil samples contained no gold.	Diss. pyrite horizon in sericite-quartz-schist, hosted by marble and calcislicate. Some analytical results: SF 9407: 88 As. 806 BA, 1374 Cr. 853 Ni: (ppm) (Low in Cu. Fb. Zn). Abundant graphite. The Auresults leave the source for stream sed. Au anomaly left unexplained.
Tomasvatn 1923 III MAJAVATN	Original anom 27 ppb Several streams in the area were sam- pled. Thick glacio- fluvial material.	One stream sed. spl. highly anomalous (1960) ppb) 3 pan conc. anoma lous (263, 329, 1000) ppb Au). All anomalies conc. in area covered by thick glaciofluvial material.	1:5.000 spl overlay 1:5.000 geology	Stream sed.: MA 3301-7 Soil spls: MA 3601-38 Rock spl: MA 3401 Overfraction of str. sed. spls. collected above anomalous area has been re-analyzed DOB grid 25m between spls 100m between lines. VLF survey	4 weak As anomalies in DOB grid. Stream samples: No Au. Soil samples: MA 3609 = 34ppb Au MA 3632 = 66ppb Au MA 3633 = 120ppb Au	The side stream which emerges where cluster of anomalies occur does not carry any Au. The source for Au could be local as the overfractions returned negative. Possibly further soil sampling could be considered. The anomalies occur 2km W (down ice direction) of an amph. breccia. This should be followed-up and rock sampled.

MAESHEET CLAIM AREA	1 9 8 2 RESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
Eiterasen II 1926 III GRANE	One anomaly in major N-S cunning stream 1220 ppb Au)	Resample anomalous. 4 low range and 2 medium range anom. consistently upstream	1:40.000 spl overlay structures	Rock spls: Et 9401-4	All rock spls. con- tained Au (300,350,28. 28 ppb) High Sb and As.	Rock samples taken from hydrothermal joints in Iracturezones. ALTERATION: arsenopyrite, py chloritization. Further follow-up and lithosampling of these fracturezones(approx.50dgr),
Rauvatn 1926 III GPANE	2 An anom. in 2 streams (43,219ppb) 219 ppb in stream draining Au-qtz-vein Weak As. Most of the area stream sed. sampled	10 Au anom. in area draining Au-qtz-vein. Strong As (Max 220ppm) 3 Au anomalies in parallel stream lkm south. 3 anomalies in stream opposite Au-qtz vein (other side of the valley).	1:20.000 spl overlay 1:20.000 structures	Rock samples: RV 9401-27 (Au-qtz vein) RV 2401-27 RV 3401-32 (Mainly northern part. For analytical results see attached list. An area of approx. 10 km2 was checked. (North of Au-qtz-vein).	NOFTHERN PART: 10 rock spls containing 27-1500 ppb Au.	Strong correlation between Au-As-Sh. All rock samples containing high amounts of Au taken from arsenopyrite rich margins of qtz-veins. The immediate wallrock is chloritized-sericitized. This contains some hundred ppb Au and diss. of apy. In northern part 6-7 qtz- veins (1-3dm wide) were sampled. The stream S of Au-qtz-vein (in overburden covered depression) needs to be soil sampled.


MARSHEET	1 9 8 2	1 9 8 3	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS	
CLAIM AREA	PESULTS	RESULTS	MAFS ATTACHED	MANUAL INVERS	NEW COLUMN	3200,0000	
Fellingtors 1935 III CRANE	3 Au anom. in 3 stream sed. (101,37, 27 ppb). Glacioflu- vial mand, silt, clay.	anom. in middle stream	s. 6 consistent Geochem. overlay m. in middle stream high range). 4 anom 1:5.000 Geology, northern stream and Structures igh range anom. in thern stream. Weak All in areas with		Two soil spls Au anomallous (79, 132 pph), arse anomalies associated. 3 Fan conc. localities contained Au, of which one was high range 3.5pp (1 visible gold grain) 3 litho samples containe Au (47,24,50 pph) No stream sed. spls. were anomalous.	Rock samples taken from stratiform disseminated sulphide (Zn. Cu, py, pyrr) contained Au. This horizon hosted by marbles-calcsilicates. Svenningdal mine dumps returned with 5ppm Au. Further closely spaced soil-sampling near detected soil anomalies and on various altitudes on slope close to stream sed. Au anomalies in middle stream (This would also include soils over marble-quartzite -calcsil, horizon close to anomalies)	
Stabbforsmoen Stormoen 1926 III GRANE	2 anom. in 2 streams (142,47 ppb Au)	2 resamples not anoma- lous. 24 Au stream sed anomalies in 2 stream systems. 10 high range anom. ()100 ppb). Weak As.	1:20.000 spl overlay 1:20.000 Geology, Structures	Rock spls: FF 2405-12 Mapping, structural interpretation	3 lithosamples contained Au (70,29,28 ppb)	2 of the rock samples con- taining Au taken from mylonitic, siderite veined rock (weak diss. of sphal, gal, py). One (23ppb) spl- taken from stratiform diss Cu, pyrr horizon hosted by thin calcsil-marble stripe. Soil sampling could be con- sidered as no glaciofluvial material exists. Blasting and further litho- sampling in order to detect higher Au values in main 50 dgr. structure.	

TYPE OF MINERALIZATION	Au (ppb)	As (ppm)	W (ppm)	(ppm)	Pb (ppm)	Zn (ppm)	MIN.	NAME / CLAIM NO.
X-CUTTING	2220	7280	4	77	48	64	PY,	RAUVATNET
QTZ-VEIN WALLROCK (BIOTITE GNEISS)	40	2990	5	64	140	1280	As PY As PY CHLORITE	17 RAUVATNE
CONCORDANT QTZ-VEIN / BRECCIA	860	9482	2	31	10	64	As PY, Fe Carb. TOURM. As PY,	VASBOTN (SAUSVAT) 169
WALLROCK (CHLORITE SCHIST	33	185	<1	48	12	101	CHLOR,	VASBOTN
CONCORDANT	254	>10000	<1	14	12	16	PY,AsPY	KLAUSMAF ELVEN
QTZ-VEIN WALLROCK (QUARTZITE)	-	59	7	16	26	96	ē	173
CONCORDANT QTZ-VEIN (MARBLE HOSTED)	284	>10000	4	6	268	8	As PY	KLAUSMAR ELVEN 173
CONCORDANT QTZ-VEIN	26	6550	3	21	74	14	As PY, PY	KLAUSMAF ELVEN
FRACTURED X-CUTTING QTZ-VEIN WALLROCK (QUARTZITE)	2200 	< 1 2	2	1275 8 4	43 32	60 34	PY, PYRR ZEOLITE SULPH., TOURM	GRØNDALE 45
DISS. SULPH. IN	390	145	2	6000	> 10000	10000	GALENA, SPHAL,	EITERÅ- KROKEN
STRATABOUND SHEARZONE (SILICIFIED MARBLE)	(Ag >200) 500 (Sb 155)	5910	7	456	4460		P Y +	(HJORT- SKARMO) 174
STRATABOUND DISS, SULPH, IN	(100)	114	1	113	680	86	PY, CPY	SPELREM
SILICEOUS HORIZON (SHEARED)	tel	15	1	176	112	114		SPELREM
STRATABOUND	(Mo 18)	144	1	872	28	226	PYRR, PY,	SØREN- SKOGVAT
MASSIVE SULPHIDE (CHERTY	(Mo 36)	116	1	548	26	326	As PY	49
MATRIX)	(Mo 11)	334	1	235	32	288		

ELEMENT	MEAN X	STD.DEV	X+1∂	THRESHOLD (ppm)	VARIANCE	MEDIAN	ANOMALIE	· ·
Au								
As								
w								
Cu								
Pb								
Zn								
				<u> </u>				

* Au in ppb

TOTAL NUMBER OF SAMPLES:

MAPSHEET CLAIM AREA	1 9 8 2 RESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
Klausmarkelva 1826 III VEVELSTAD	One Au. 4 As and 2 W anomalies in stream sed.	Three rock samples contained Au (254, 284,26 ppb). Samples taken from arseno-pyrite min. qtz-vein	1:20.000 geology, , structures, sample loc.	KL3401-3454	All gold bearing rocks from 3 to 7 localities	The samples were collected along a major N-S trending fault zone, which host a 1-2m thick qtz-vein. The qtz-vein is arseonpyrite mineralized at fractured contacts. The highest Au values are in samples significantly high in Sb, Bi (77, 173 ppm) as well as As (10%). The structure is extending several km. Further follow-up of similar structures in the region especially close to the gabbro body. Blasthole sampling along the structure sampled this year is recommended. Also reconnaissance in marble stripe northeast of this.
Mo-Troms Litraga diss. Zn-Pb-Ba mineralization STORFORSHEI 2027 IV	Rock sampling (Massive sulphide programme).	Three Au anomalies in stream sed. (190, 124, 224 ppb).	1:50.000 sample loc.	Rock samples: MT3401-5 MT9401-2 Stream sed: MT9301-7	One stream sed. Au anom. (Resample of 1983 anom.) No Au in Fock.	No further work is recommended.
Gronf jeldet Massive sulphide STORFORSHEI 2027 IV				DN 3401-12 (Rock spls.)	One rock apl. contained 30 ppb Au.	One sample returned with background Au value for a massive sulphide in this part of the world (~30 ppb). No further work is recommended.

MAPSHEET CLAIM AREA	1 9 8 2 RESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
Vasbotn (Sausvatn) 1825 IV VELFJORD	The area was stream sed. sampled but no Au anomalies.	Rock samples from qtz- arsenopyrite-tourma- line-breccia returned with 800ppb Au. Chlor- itization of immediate wallrock (25 ppb Au). One visible Au grain was found in pan conc. Further follow-up of this stream by collec- ting pan conc. resul- ted in 7 consistent Au anomalies (max. 1150 ppb).	1:5.000 sample point overlay, geochem. 1:5.000 Geology (Based on economical mapsheet). Vertical profile of Au anomalous stream showing stream sed. versus pan concentrates.	Further panning above 83 anomaly (N09501-9503) Soil samples: N09601-9609 Stream sed: N09301-9310 Rock samples: N03401-3412. 3-4dm thick qtz-vein with pyrite, chlor- ite in fractures was found directly above 1150 ppb Au anomaly.	The two lowermost stream sed, spls. are anomalous of which one is a resample of a 1982 sample. All soils barren. Sa. No. 9303 = 43ppb Au 9304 = 146ppb Au	Rock samples N03407-9,11,12 are taken from qtz-vein/ breccia immediately above 1150 pph anom. in order to compare pan conc. and stream sed. resamples were collected (see vertical profile). The two lower- most stream sed. samples collected from finer- grained mtrl. at lower altitudes were anomalous. Increasing Au, As values in pan conc. upstream where stream sed. are barren. No further work i recommended.
Skomovík & Grondalen 1825 IV VELFJORD 1826 III VEVELSTAD	Original stream sed. sample for Grondalen stream 41 ppb Au. Original stream sed. sample for Skomovik- en B 2 ppb Au.	Two Au anom. in stream system draining Gron- dalen Au-vein (83, 78 ppb) RESAMPLE NOT ANOMALOUS Skomoviken B returned with one 93 ppb Au anom. RESAMPLE NOT ANOMALOUS	See report from Dr. Schoenfeld	Detailed geological mapping and struc- tural interpretation by Clausthal Univer- sity team. Rock spls: Sk 3401-17	Rock spls from 3 dm thick qtz-veins in Skomovik granodiorite returned w/ Au 1925, 264, 187 ppb) and very high Bi concentration up to 475 ppm. See also report from Dr. Schoenfeld.	Tourmaline veins/spots in Skomovik granodiorite ore thought to be derived from surrounding metased., probably during thrusting. Layers of 1-2 dm thick tourmaline rich horizons (60-70%) were observed in biotite schist. It is likely that Au, As min. in fractures was formed during a hydrothermal episode connected with thrusting. At Grondalen a ldm thick hydrothermal fracture was sampled containing 2.5ppm, Au. (Carbonate infilling, chlorite, pyrite. Hosted by amphibolites).

MAPSHEET CLAIM AREA	1 9 8 2 RESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
Spelrem 1926 III GRANE	Au anomaly in stream draining diss. sulphide horizon.	Rock spls. were taken from stratiform diss. pyrite min. No Au, 114 As, 700 ppm Pb High chromium. Approx. 10-15m thickness. Fur- ther litho-sampling considered necessary	Sketch map of sample loc.	SP 2301 Rock spls, blasted: SP 9401-19 SP 2401-2	Stream sed. spl. anoma- lous (262 ppb) Rock samples contained no gold. Soil samples contained no gold.	Diss. pyrite horizon in sericite-quartz-schist, hosted by marble and calcsilicate. Some analytical results: SP 9407: 88 As, 806 BA, 1374 Cr. 853 Ni: (ppm) (Low in Cu, Pb, Zn). Abundant graphite. The Auresults leave the source for stream sed. Au anomaly left unexplained.
Tomasvatn 1925 III MAJAVATN	Original anom 27 ppb Several streams in the area were sam- pled. Thick glacio- fluvial material.	One stream sed. spl. highly anomalous (1960 ppb) 3 pan conc. anoma lous (263, 329, 1000 ppb Au). All anomalies conc. in area covered by thick glaciofluvial material.	1:5.000 spl overlay	MA 3301-7 Soil spls: MA 3601-38 Rock spl: MA 3401 Overfraction of str.	4 weak As anomalies in DOB grid. Stream samples: No Au. Scil samples: MA 3609 = 34ppb Au MA 3632 = 66ppb Au MA 3633 = 120ppb Au	The side stream which emer- ges where cluster of anoma- lies occur does not carry any Au. The source for Au could be local as the over- fractions returned negative. Possibly further soil sam- pling could be considered. The anomalies occur 2km W (down ice direction) of an amph. breccia. This should be followed-up and rock sampled.

MAPSHEET CLAIM AREA	1 9 B 2 RESULTS	1 9 6 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
Citerasen II 1926 III GRANE	One anomaly in major N-S running stream (220 ppb Au)	Resample anomalous. 4 low range and 2 medium range anom. consistently upstream	1:40.000 spl overlay structures	Rock spls: Et 9401-4	All rock spls. con- tained Au (300,350.28. 28 ppb) High Sb and As.	Rock samples taken from hydrothermal joints in fracturezones. ALTERATION: arsenopyrite, py chloritization. Further follow-up and lithosampling of these fracturezones(approx.50dgr).
Rauvatn 1926 III GRANE	2 Au anom, in 2 streams (43,219ppb) 219 ppb in stream draining Au-qtz-vein Weak As. Most of the area stream sed. sampled	10 Au anom. in area draining Au-qtz-vein. Strong As (Max 220ppm) 3 Au anomalies in parallel stream 1km south. 3 anomalies in stream opposite Au-qtz vein (other side of the valley).	1:20.000 spl overlay 1:20.000 structures	RV 9401-27 (Au-qtz vein) RV 2401-27 RV 3401-32 (Mainly northern	VTZ-AU-VEIN: 19.5, 24.5, 21, 3.5, 1, 2.7, 6.5, 3.5, 8.5 ppm A along 300 m NORTHERN PART: 10 rock spls containing 27-1500 ppb Au:	Strong correlation between Au-As-Sb. All rock samples containing high amounts of Au taken from arsenopyrite rich margins of qtz-veins. The immediate wallrock is chloritized-sericitized. This contains some hundred ppb Au and diss. of apy. In northern part 6-7 qtz-veins (1-3dm wide) were sampled. The stream S of Au-qtz-vein (in overburden covered depression) needs to be soil sampled.

MAPSHEET CLAIM AREA	1 9 8 2 RESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS
1926 III	3 Au anom. in 3 stream sed. (101,37, 27 ppb). Glacioflu- vial sand, silt, clay.	l resample not anoma- lous. 6 consistent anom, in middle stream (2 high range). 4 anom in northern stream and 3 high range anom. in southern stream. Weak As. All in areas with thick overburden.	1:5.000 Geology,	FF 3401-8, FF 9401-4, FF 2402-4. FF 2401 from Svenn- ingdal mine dumps. Pan Conc.: FF 2501-3, FF 9501-2, FF 3501-3. Soil samples:	Two soil spls Au anoma- lous (79, 132 pph), arse anomalies associated. 3 Pan conc. localities contained Au. of which one was high range 3.5pp (1 visible gold grain) 3 litho samples containe Au (47.24.50 pph) No stream sed. spls. were anomalous.	dumps returned with 5ppm Au.
Stabbiorsmoen Stormoen 1926 III GRANE	2 anom. in 2 streams (142.47 ppb Au)	2 resamples not anoma- lous. 24 Au stream sed anomalies in 2 stream systems. 10 high range anom. ()100 ppb). Weak As.	1:20.000 spl overlay 1:20.000 Geology, Structures		3 lithosamples contained Au 170.29.28 ppb)	2 of the rock samples containing Au taken from mylonitic, siderite veined rock (weak diss. of sphal, gal, py). One (29ppb) splitaken from stratiform diss Cu, pyrr horizon hosted by thin calcsil-marble stripe. Soil sampling could be considered as no glaciofluvial material exists. Blasting and further lithosampling in order to detect higher Au values in main 50 dgr. structure.

LIST OF AREAS FOLLOWED UP 1 9 8 4 (for detailed description see follow-up sheets)

MAPSHEET CLAIM AREA	1 9 8 2 RESULTS	1 9 8 3 RESULTS	MAPS ATTACHED	1 9 8 4 WORK DONE	RESULTS	COMMENTS		
Strauman 1926 IV DREVJA	l anomalous spl (188 ppb) in fluvioglacial sed. at lower alti- tudes	7 consistent anomalies in 2 branches of the stream at lower alt. RESAMPLE OF ORIGINAL SA. P. NOT ANOMALOUS		3 pan concentrates 5 rock samples MAPPING	1 pan concentrate anomalous (159 ppb)	Rock spl. taken from pyrr- bearing fractured qtz-veins contained no Au. No future work recommended.		
Mjavatn 1926 IV DREVJA	Original spl. 69 ppb Au. Taken in fluvio- glacial covered area	7 anom. in various stream branches. One high range anomaly (652 ppb) RESAMPLE OF ORIGINAL SA. P. NOT ANOMALOUS	1:5.000 Spl. overlay Geochem. 1:5.000 Geology, Structures (Based on economical Mapsheet)	(Resamples of 1983	4 pan concentrates anomalous of which 3 are resamples of non-anomalous 80 stream sed. Pan concentrates of 652 pub stream sed. anom. without Au 1 rock spl. returned with 30 ppb Au lotz-vein	Rock spl. from qtz vein contained 90ppb Au, 21 Bi. The vein was found above the 652 ppb stream sed, anomaly. Other rock spl. from sulphide-bearing quartzites & shearzones returned without Au. Clear correlation between structures & Au-anomalies. exist. Further soil spl. & litho spl. along fractures.		
Bjorknes 1926 IV DREVJA	Original spl. points contained 345, 22 ppb Au. Glaciofluvial mtrl. common.	Resamples were anomalous. Northern stream 2 high range anom. South ern stream 2 high range. 1 medium. Weak As anomalies.	1:5.000 spl overlay 1:5.000 Geology (Based on economical mapsheet)	Rock samples: BK2401-8; BK3404-11	Two work spl. contained Au: 17. 15 ppb. One DOB spl. returned highly anom. in As (53 ppm)	Both litho samples that con- tained Au were taken from strong pyrrhotite diss. in calceilicate horizons close to dioritic intrusion. Further follow-up of frac- ture/breccia zones close to intrusion. Closely spaced soil spl. on slopes and in the vicinity of Au- bearing streams in order to detect the pathfinder As.		
Vesterelva 1926 III GRANE	3 anomalous spls in stream sed.(48.8,231 ppb Au). Most of the area covered by till	Resamples contained Au 5 Au anomalies in southernmost stream.(3 high range) Tributary from this contained consistently high As. (56,54,124 ppm) 2 Au anom. in northernmost stream.		Lithosamples: RF 3401-6 Pan concentrates: RF 3501-8 Stream sed: RF 3301-23 Soil samples: RF 3601-21 DOB sampling in two drainage areas	3 Pan concentrates con- tained Au of which 2 are high range and in other streams than previously sampled. (1.3 ppm. 125 ppb: High As DOB anomalies in tributary to southern stream (145, 105,136,23 ppm: All soil barren. One stream sed. anom. in stream not spld previously.	Strong corr. between Au anom. in stream sed. and structures. Further closely spaced DOB or soil sampling over specific areas where Au/As anomalies coincide with fractures.		

REPORT ON A VLF, DOB SURVEY IN
HELGELAND - SPRING 1984

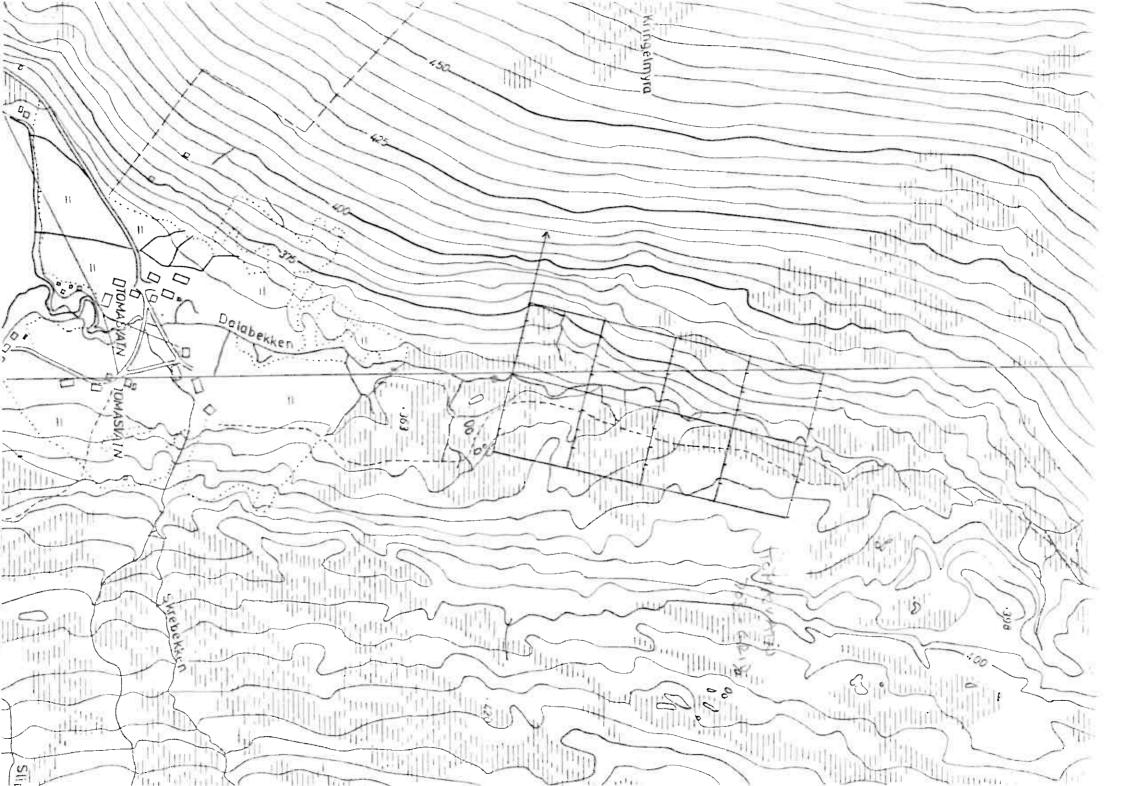
INTRODUCTION

During March and April 1984 a DOB, VLF survey was carried out in Helgeland. The areas were: Tomasvath, Bjoerknes and Vesterelva (claim no. 63, 117, 88). The grid spacing was 25m between sample points and 100 m between lines (in some cases 50m). The grids covered the area above and around the last stream sediment Au anomaly (as in Vesterelva II) and were orientated in such a way that traverses cross the regional strike. VLF profiles were conducted simultaniously with DOB sampling.

BJOERKNES

The area is situated near the southwestern edge of Lake Fustvatn. The geology consists of a narrow marble horizon bordered by a gabbro which is netveined by pyrrhotite impregnated granite in the northeastern corner of the grid. This coincides with crossovers on the VLF and one DOB As anomaly (53 ppm). Rock sample analysis of the sulphide-bearing granite returned Au-negative but with 7ppm As. A weak As, W pattern is expressed in the northern part of the grid. A skarnified horizon at the contact between marble and the net veined gabbro could possibly explain high As, W (Au) results and the VLF expression.

TOMASVATN


The area is covered by relatively thick overburden situated lkm north of Tomasvatn. The soil analysis returned with erratic and weak As, W values. A rather strong conductivity change apparent from the VLF in the northern part, which could be explained by an amphibolite band contacting marble. This is supported by DOB chips and Mag. results.

VESTERELVA 1

The area is situated south of Klubbfjellet east of Reinfjellet granite and consist of qtz-mica gneiss/schists interbanded with thin marble horizons. The crossovers on the southeastern flank probably reflect a mica schist-marble boundary coinciding with the stream direction. The gap of the two components on the northwestern side would then express lower resistivity over quartz-mica schist/gneiss. It is possible that fracture zones located along the contact contain mineralizations. The analysis returned with weak As values in the range 5-15 ppm.

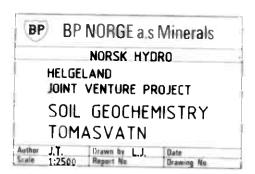
VESTERELVA II

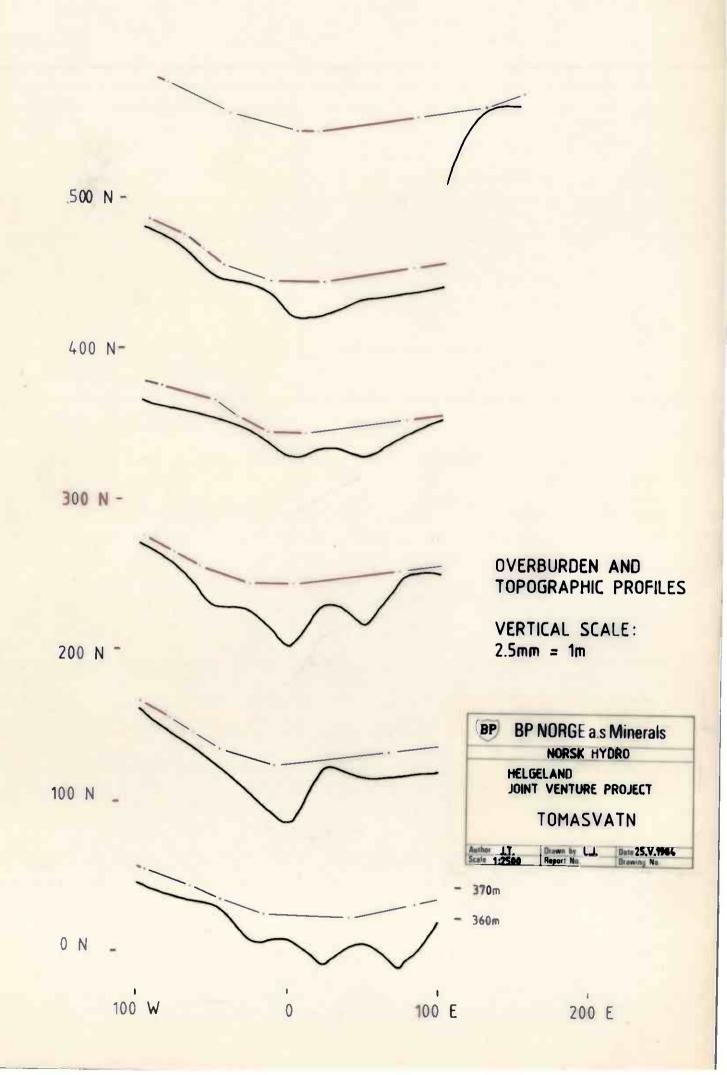
VLF and DOB anomalies have similar characteristics compared with Vesterelva I. Arsenic anomalies along the qtz-mica schist/marble boundary however, are much stronger with values up to 258 ppm As.

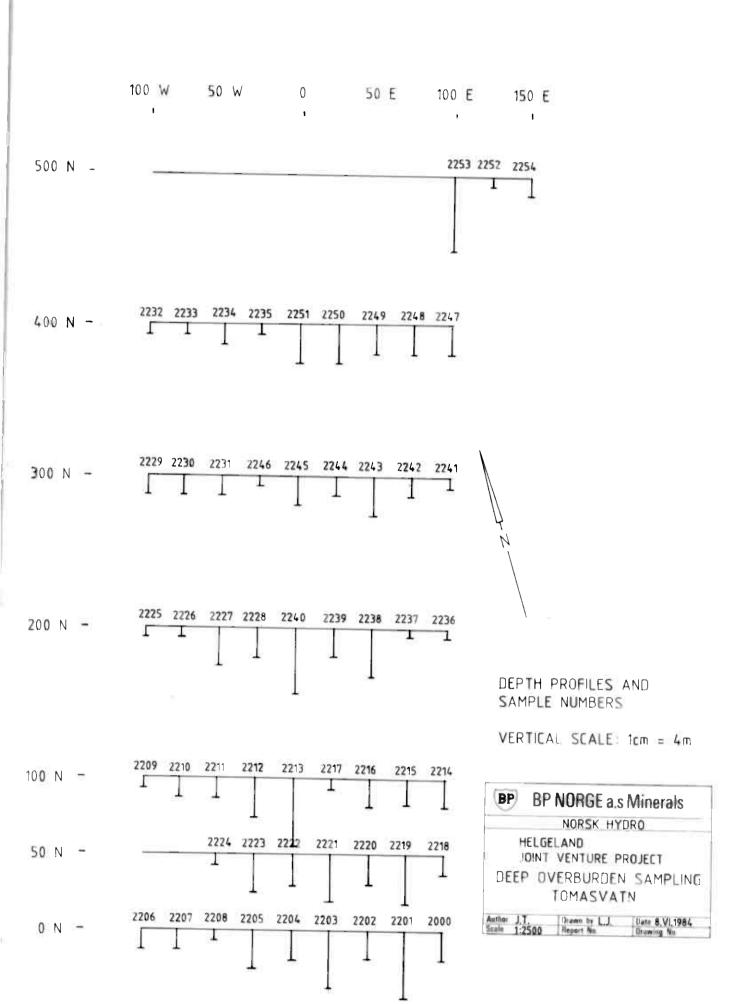
500 N

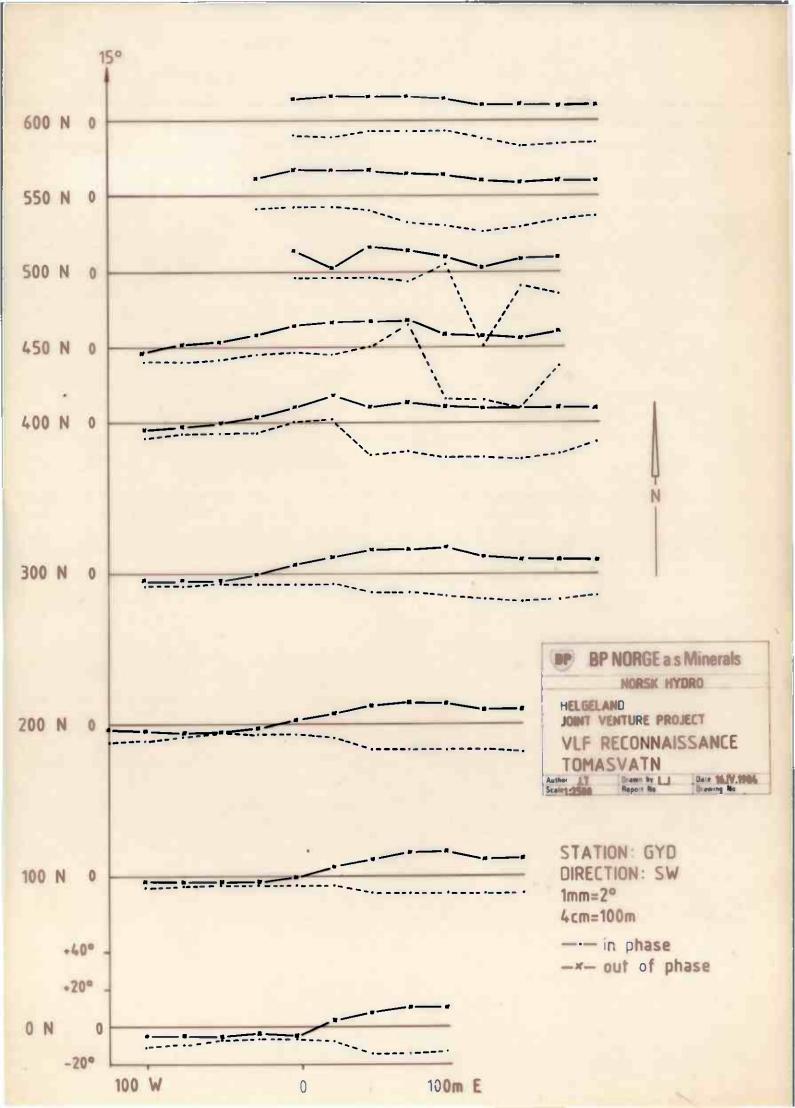
400 N •

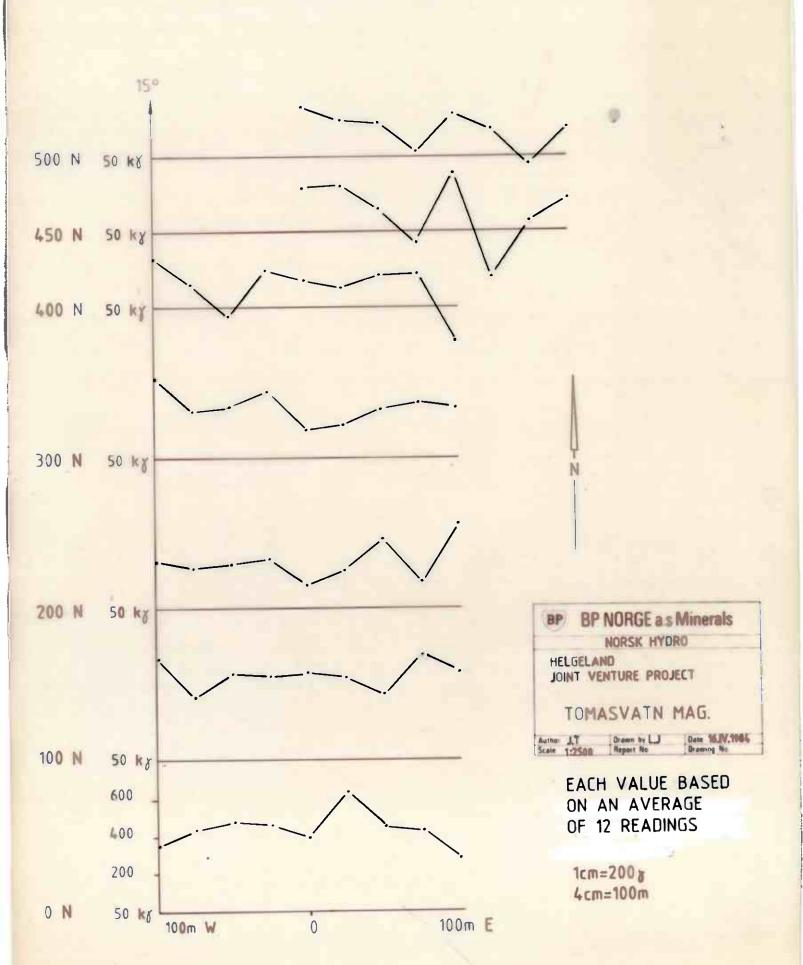
300 N • • • • • • • •

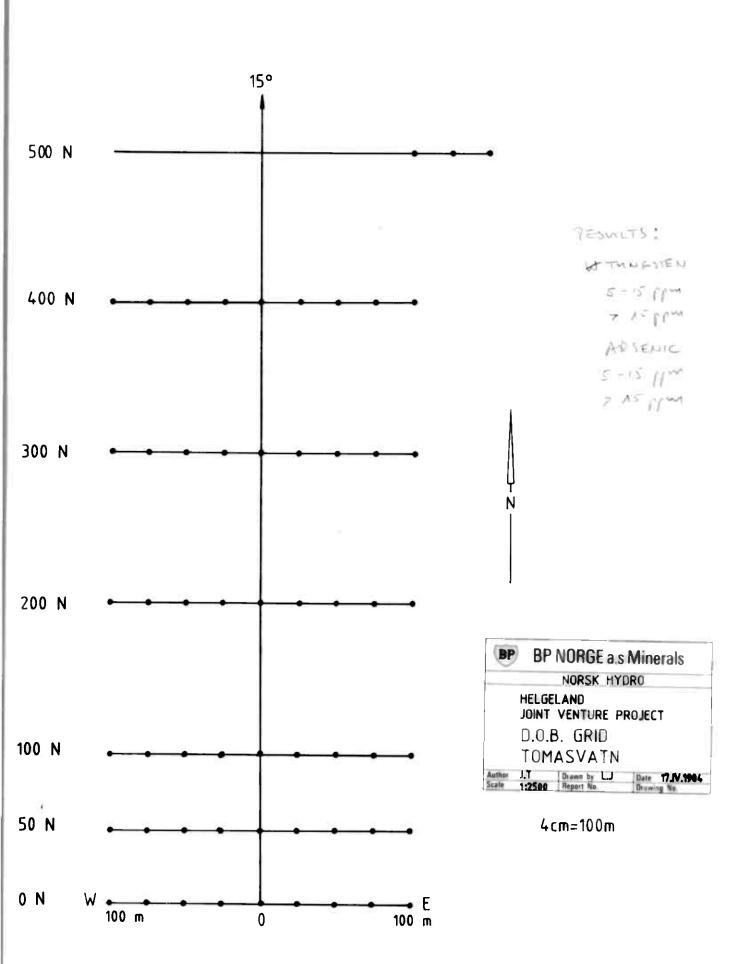

100 N

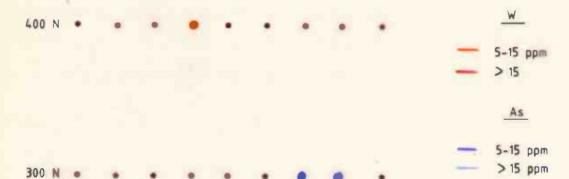

500 N


200 N • O • • O • •



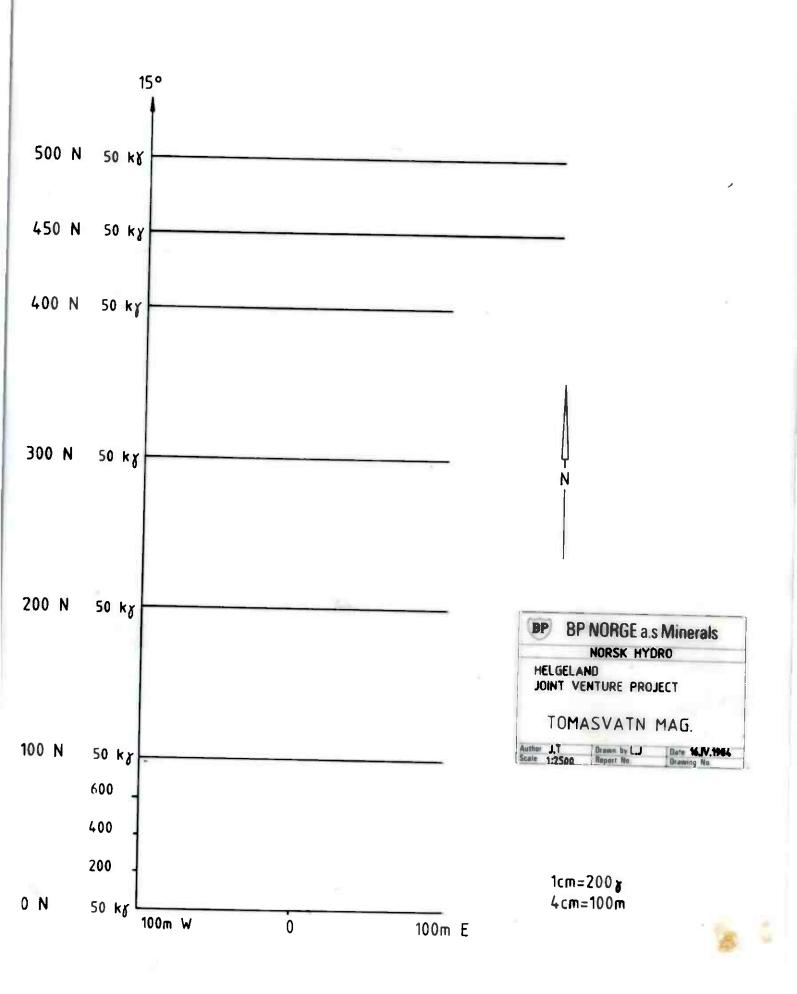


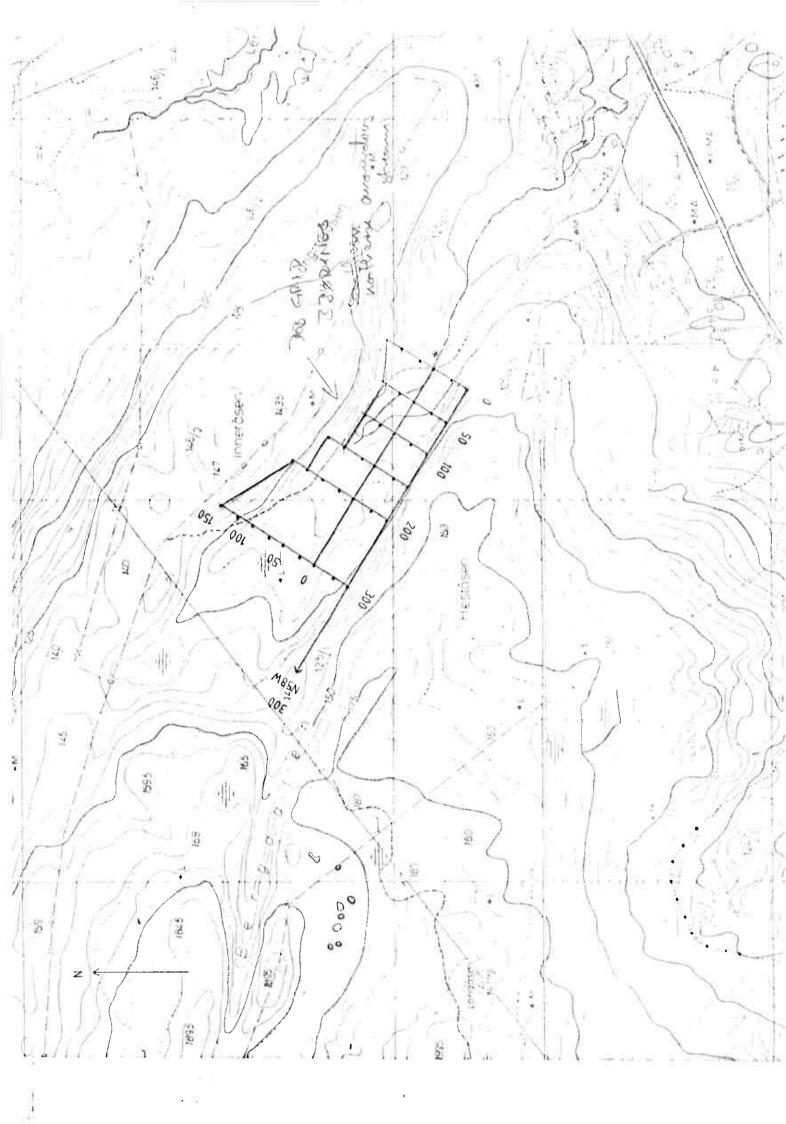

100 E

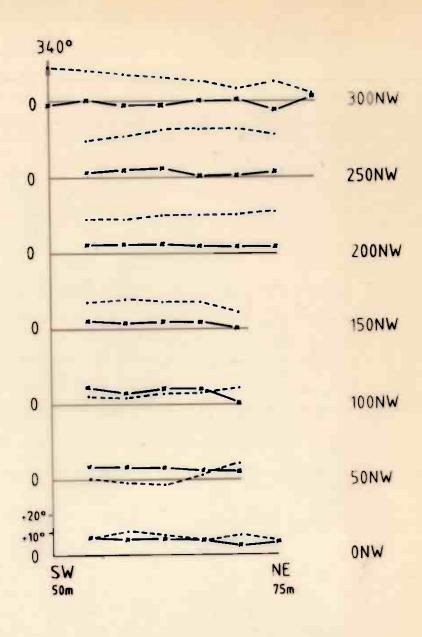


150

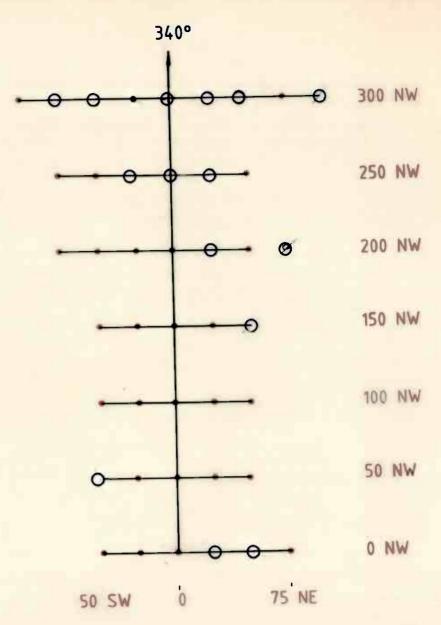
500 N

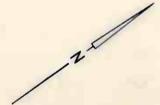


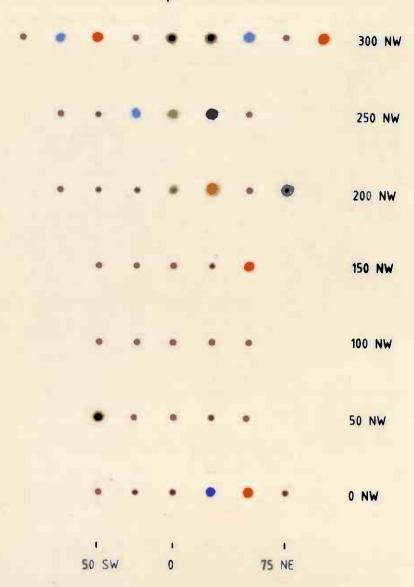

200 N 4



100 N 50 N 0 N 100 W


BP NORGE a.s Minerals NORSK HYDRO HELGELAND JOINT VENTURE PROJECT SOIL GEOCHEMISTRY TOMASVATN Date 30.V.1984 Drawing No.





O W GREATER THEN 10PPM O As " "

BP BP	NORGE a.s	Minerals
~	NORSK HY	ORO .
HELGE	LAND VENTURE PR	OJECT
D	O.B. GRID	
В	JØRKNES	
Author J.T. Scale 1:2500	Grawn by L.J. Report No.	Date 2 V 1984 Drawing No.

W

5-10 ppm

8-15 ppm

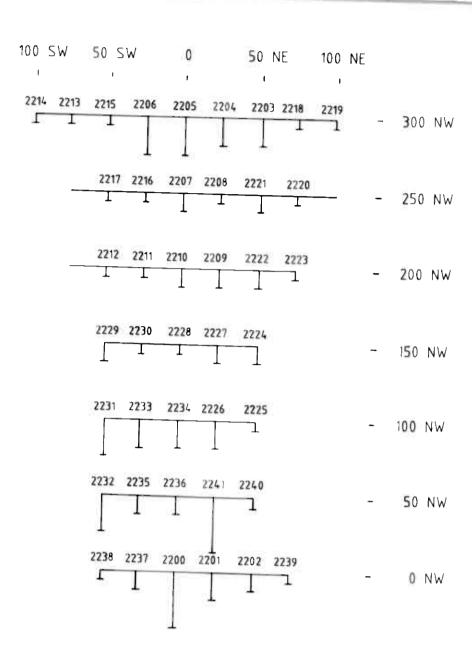
>15 ppm

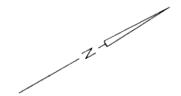
As

8-15 ppm

>15 ppm

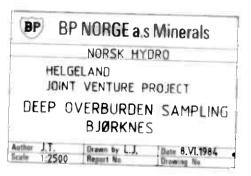
5-10 ppm

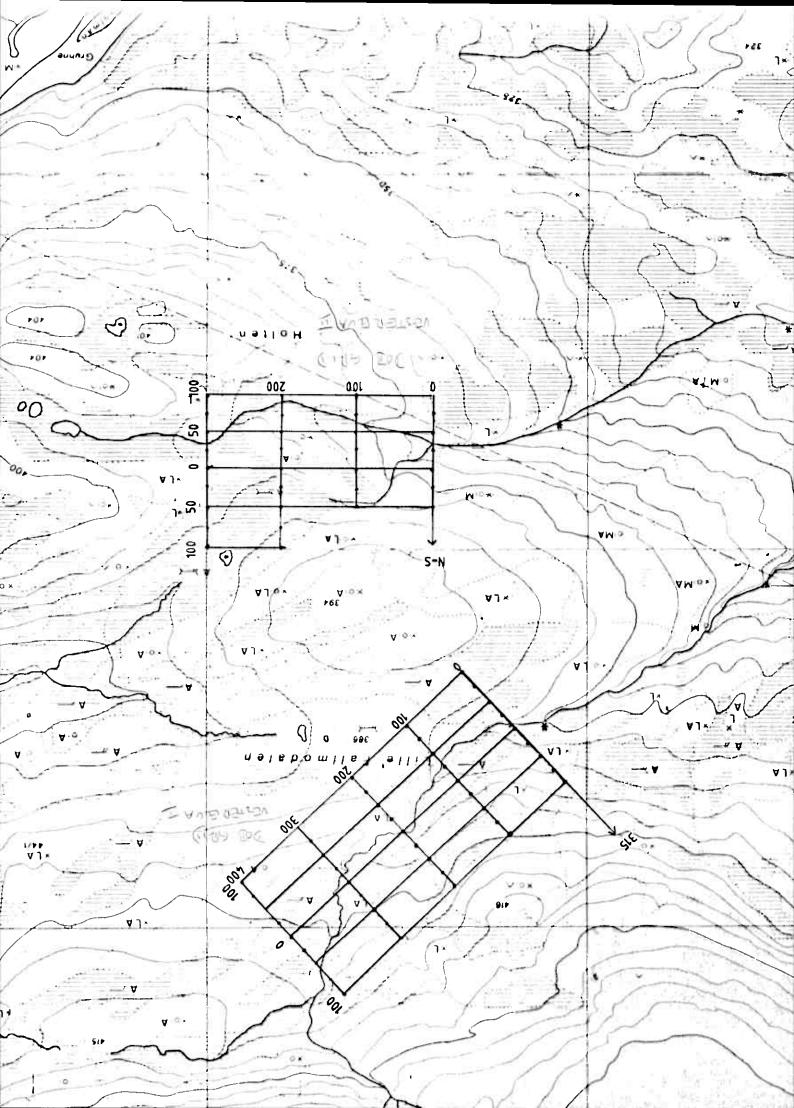

1

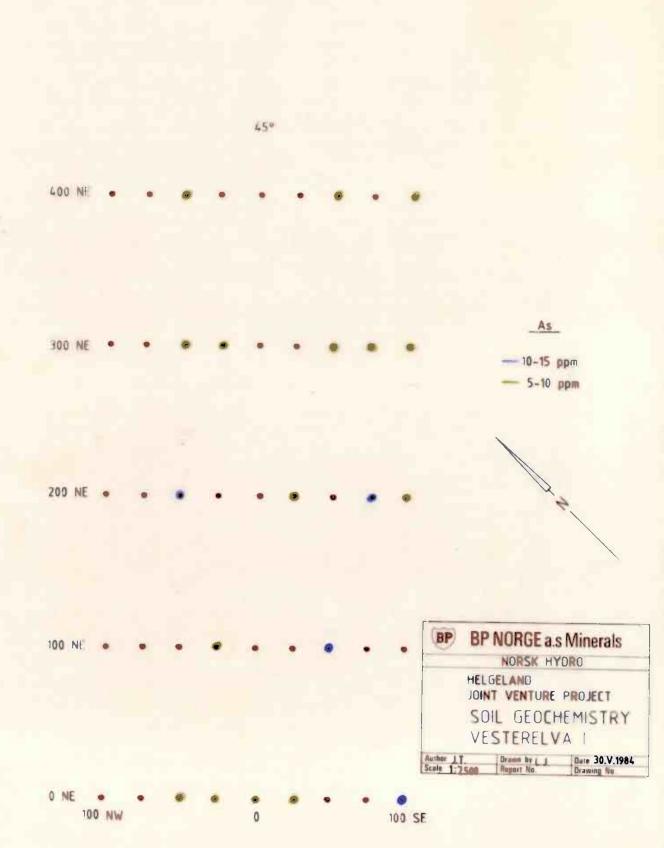

BP NORGE a.s Minerals

NORSK HYDRO

HELGELAND
JOINT VENTURE PROJECT
SOIL GEOCHEMISTRY
BJØRKNES


Author II Drawn by J Date 2 V 1984
Scale 1:2500 Report No. Drawing No.





DEPTH PROFILES AND SAMPLE NUMBERS

VERTICAL SCALE: 1cm = 4m

BP BP NORGE as Minerals

NORSK HYDRO

HELGELAND JOINT VENTURE PROJECT SOIL GEOCHEMISTRY VESTERELVA II

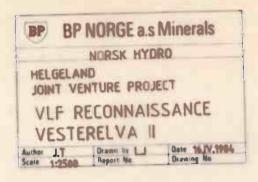
J-Z-

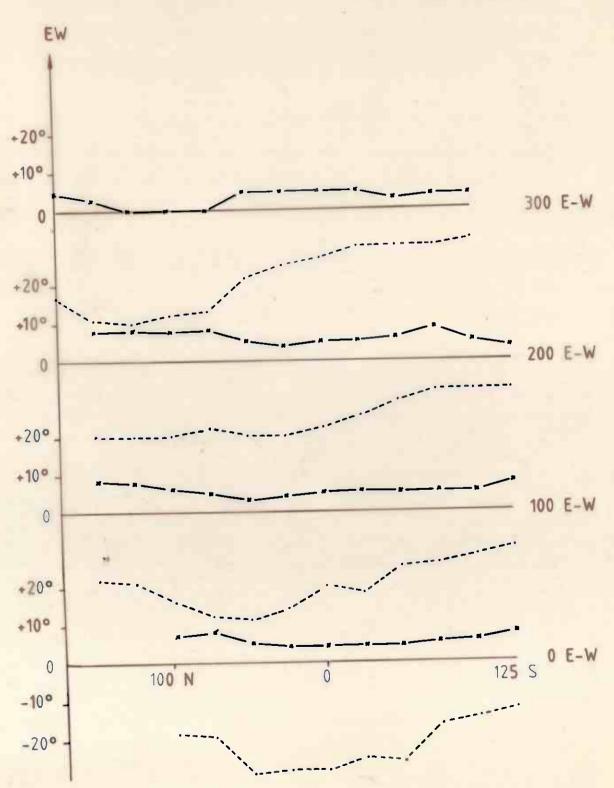
J.T. Grame by L.J. Date 30.V.1984 1:2500 Report No.

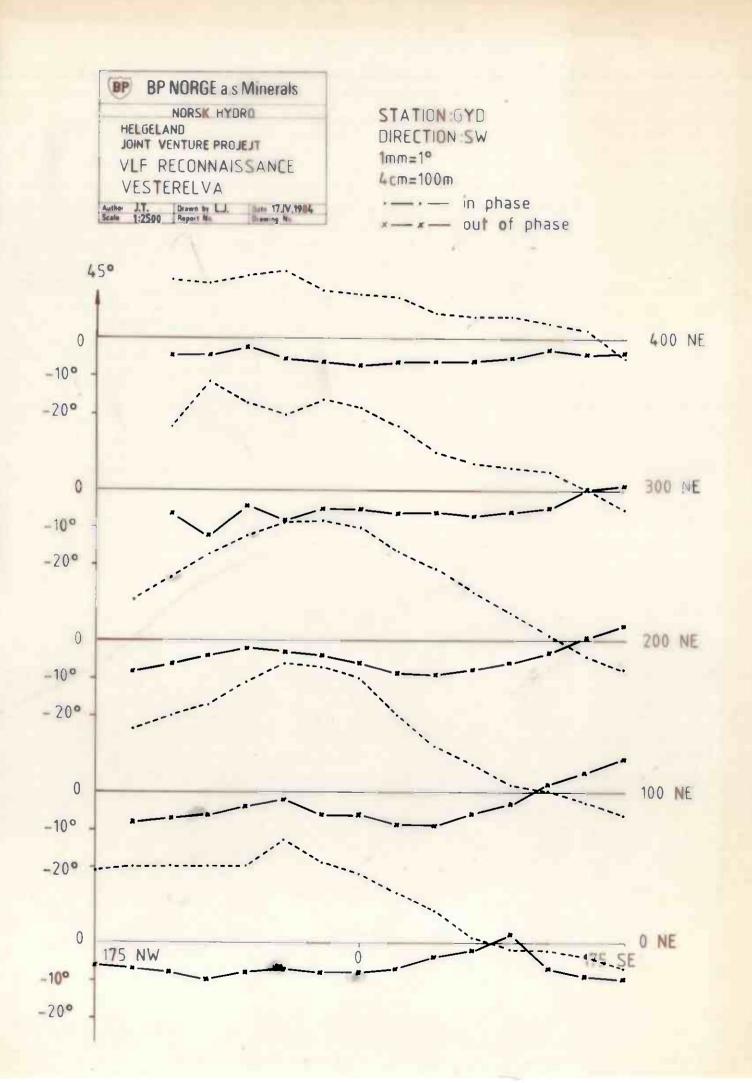
As

-- >20 ppm

- 5-10 ppm

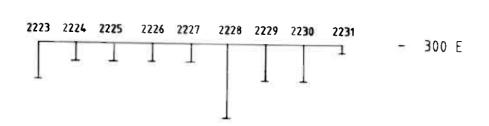

E-W

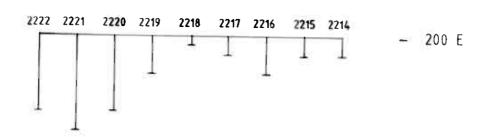

300 E

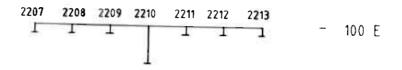

● 200 E

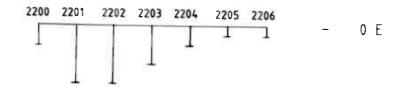
100 E

100 S 0 E 50 N






DEPTH PROFILES AND SAMPLE NUMBERS


VERTICAL SCALE: 1cm = 2m

BP BP NORGE a.s Minerals

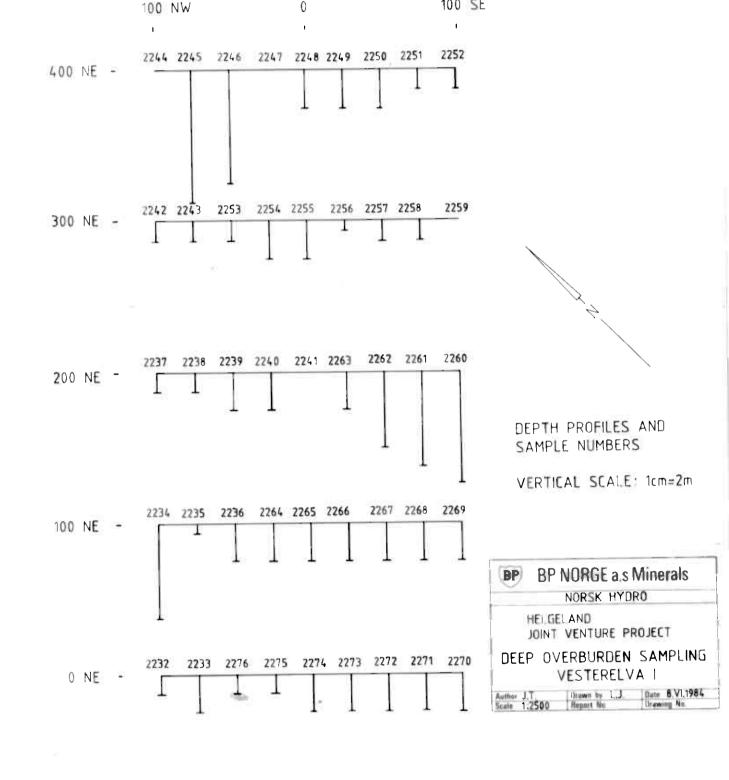
NORSK HYDRO

HELGELAND
JOINT VENTURE PROJECT

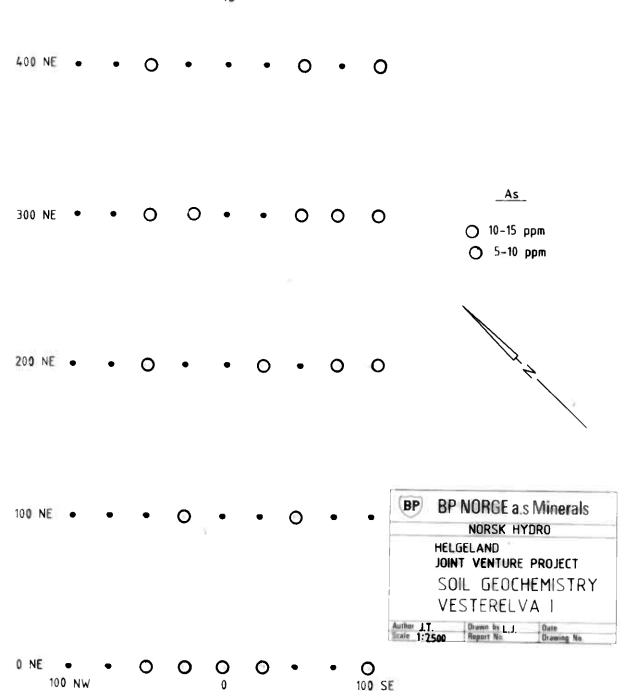
SOIL GEOCHEMISTRY

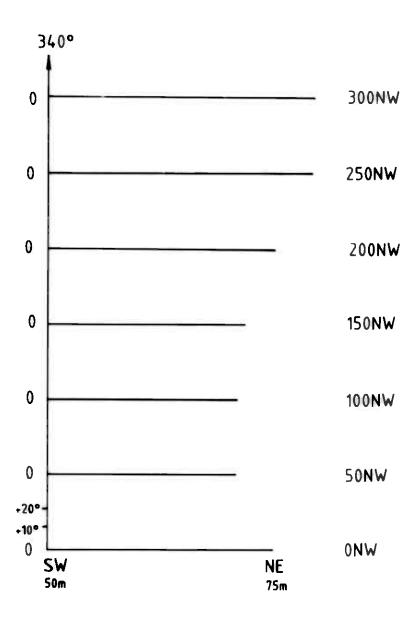
VESTERELVA II

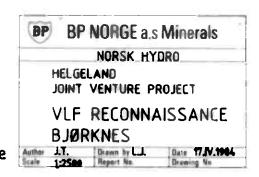
Author J.T. Drawn by L.J. Date
Scale 1:2500 Report No Drawing No.

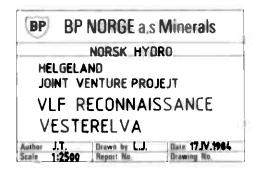

______As ○ >20 ppm ○ 5-10 ppm

E-W

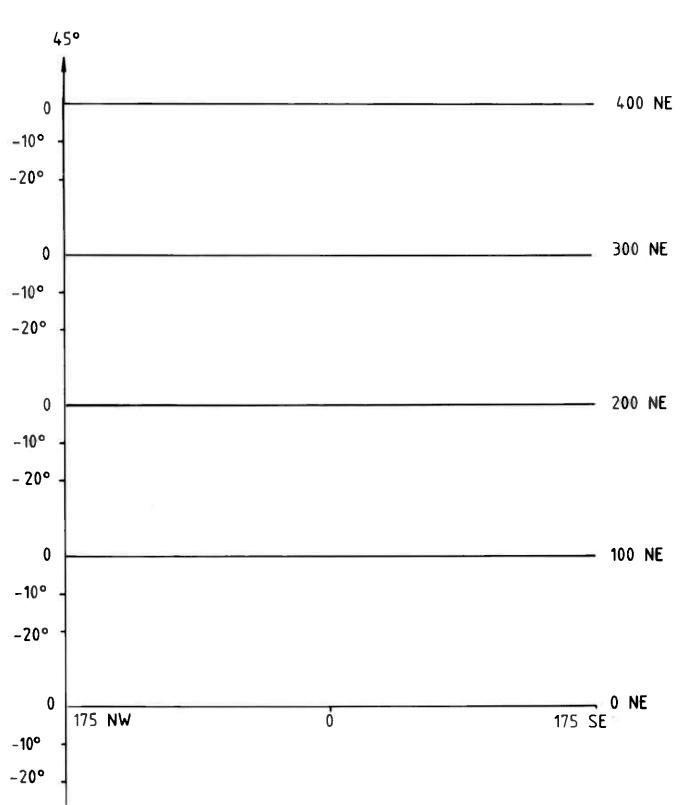

• • • • 300 E

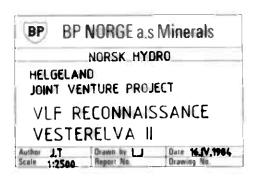

• • O O • • 100 E


50 N 0 0 • • 0 0 E



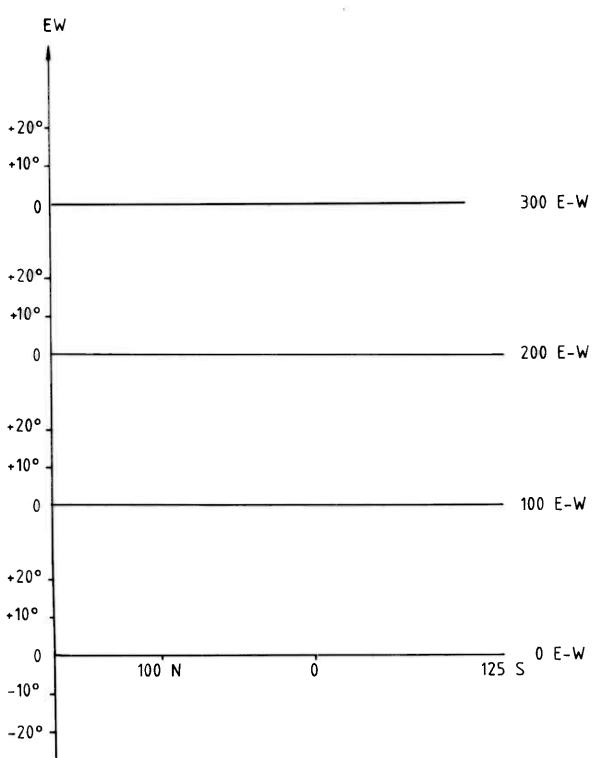
100 SE

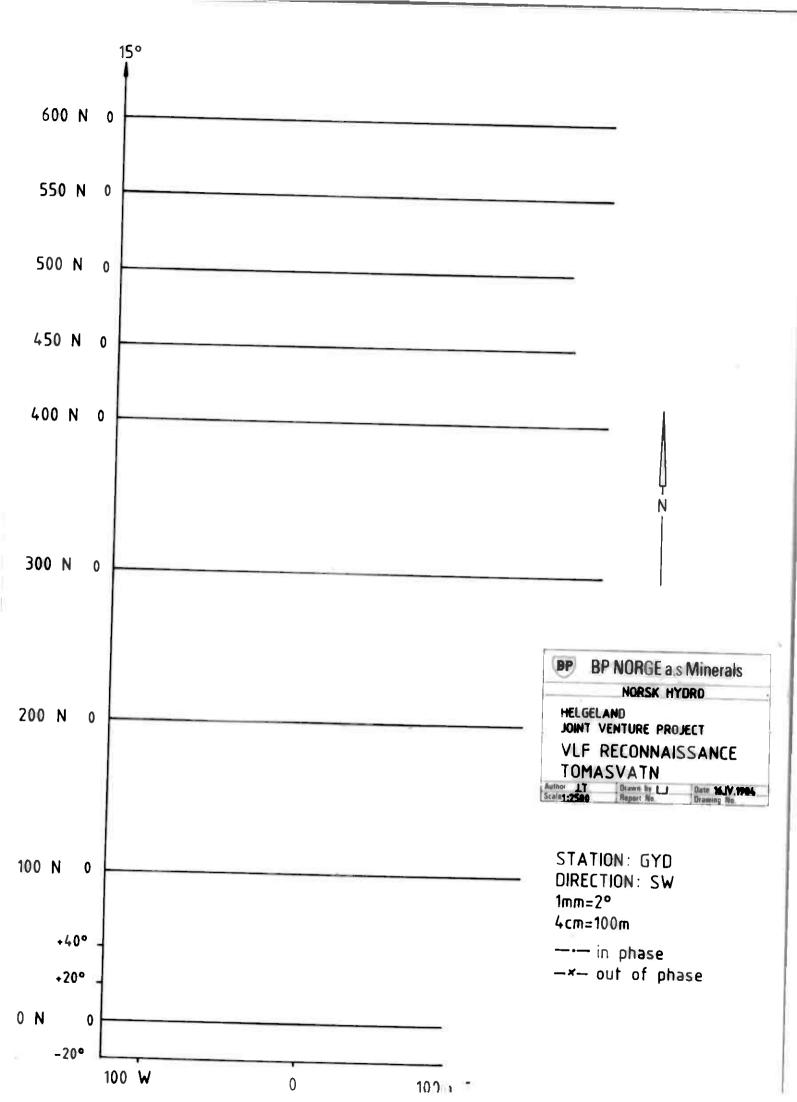




STATION:GYD
DIRECTION:SW

1mm=1°
4cm=100m
...... in phase
x.....x... out of phase




1mm=1° 4cm=100m

STATION: GYD DIRECTION: SW

·—·— in phase

x - x - out of phase

1984 DETAILED FOLLOW UP

27	T	М	711		1	Aerial	Photo	Ī	1	Oko.kart	1
Claim Location		GRANE	1926	III	1			l	DQ	175.5.1	Ī

Claim Name: STABFORSMOEN/ No: 20,171,161

STORMOEN

Follow Up Team: JT/CS

Samples Taken:

Rock Samples: 0300FF2405-2412

Pan Conctr: ./.

Other: ./.

Maps, etc. attached: Geological Scetch Map 1:20.000

Sample Point Location Overlay 1:20.000

(+ Geochem.)

Previous Work / Results:

1982:

Two anomalous stream sediment samples (030018/180435) in the two mainstreams in southern part of the claim.

Stream sediment follow-up. 71 samples were taken of which 24 samples were anomalous. 9 samples gave high range Au values.

1984 Summary:

Geology:

The whole claim is dominated by various kinds of ~10 dgr. striking metasediments (hornblende-biotite-schist, marbles, calc-silicates, quartzites). In the SE part of the claim the whole unit becomes more heterogenous, whereas in the western parts mainly hornblende-biotite-schists have been found. Intensive dyking of pegmatites and granitic dykes of at least two generations have been observed over the entire area. Numerous pegmatites contained disseminations of pyrrhotite and minor amounts of chalcopyrite. (Rock sample 0300FF2409).

Stratabound sulphide mineralization:

Several up to 2m thick calc-silicate horizons with sulphide impregnation (pyrrhotite, chalcopyrite) have been observed at several localitites in the streambed. (See geological map and scetch). Four rock samples have been taken from these horizons (10 dgr/60 dgr W) (0300FF2410/FF2412 and FF 2505-2506).

Structural mineralization: (mylonite zone)

Apart from these concordant to the schistosity laying sulphide-bearing horizons three major fault/shear zones, striking 120 dgr, 10 dgr, and 50 dgr are running through the area. All these structures meet in one triple point (V31100/N69800). All 1983, high Au anomalies (116 to 289 ppb) are located near this

point. In two of the fault/shear zones poor dissemination of sulphides (pyrrhotite, pyrite, chalcopyrite, galena and sphalerite have been observed. (See geological scetch map). These were sampled (FF 2001-2004;2405-2406;2411;). Galena, sphalerite and chalcopyrite occurred only as sparse infillings along cracks and fissures. Whereas pyrrhotite and pyrite were more common. The 120 dgr. striking structure can be followed approximately 8 km to the SE. The western part of the fracture zone with a width up to 15m consists of a calc-silicatic breccia with siderite along crack-fillings. Silification and chloritization took place along contacts. Sulphides have been found at two locations along this 120 dgr striking structure. In the 10 dgr striking structure a mylonite/breccia has been found. Chlorite along shear planes and iron carbonates could be traced along a distance of 200m. Poor disseminations of pyrrhotite, pyrite and chalcopyrite occur in a 3-4m broad zone.

In lower altitudes a network of small mm wide fissures (40 dgr and 120 dgr striking) with chlorite altertion in the quartz-feldspar-biotite schist were observed in the stream bed. Near to pegmatites or sulphide-bearing calculicatic horizons they locally carried sulphides in minor amounts (Rock sample FF2407).

Results:

Two rock samples returned with low level gold anomalies - it seems unlikely that these bedrock sources can account for the widespread, high stream sediment anomalies.

Recommendations:

The whole area has been densely covered by stream sediment samples in 1983. Further follow-up should start with detailed geological mapping in scale 1:5.000, followed by rock sampling/blasting and possibly DOB-sampling at the triple junction.

1984 DETAILED FOLLOW UP

Ī		M 711	1	Aerial Photo		0ko.kart	Ī
Claim Location	1	925 III	1		ļ	DQ 167 II	

Claim Name: TOMASVATN

No: 063

Follow Up Team: AS/MK

Samples Taken:

Rock Samples: 0300MA3401

Pan Conctr: ./. ...

Other: stream sediments (sieved):

0300MA330,1-3307

bank soil:

0300MA3601-3638

Maps, etc. attached: 1:5.000 Sample points

1:5.000 Geology

Previous Work / Results:

1982.

l anomalous sieved sample (050033; 27 ppb Au) duplicate sample (050032 was not anomalous).

1983:

1st follow-up, sieved samples: 7 sieved samples taken of which 1 (MA 7011) contained 1960 ppb Au. 2nd follow-up consisted of:

- a) 3 pan concentrates in which gold was detected in all 3. Following comments from sample forms: MA5101 (263 ppb Au) taken 100m upstream from anomalous sieved sample MA 7011. MA6102 (329ppb Au) taken at anomalous sieved sample MA7011. MA6106 (1000ppb Au) taken 250m upstream from anomalous sieved point MA7011.
- b) Furthermore 2 sieved stream sediment samples were taken: MA6103 as resample of anomalous sample MA7011 and MA6105 at same point as pan concentrate MA6106 (1000ppb). None of these two sieved samples were anomalous.
- c) Also 2 bank/soil samples were taken MA6104 and MA6107. None of these were anomalous.

The 1983 sampling resulted in 1 highly anomalous sieved sample (1908 ppb Au) and 3 pan concentrates (of 3) with detected gold, all in a restricted area of 200-300m. A sieved resample of the anomalous sieved sample (7011=1908ppb Au) was negative.

A sieved sample (MA6106 = 1908ppb Au) was negative.

A sieved sample (MA6105) at same spot as the highest gold value

detected in a pan concentrate (MA6106 = 1000 ppb Au) gave no gold.

The D.O.B. grid sampled during the winter 83/84 returned only low arsenic values. A total of 54 samples were collected of which 4 samples contained more than $10\,\mathrm{ppm}$ As.

1984 Summary:

The valley in which the mainstream (N-S) runs is covered by thick outwash and/or boggy terrain. Outcrops are found on the eastern slope from approx. 390 m a.s.l. and consist of qtz-fsp- mica biotite schists and gneisses. AT 425-450 m a.s.l. in atributary running E-W impure quartzite was found in 2-3m thick zones. At one point a few disseminated sulphides py, po were found (rock sample MA3401). Below 450 m a.s.l. the general strike is 1800 of toliation but changes to 500/700 NW above 450m. No detailed lattow-up of the geology was done as it was more pertinent to try to solve the following two questions.:

a) Is the gold derived from the thick outwash covering the area? In order to try to resolve this 39 bank soil samples were taken.

AND

b) Is the gold in the stream coarse grained? The bad reproductability of sieved samples at the same location and bad correlation between sieved samples and pan concentrates could also indicate this.

In order to check this the sieved fractions from 125-250 microns of the stream sed. samples in the area were sent off for analysis. i.e. samples: 050032-050036 MA7010-MA7014 MA6103 and MA6105 MA3301-MA3303

Recommendations:

All soil samples returned with negative Au values except one (14ppb). Furthermore all the overfractions of 1983 stream sed. samples (-250 microns) returned negative. This indicates a local source for the Au anomalies. However, it is not excluded that the source still could be in the drift. An amphibolite breccia zone exists ~2km east of the anomalous area. It strikes N-S and is extending over several kilometers according to geological maps. This zone needs further attention and ought to be followed up. The metamorphic grade is increasing in this direction as we approach the nappe boundary between Helgeland and Seve-Koli nappes.

1984 DETAILED FOLLOW UP

	l M	711		Aerial	Photo	ŀ	Oko.kart	
Claim Location	DREVJA	1926	IV	1		l	DO 185 I-IV	

Claim Name: BJORKNES EASTERN & No: 117

WESTERN PART

Follow Up Team: JT/MK (E); AS/CS (W)

Samples Taken: Rock Samples: BK 2401-2408 (E)

BK 3404-3411 (W).

Pan Conctr: BK 3502-3505 (W)

BK 2501 (E)

Other:

Maps, etc. attached: Geological scetch map 1:5.000

Sample point overlay 1:5,000

Previous Work / Results:

1982:

EASTERN PART

Stream sed. 180028, 180029.

WESTERN PART

2 anomalous stream sediment samples in eastern part of claim.

1983:

EASTERN PART

Stream sed. BK1006-1010, BK1001-1005, Rock spl. BK1001

WESTERN PART

Stream sed. (sieving) follow-up of 1982 anomalous samples. 10 samples of which 4 gave high range Au values D.O.B. during winter (83/84).

1984 Summary:

EASTERN PART

The reconnaissance and detailed mapping was concentrated along the diorite (gabbro) - carbonate contact. At several sites along the contact evidence for shearing/brecciation was observed accompanied by pyrrhotite (py) disseminations, silicification and granitic netveining. The granitic netveining is always confined to the contact zone marble (calcsilc)/diorite.

WESTERN PART

Carbonates (dolomite-marbles), calculicates and amphibole bearing calculicates with thin carbonate bands and elongated pods are found in the northern part. The contact between the

- intrusive and metasedimentary rocks show only slight alteration where these have been found in direct contact (scarnification-silification). (Dry intrusive? - tectonized contacts?). Pyrrhotite as the only sulphide found was seen in three different settings:
- 1) As centimeter sized aggregates and fracture infill in silicified (hornfelsed?) carbonates close to (no direct contact observed) metasedimentary - intrusive contacts. Large amounts of finer grained pyrrhotite also present. Pyrrhotite in this setting was found at 2 locations. In the eastern part of the Bjorknes area: a) at rock sample position 0300BK3411 where it could be followed for approx. 10m along strike of 100o having a thickness of 1-2m and at b) rock sample point 030BK3404. Approx. 5-6m along strike and a width of 1-2m. The two occurrences in the western part lie along strike of 110 and coincide - roughly along strike with the occurrences in the eastern part. No genetical interpretation will be made here but it should be noted a) that the general strike of foliation/bedding in the metasediments is 100o-120o and thus possibly confining the strongly pyrrhotite bearing mineralization to a specific sedimentary unit b) the metasedimentary intrusive contact has a strike of 1000-1200. two locations in the Western part lie within 50m of this contact and the concentration of pyrrhotite here could be associated with the intrusives.
- 2) Pyrrhotite as mm to cm aggregates and densely disseminated was furthermore found in 1cm to 30cm broad metamorphic reaction contacts (skarnification) between the amphibolite bearing calculicates and the intercalated calcute marble bands and elongated pods.
- 3) Finally, pyrrhotite was common in small amounts, as fine grained disseminations in the calculicatic and amphibolite bearing calcsilicatic rocks.

Recommendations:

EASTERN PART

Provided the reanalysis of Spls. BK 1001-1005 show anomalous levels of Sb and/or Bi. Further follow-up of southern Au-bearing stream.

1984 DETAILED FOLLOW UP

| M 711 | Aerial Photo | Oko.kart | Claim Location | VEVELSTAD 1826 | III | | |

Claim Name: Klausmarkelven No: 173

Follow Up Team: AS/CS

Samples Taken: Rock Samples: 0300KL3401-3454

Pan Conctr: ./.

Other: ./.

Maps, etc. attached:

Previous Work / Results:

1982:

2 stream sediment samples with arsenic-anomalies only!

1983:

During a short reconnaissance trip qtz-veins containing arsenopyrite were found. 5 rock samples were taken of which 3 from 2 localities contained gold in the 200-300 ppb range.

1984 Summary:

An area of approx. 4 km N-S, and 1 km E-W extent was checked in detail along the northern part of Klausmarkelven, in order to determine the extent of the arsenopyrite-bearing qtz-veins found during 1983.

Arsenopyrite was found at 7 localities. The 4 southernmost localities (I-IV) could be followed along a 165 dgr lineament (165/80E fault), the distance between the southernmost and northernmost locality being 1100m. At all these localities the arsenopyrite was clearly associated with qtz-veins ranging in thickness from cm scale to 2m. The arsenopyrite being contained in a mm to 15cm broad contact zone between the qtz veins and the host rock, or to a lesser extent in cracks and small vugs within the qtz veins.

The arsenopyrite bearing qtz veins only outcrop intermittently along the 165 dgr striking lineament with a total exposed length of 125m. To the south of locality IV the lineament runs through areas claimed by competitors and to the north of locality IV no further outcrops of qtz veins were found along the 165 dgr striking lineament.

To the NNE of the northernmost locality along the 165 dgr striking lineament, arsenopyrite was found at three localities (V, VI and VII). At locality VI the arsenopyrite was found in strongly silicified marbles and calculitates in an area of $40 \times 20 \text{m}$. At locality V lying between locality IV and VI the arsenopyrite found was in an up to 3cm thick fracture (no qtz)

striking 20 dgr and being hosted by porphyritic granodiorite. At locality VII arsenopyrite was found in a $40\text{m} \times 50\text{m}$ area in a) 6 fractures (\pm qtz) striking 20-40 dgr, having a width of up to 4 cm, and being hosted by porphyritic granodiorite, b) as up to 1cm large euhedral crystals disseminated in the granodiorite in dm patches over an area of 1 x 4m.

The total distance from the southernmost (Loc I) to the northernmost localities (Loc VII) where arsenopyrite was found is ~1900m with a total outcrop length of 175-200m.

Short geological description

The main part of the Klausmark area is covered by porphyritic granodiorite enclosing a 10m to 500m broad N-S running, metasedimentary band. (mainly marbles with minor calculicates and amphibolites). At the contacts between the porphyritic granodiorite garnet skarn is developed in zones up to 0.5m but it is not certain if these are intrusive skarns. (Possibly fault related skarns). Biotite bearing feldspar porphyry dykes up to 20m broad can be followed over distances of up to 1km, and are seen to cut through both the porphyritic granodiorite and the metasediments. The observed strike often being 160-170 dgr. Faulting along a major plane 165-170 dgr/80 E has been observed to postdate the intrusion of the porphyry dykes (mylonitization and brecciation at Loc III). Between localities I and IV the faulting and mylonitization is (syn)postdated by emplacement of qtz veins with, in places, associated arsenopyrite at margins, and to a lesser degree in fractures and vugs in the qtz veins. The arsenopyrite bearing qtz veins have been observed to be hosted by all three above mentioned rock types.

Three minor directions of faulting have also been observed in the area: a)20-30 dgr/80E-80W b)165/10-20 dgr E c)60-80 dgr/60-80 dgr S. Qtz veining has been observed in the first two of these directions and the 20-30 dgr/80dgr E-80dgr W direction hosts arsenopyrite at localities V and VII often without associated qtz. The fault direction 60-80o/60-80oS appears to be youngest and is seen offsetting the qtz vein at Loc. III. In the area to the north of locality III along the bottom of the Klausmarkelva valley rusty staining along fractures and joints with all above mentioned directions is common.

A tentative chronological outline is given below

1) Deposition of metasediments

2) (?Deformation - metamorphism??)

3) Intrusion of porphyritic granodiorite, possibly with shearing along 1650 striking plane causing strong orientation of phenocrysts.

4) Intrusion of biotite bearing feldspar porphyry dykes. Often

along 160o-170o strike.

5a) Faulting along major 165-1700/800E plane(s) and minor 20-300/80E-800W, 165/10-200E, 60-800/60-800S planes.

5b) Emplacement of qtz veins with slightly younger arsenopyrite introduction.

5c) Continued minor faulting along 60-800/60-800S planes.

Recommendations:

Further follow up of N-S running structures in the area especially towards the gabbroic body to the west. Also reconnaissance in marble belts to the north east is recommended. Blasting along the major apy-Au-bearing fault zone could result in that pervasive alteration and richer Au-apy mineralization is observed. (1984 rock samples returned with max 1.04ppm Au)

ANALYTICAL RESULTS:

KL 3401	SA.	NO.	LOC. NO.	PPB AU	PPM AS	PPM SB	IA.	PPM BI
3404 3405 3406 3407 3408 3407 3408 3408 3409 3409 3410 3411 3411 3411 3411 3412 3412 3413 3414 3416 3416 3416 3417 3418 3417 3418 3419 3420 3420 3421 3421 3422 3423 3423 3424 3424 3428 3427 3428 3428 3429 3429 3430 3431 3433 3431 3434 3435 3434 3435 3434 3436 3437 3438 3434 3437 3438 3434 3437 3438 3434 3449 3459 3450 3477 3478 3478 3478 3478 3478 3478 3478	KL			/		0	, ğ	0
3404 3405 3406 3407 3406 3407 3408 3408 3409 3409 3410 3411 3411 3411 3411 3412 3412 3413 3414 3415 3416 3416 3417 3418 3417 3418 3419 3420 3420 3421 3421 3422 3423 3423 3424 3424 3425 3427 3428 3427 3428 3428 3429 3429 3430 3431 3433 3431 3434 3435 3434 3436 3437 3438 3434 3437 3438 3434 3435 3434 3436 3437 3438 3434 3437 3438 3434 3444 3447 3448 3449 3440 3441 3442 3443 3444 3444 3444 3444 3444								5
3405 III				/				
3406 3407	ii.			//				
34-07 34-08 34-09 34-109 34-109 34-11 34-12 34-12 34-13 34-14 34-15 34-16 34-16 34-17 34-18 34-18 34-18 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-19 34-20 VI 160 104-47 160 104-48 1			111					
3408				/				
3409				,				
3410				/				0
3411 III				/				0
3412			III	130				
3413								
3414				- /				0
3415		3414		1				ŏ
3417 3418 3419 3419 3420 VI 3420 VI 350 22254 6 19 3421 VI 350 22254 6 19 3422 7 331 0 0 0 3423 VI 150 20163 6 23 3424 VI 400 18359 14 12 3425 7 180 0 0 0 3426 VI 720 64125 0 77 3427 VI 100 9058 0 10 3428 3429 7 46 0 0 3430 7 120 0 0 3431 7 3431 7 3438 7 3434 7 3438 7 3436 7 3438 7 3438 7 3438 7 3438 7 3438 7 3438 7 3438 7 3444 7 3448 7 3444 7 3448 7 3444 7 3448 7 3444 7 3448 7 3444 7 3446 7 3447 7 3448 7 3446 7 3447 7 3448 7 3446 7 3447 7 3448 7 3446 7 3447 7 3448 7 3448 7 3448 7 3449 7 3448 7 3449 7 3448 7 3450 7 3460 7 347192 7 3443	_			/	90	0		
3418 3419 3420 VI 3420 VI 3421 VI 350 22254 6 19 3422 / 331 0 0 3423 VI 150 20163 6 23 3424 VI 400 18359 14 12 3425 / 180 0 0 0 3426 VI 720 64125 0 77 3427 VI 100 9058 0 10 3428 / 46 0 0 3429 / 46 0 0 3431 / 3430 / 120 0 0 3431 / 3433 / 3434 / 343 / 3433 / 3435 / 3434 / 3436 / 3436 / 3437 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•	/		0 =		0
3418 3419 3420 VI 3420 VI 3421 VI 350 22254 6 19 3422 / 331 0 0 3423 VI 150 20163 6 23 3424 VI 400 18359 14 12 3425 / 180 0 0 0 3426 VI 720 64125 0 77 3427 VI 100 9058 0 10 3428 / 46 0 0 3429 / 46 0 0 3431 / 3430 / 120 0 0 3431 / 3433 / 3434 / 343 / 3433 / 3435 / 3434 / 3436 / 3436 / 3437 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				/		0		0
3420 VI 350 22254 6 19 3421 VI 350 22254 6 19 3422				/				0
3421 VI 350 22254 6 19 3422			***	,				0
3422						9		5
3423 VI			VΙ				18	
3424 VI 400 18359 14 12 3425			777					
3425								
3426 VI 720 64125 0 77 3427 VI 100 9058 0 10 3428			• •					
3427 VI 100 9058 0 10 3428			VI					
3428 3429								
3429 3430 3431 3431 3432 3433 3433 3434 3435 3434 3435 3436 3436		3428						
3430 3431				/				
3432				/	120	0		
■ 3433				/		0		0
■ 3434				/				
3435				/				0
3436 / 5 0 0 3437 / 0 0 19 3438 / 6 0 0 3439 / 6 0 0 3440 / 6 0 0 3441 / 0 0 0 3442 / 265 0 0 3443 VII 88 7559 7 9 3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 0 3451 / 912 0 0 3453 VII 42 15336 8 30 3453 VII 153 47192				/				
3437 / 0 0 19 3438 / 6 0 0 3439 / 6 0 0 3440 / 6 0 0 3441 / 0 0 0 3442 / 265 0 0 3443 VII 88 7559 7 9 3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 15 0 10 3448 / 15 0 10 3449 / 6 0 0 3450 VII 13 0 0 0 3451 / 912 0 0 3453 VII 153 47192 54 43				,				
3441 / 265 0 0 3442 / 265 0 0 3443 VII 88 7559 7 9 3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 3451 / 912 0 0 3452 VII 42 15336 8 30 3453 VIII 153 47192 54 43				<i>?</i> □ /	5			
3441 / 265 0 0 3442 / 265 0 0 3443 VII 88 7559 7 9 3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 3451 / 912 0 0 3452 VII 42 15336 8 30 3453 VIII 153 47192 54 43				/	C			
3441 / 265 0 0 3442 / 265 0 0 3443 VII 88 7559 7 9 3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 3451 / 912 0 0 3452 VII 42 15336 8 30 3453 VIII 153 47192 54 43				,	6			
3441 / 265 0 0 3442 / 265 0 0 3443 VII 88 7559 7 9 3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 3451 / 912 0 0 3452 VII 42 15336 8 30 3453 VIII 153 47192 54 43				6 '	6			0
3442 / 265 0 0 3443 VII 88 7559 7 9 3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 0 3451 / 912 0 0 3452 VII 42 15336 8 30 3453 VII 153 47192 54 43		3441		,	0		6	0
3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 0 3451 / 912 0 0 3452 VII 42 15336 8 30 3453 VII 153 47192 54 43				/	265			ŏ
3444 VII 148 11225 0 14 3445 VII 25 47 0 97 3446 / 24 0 14 3447 / 15 0 10 3448 / 12 3 0 3449 / 6 0 0 3450 VII 13 0 0 0 3451 / 912 0 0 3452 VII 42 15336 8 30 3453 VII 153 47192 54 43				88	7559			9
3445 VII 25 47 0 97 3446						0		14
3447			VII	25		0		
3448				/				
3449				/	15			
3450 VII 13 0 0 0 0 3451 7 912 0 0 0 3452 VII 42 15336 8 30 3453 VII 153 47192 54 43				/	12			0
3451			77T T	/	6			0
3452 VII 42 15336 8 30 3453 VII 153 47192 54 43			A T T					0
3453 VII 153 47192 54 43			VTT					
2.2								

1984 DETAILED FOLLOW UP

	M 711	Aerial Photo	I	Oko.kart
Claim Location	1926/4,DREVJA	B016		DP 185 IV

Claim Name: MJAVATNET No: 141

Follow Up Team: AS/CS

Samples Taken: Rock Samples: 0300MJ3401-3408

Pan Conctr: 0300MJ3502-3509

Other: ./.

Maps, etc. attached: a) Geological Scetch Map 1:5.000 b) Sample Point Overlay 1:5.000

(+ Geochem.)

Previous Work / Results:

1982:

l anomalous sample (69ppb Au) 180272, at bottom of drainage system.

1983:

Stream sediment sampling (sieving) of drainage system. 28 samples of which 7 contained gold. 1 high-range, 4 med-range and 2 low-range.

1984 Summary:

Garnet-hornblende-mica schists and gneisses with varying amounts of qtz-fsp dominate the entire area covered by the drainage system. In the two southern tributaries impure quartzite containing small (mm-sized) aggregates of mica and in few places disseminated pyrrhotite, could be followed for up to 300 m in the stream beds. A major fault/shear zone striking 30 dgr. runs through the area. From aerial photos this fault zone can be followed for approx. 10 km to the north and 15 km to the south. The southward projection of the fault zone runs along the western margin of the Reinfjellet granite. In the Mjavatnet area the fault separates a western schist/gneiss area characterized by strongly developed foliation parallel to the main fault directon and tight isoclinal folding (fold axis parallel to main fault) from an eastern gneiss/schist area characterized by irregular open folding. The impure quartzites found in the two southern tributaries over 300m were not found in the main stream 400m to the north and it is believed that the above mentioned fault "cuts off" the quartzites.

At 350 m.a.s.l. in the southern tributary a facture zone up to 1.5m broad could be followed for 30m along a strike of 100 dgr. Within the fracture zone thin (iron?) carbonate infilled fractures and a few zones up to 20cm thick of silicified breccia with minor amounts of pyrrhotite were observed. The fracture zone is not in itself "spectacular" but it should be noted that linear features (faults) with a strike of 90 and 110 dgr. can be traced on the aerial photos. These fault directions are parallel to the fault directions seen further to the south in the Fellingfors, Stabforsmoen, Vesterelva and Rauvatn areas where there are good indications that these may be of importance as Locii for As/Au mineralization.

Conclusion:

Apart from the above mentioned fracture zone and the pyrrhotite bearing impure quartzite no sulphide bearing rocks were observed in situ. It is doubtful whether any further visual inspection of the area, at present, would result in giving a reasonable explanation for the gold detected in the sieved sediment samples.

After the follow-up on the Mjavatnet area had been done we were visited by Stan Hoffmann who introduced us to a number of possible geochemical methods which could be applied as a follow-up to the stream sediment sampling.

Soil or bank sampling could be considered in the area - especially above sample point MJ4009 (652 ppb gold) as only a fairly small area would need to be covered. For the rest of the area bank soil sampling would have to be fairly extensive as the anomalous points are scattered over a large area. Before engaging in such a programme it is suggested that bank sampling is done in the Strauman claim 3 km to the north where the stream sediment samples show a considereably tighter pattern. Results from this area could be applied to the Mjavatn area.

Recommendations:

Bank/soil sampling above anomalous point MJ4009 (652 ppb Au)

Results:

MJ 3401 = 90 ppb Au, 21 ppm Bi

MJ 3500 = 90 ppb Au

MJ 3507 = 93 ppb Au

MJ 3508 = 93 ppb Au

MJ 3509 = 117 ppb Au

1984 DETAILED FOLLOW UP

	T	М	711	Aerial	Photo	1	Oko.kart	
Claim Location	-	1825	IV	 		1	DJ 170.5.2	
	1					1	DK 170.5.1	

Claim Name: VASBOTN No: 169

Follow Up Team: CS/MK

Samples Taken: Rock Samples: N03401-3412

Pan Conctr: N09501-9502

Other:Soil spl N09601-9609 Stream sed: N09301-9310

Maps, etc. attached: Geology 1:5.000

Sample points + geochem 1:5.000

Vertical profile of Au anomalous stream

Previous Work / Results:

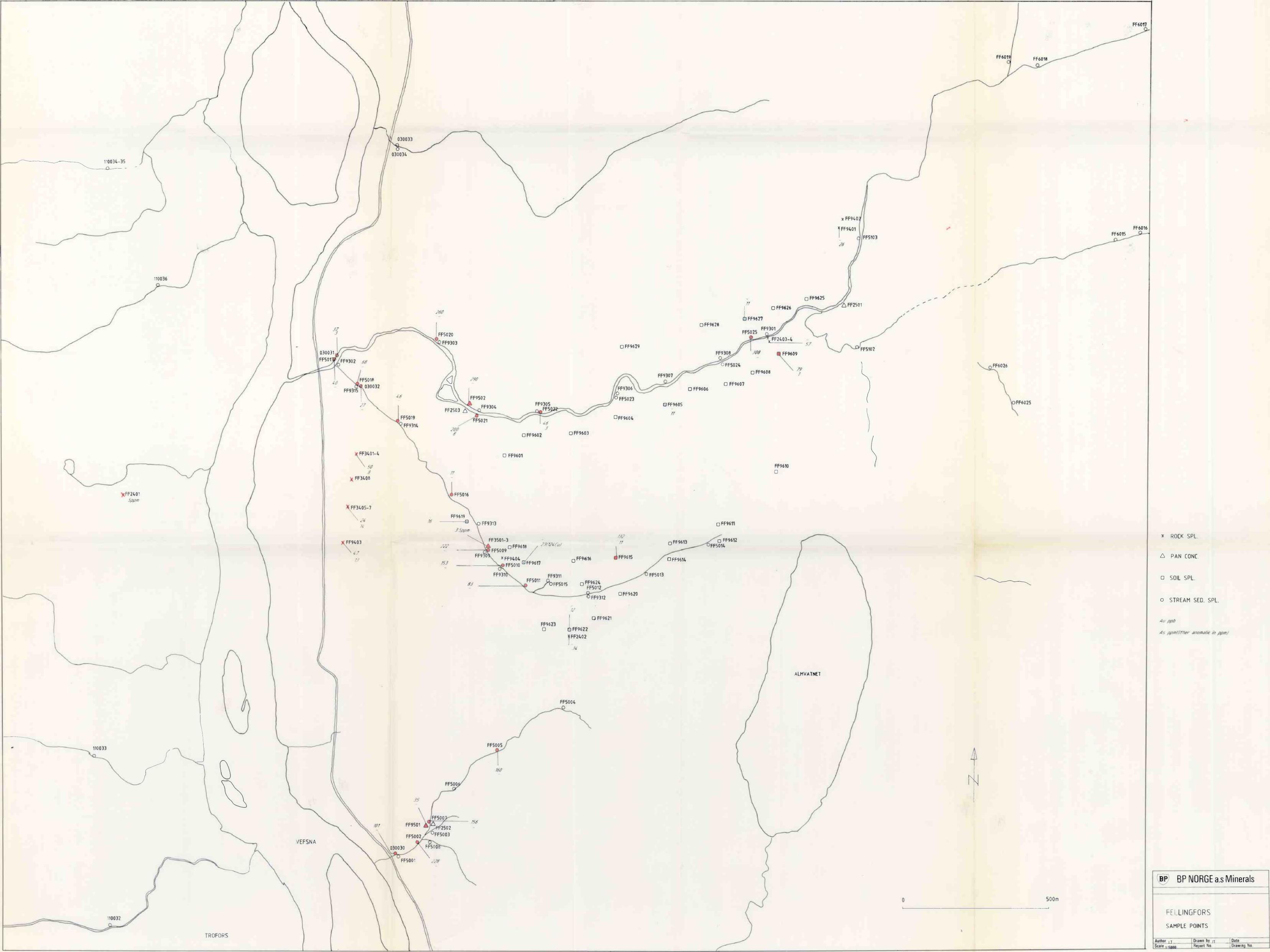
1982:

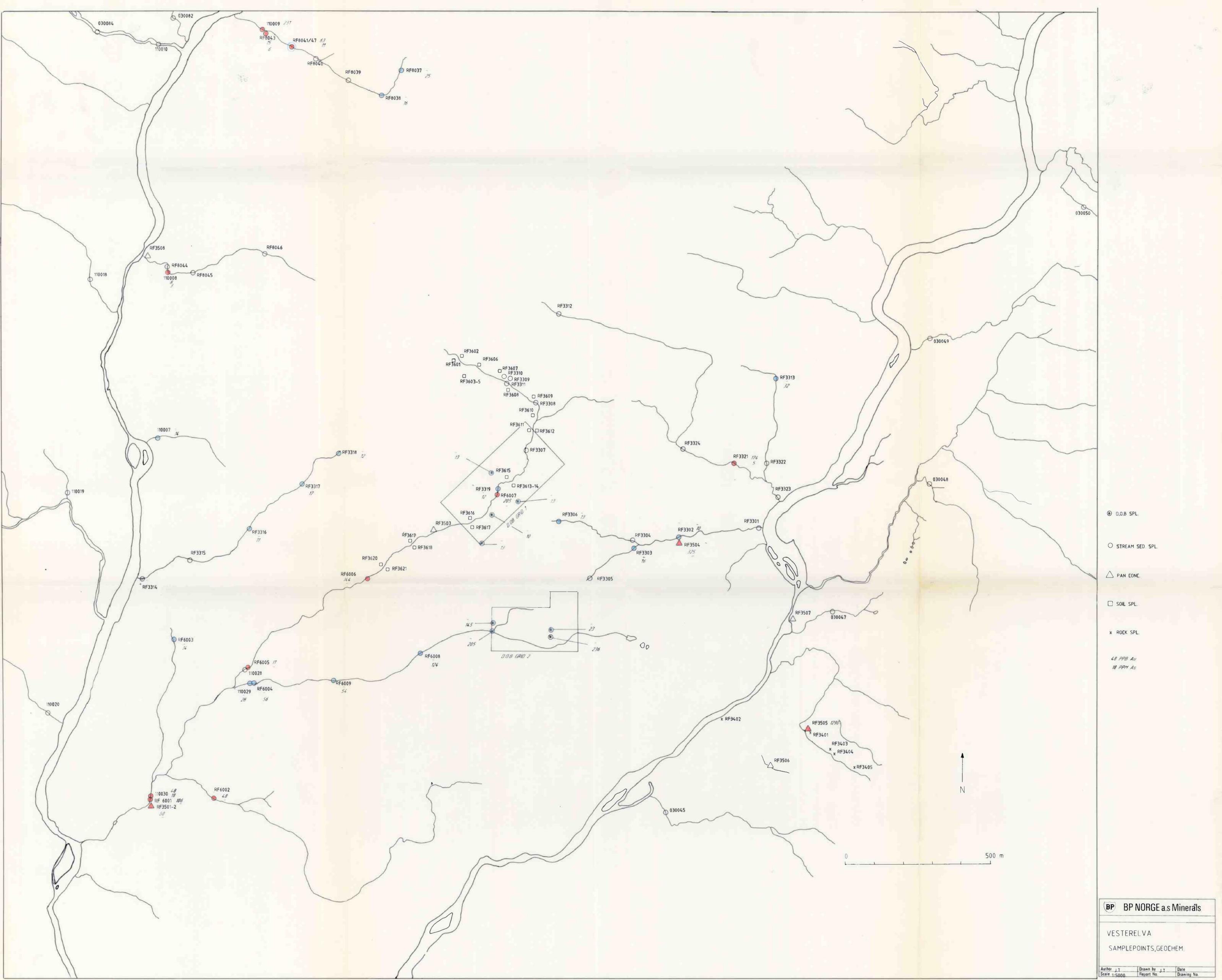
Stream sed. spl. 040059-65. No spl. were anomalous.

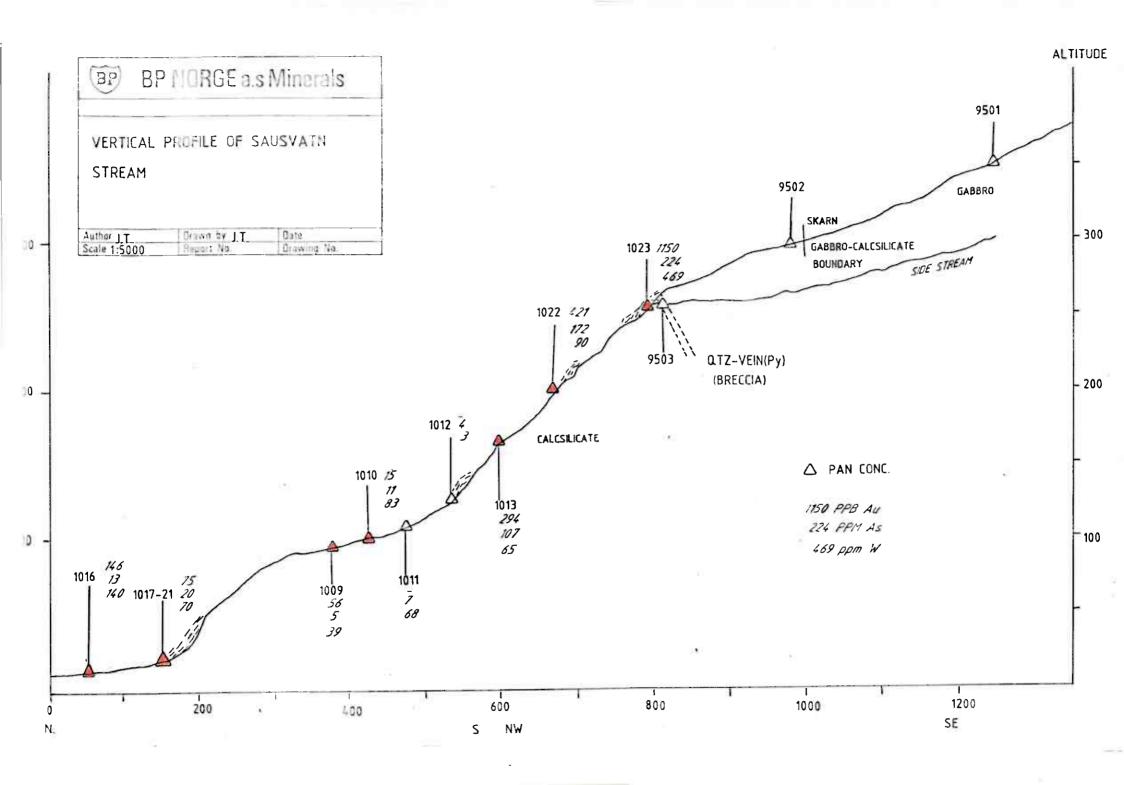
1983 .

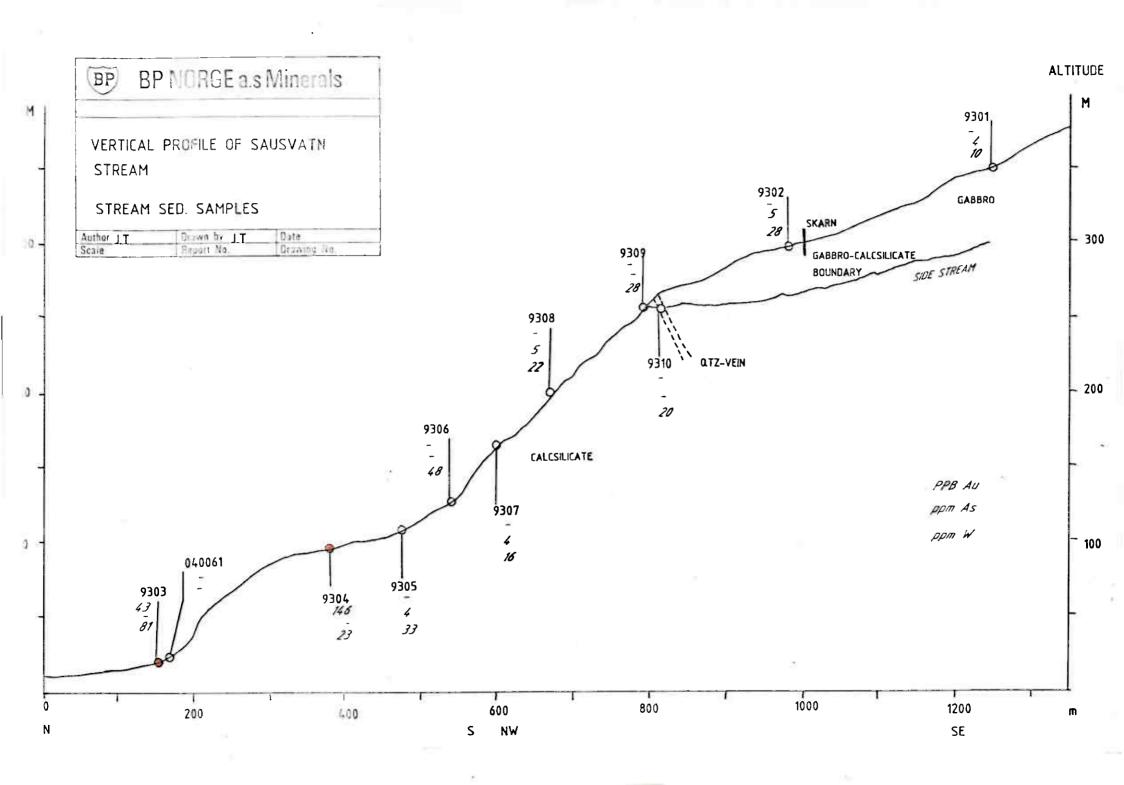
Pan conc. N01007-1024,1032,1033,1037 (8 spl. anomalous. Cluster of 7 anomalies in one stream) See spl point overlay. Rock spl. from qtz-apy breccia (10cm wide) in 40 dgr. shear zone contained 800 ppb Au.

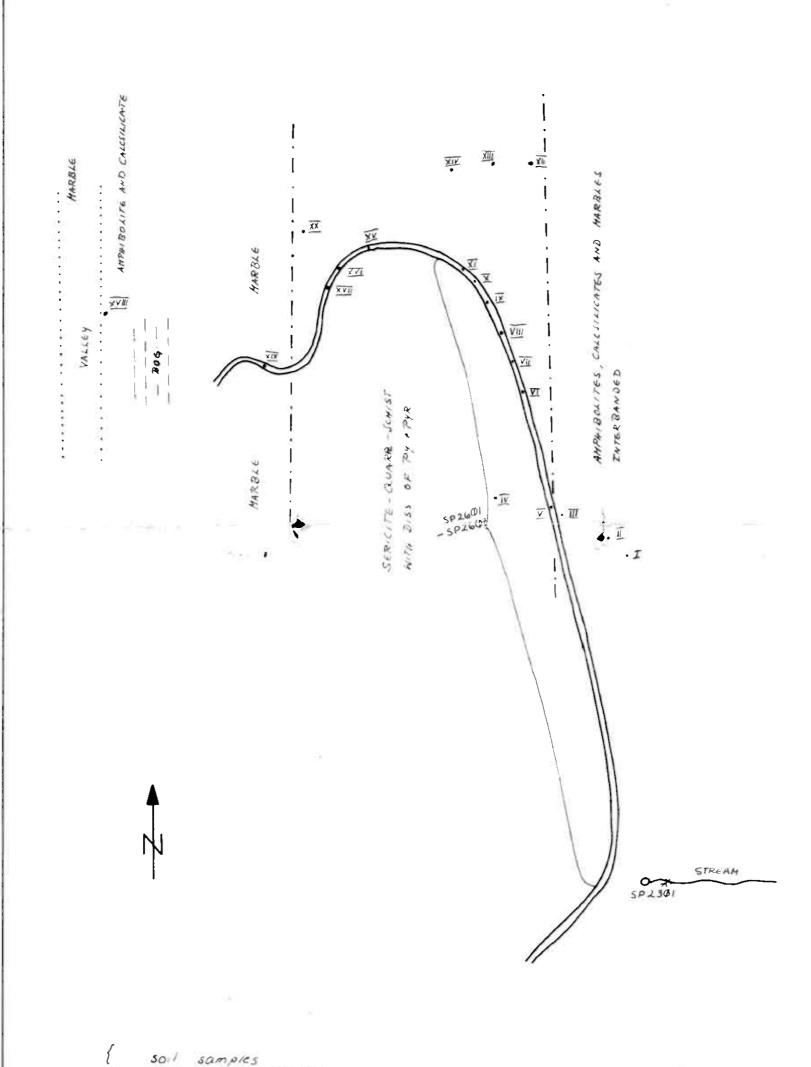
1984 Summary:

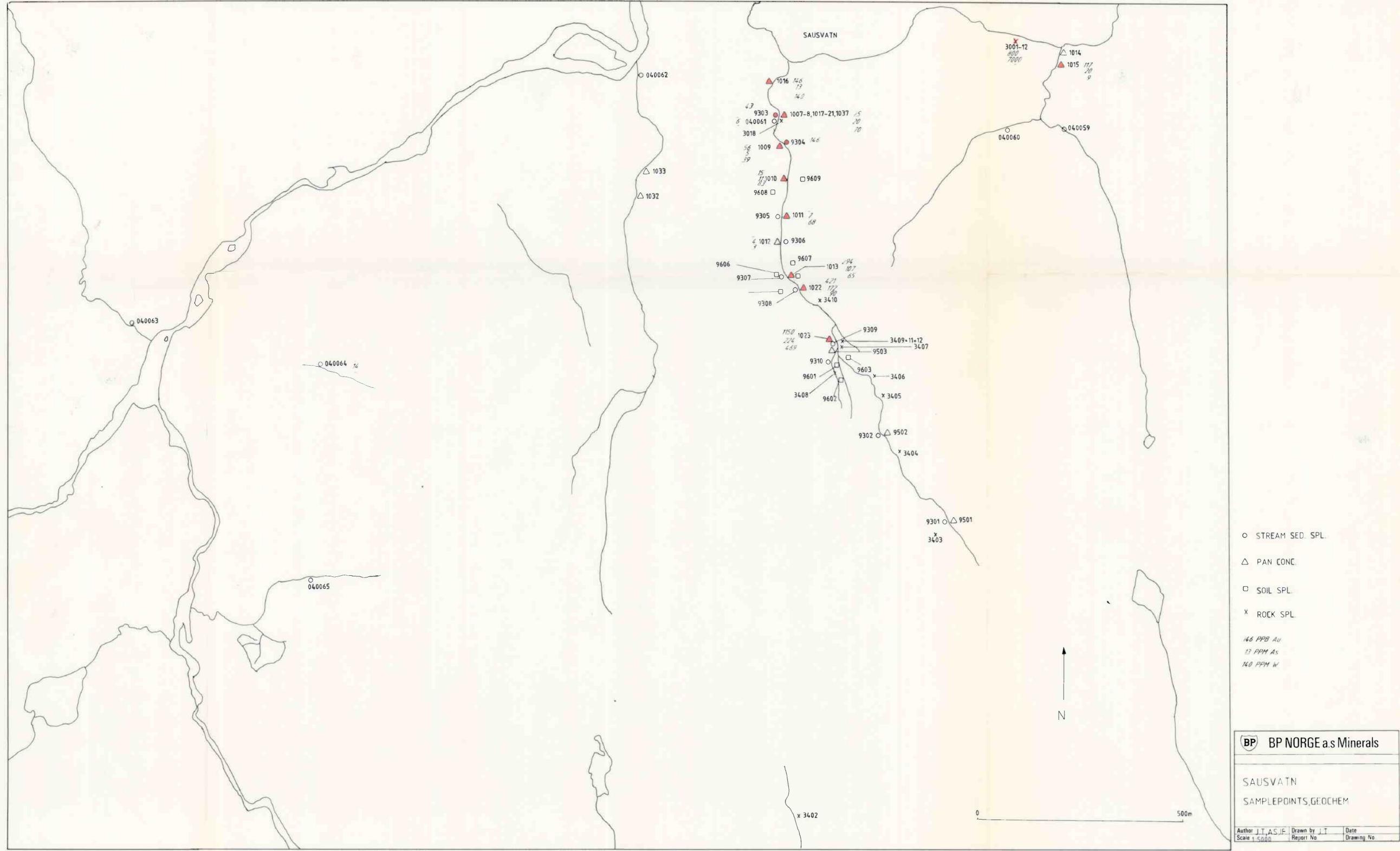

Further panning above last 1983 anomaly (1150 ppb) + soil sampling on both sides of stream. Rock spl. were taken from fractured qtz-vein containing chlorite and pyrite (30cm wide). The qtz-vein strikes 30 dgr. and cuts the stream directly above last 1983 anomaly. Rock spl. also taken from skarned contact (gabbro-calc silicates): The anomalous stream drains a sequence of metasediments consisting of a basic (gabbroic clasts), conglomerate, marbles, calc silicates and biotite-garnet schists. The calc silicates are locally pyrr, py rich. These bend around a metagabbro body which has caused skarning in dm-scale. A major lineament defines the boundary between biotite-garnet gneiss and marble. Close to this contact serpentinite bodies occur.

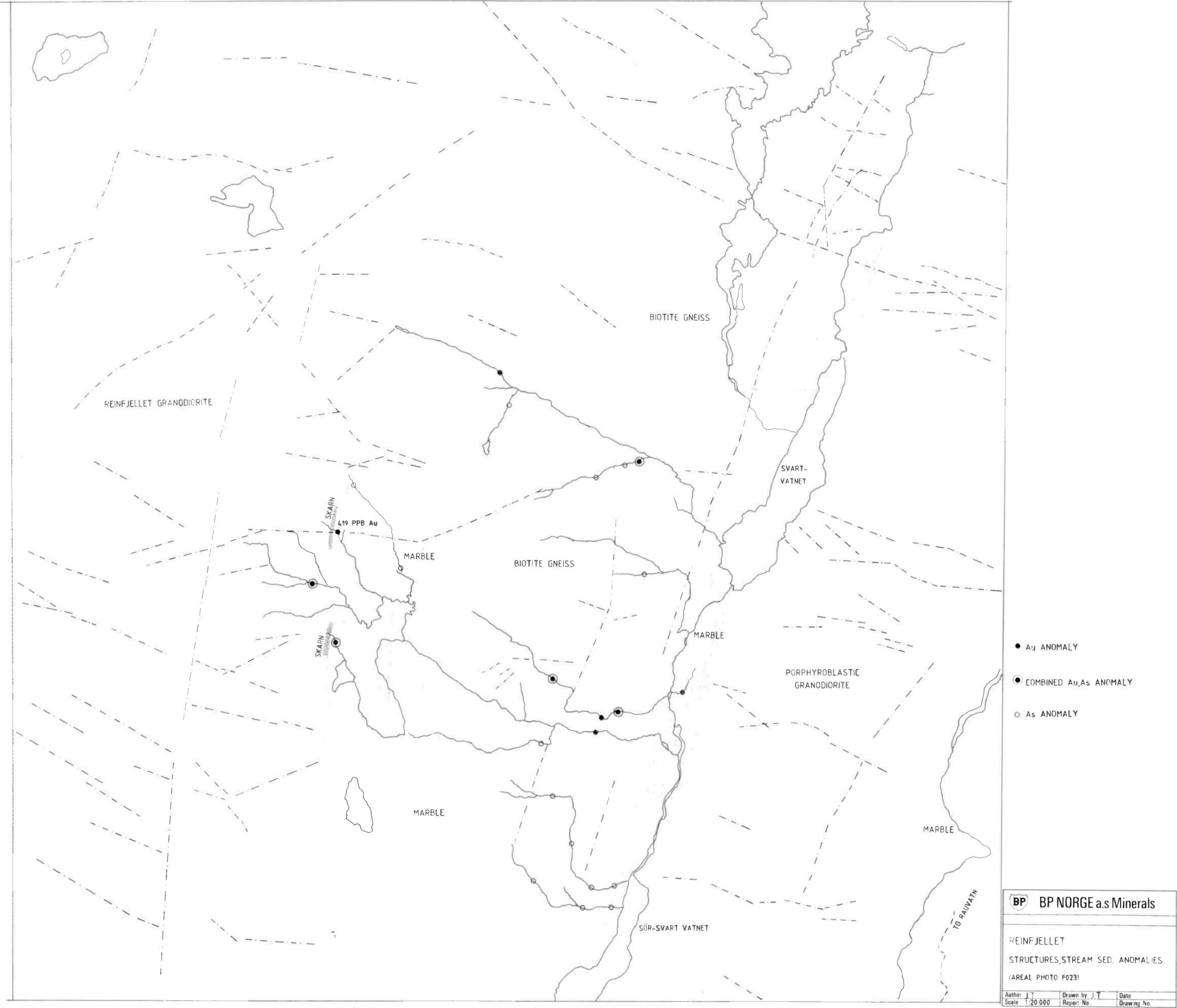

Stream sed. samples were taken as resamples of 1983 pan. conc. anomalies in order to compare the two methods (see vertical profile). The result from this indicate that pan conc. has a better reproduceability than sieved samples, especially when the sediment is coarse at high slope angles. Consequently the sieving method detects Au in flat areas with predominantly fine-grained material, but is missing out Au at increasing slope angle.

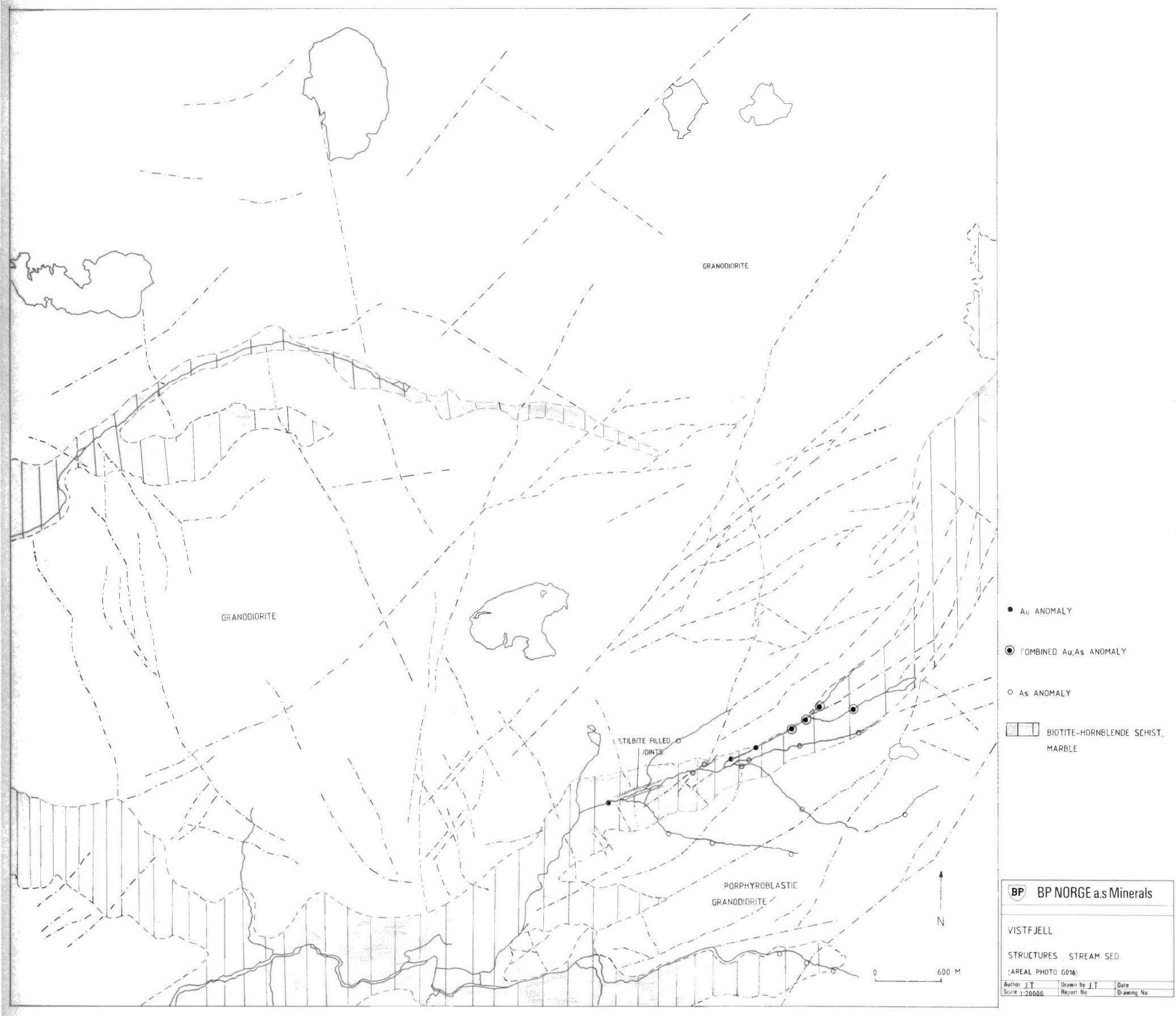

Recommendations:

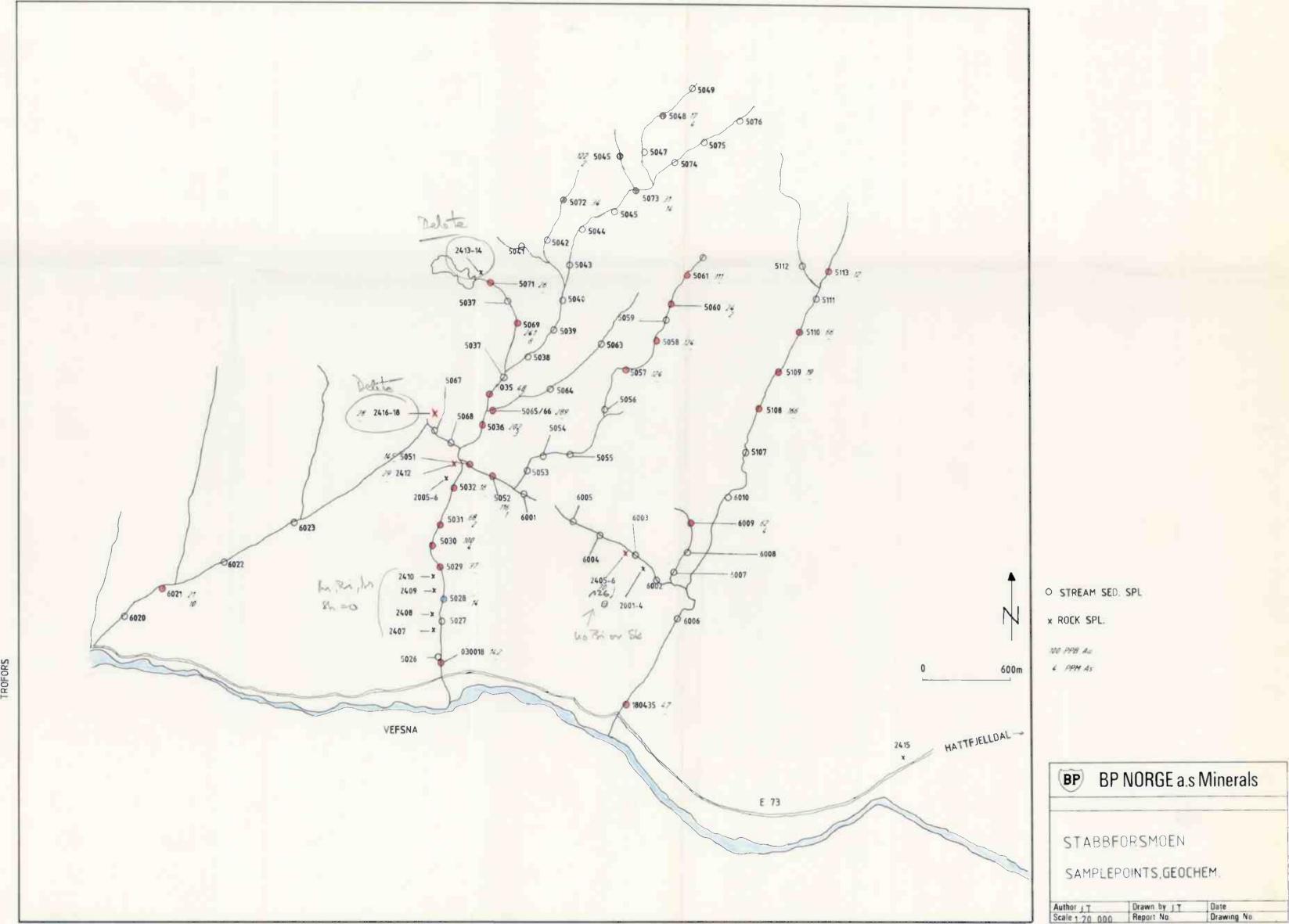

Fracture zone defined by sulphide bearing qtz-vein considered likely source for Au. No further work recommended as target is too small.

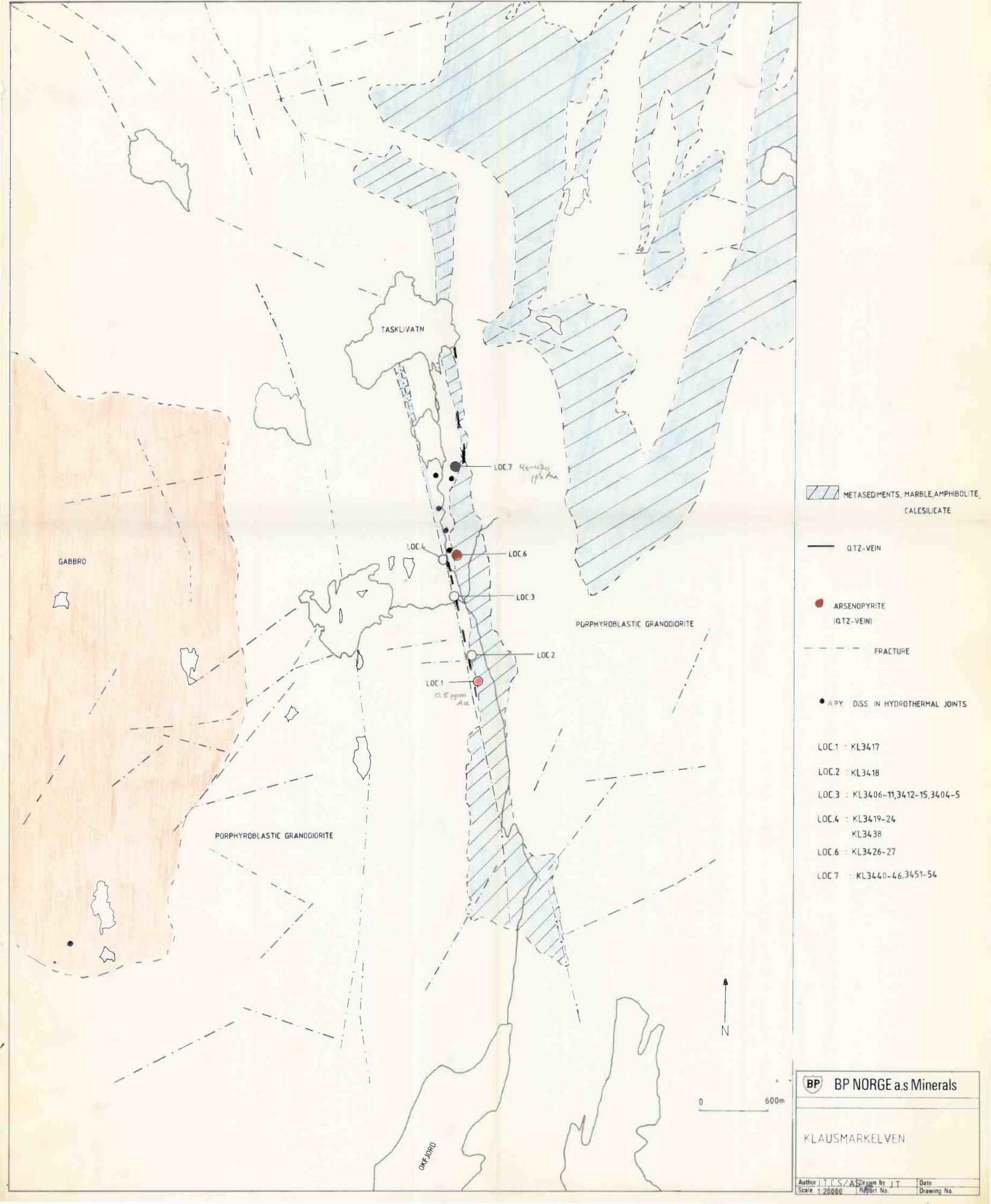


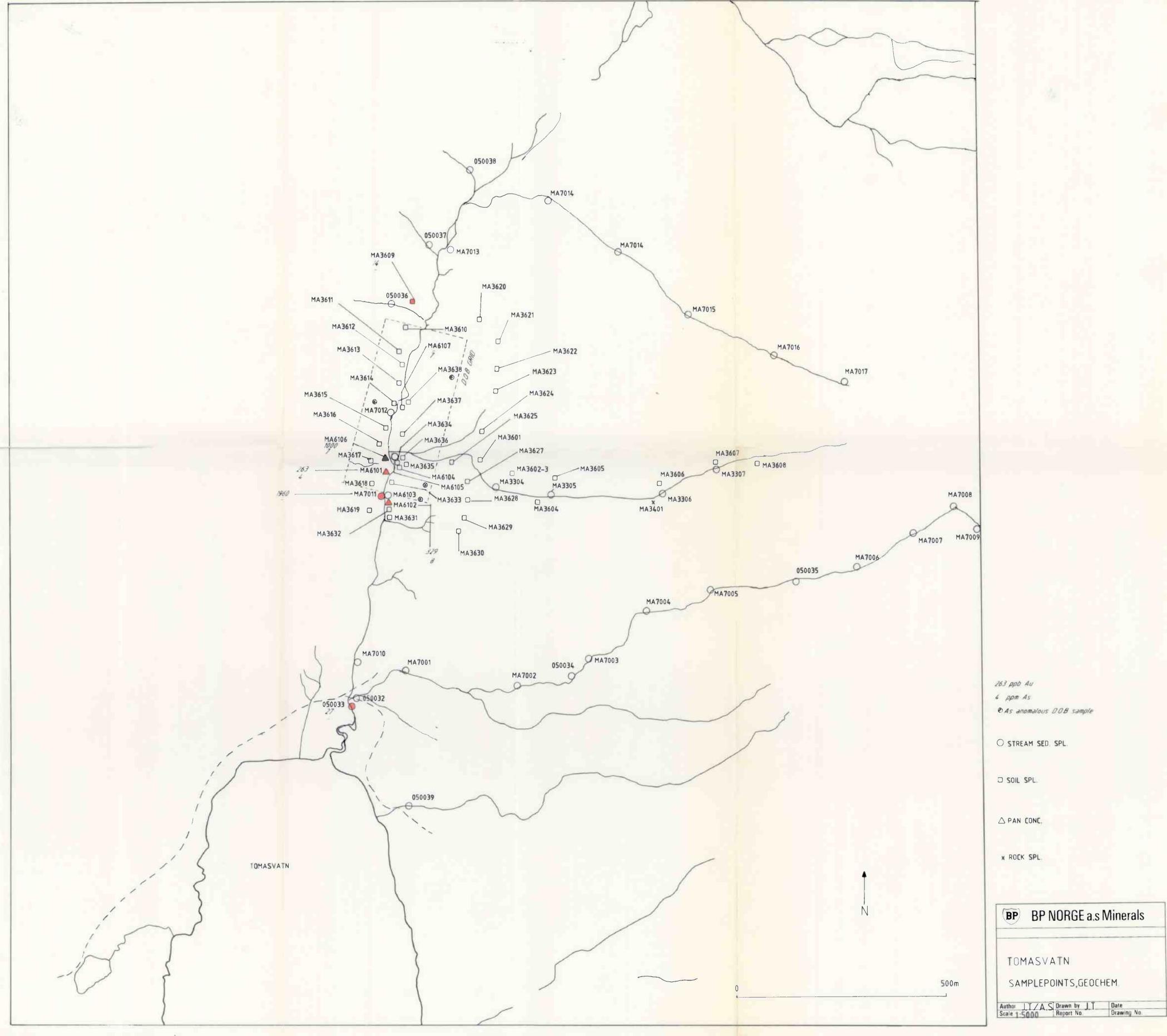


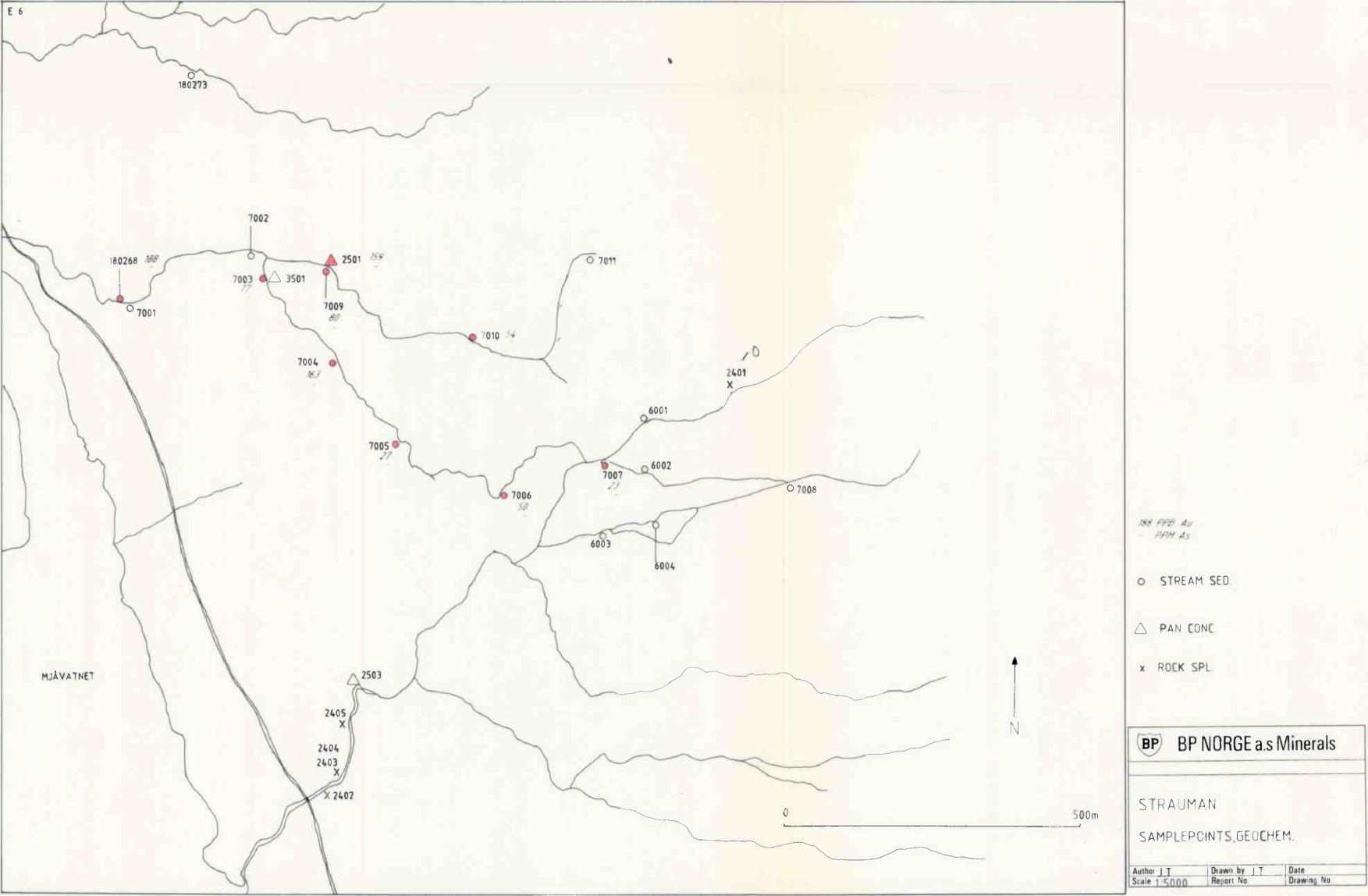


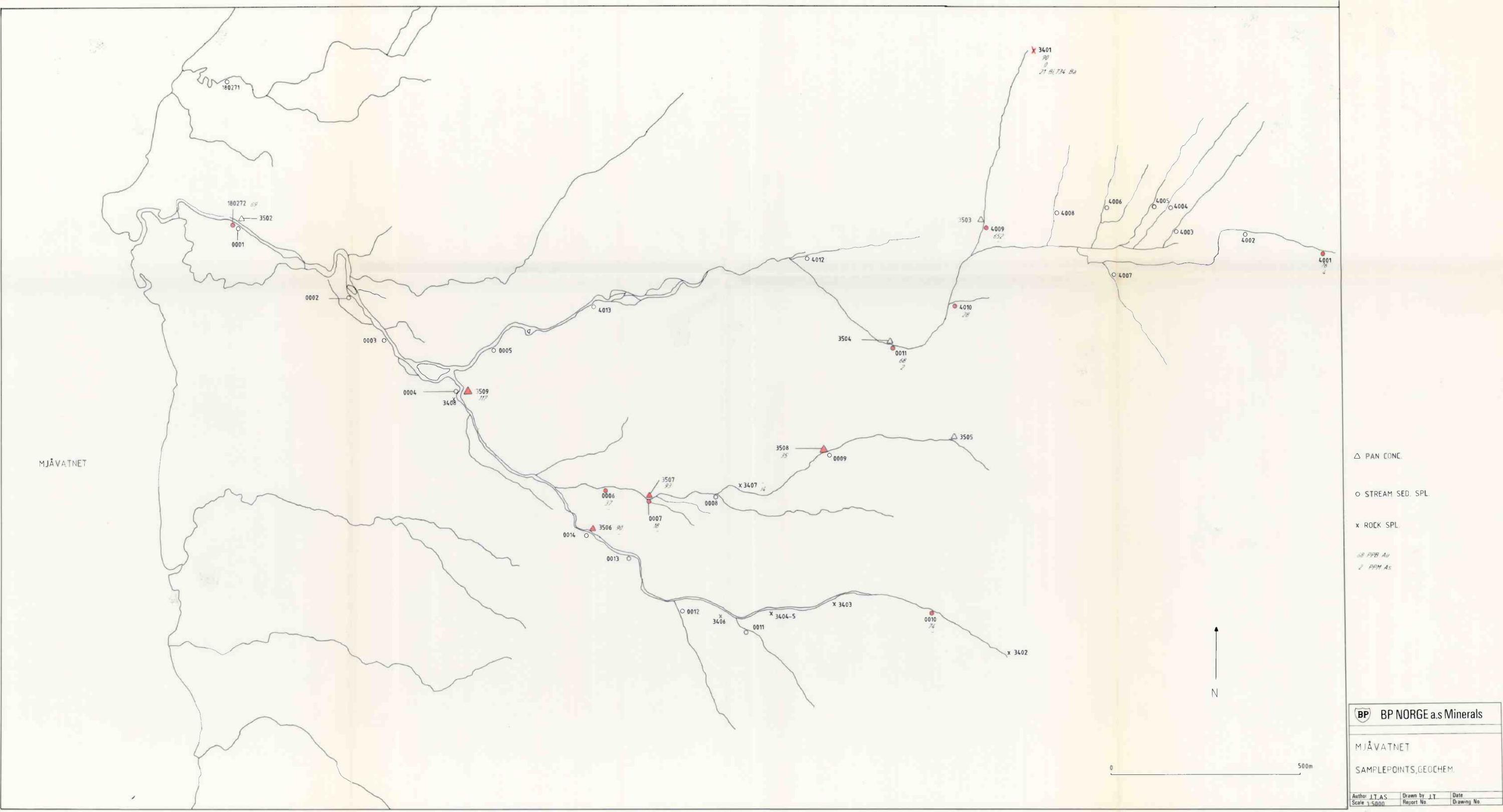


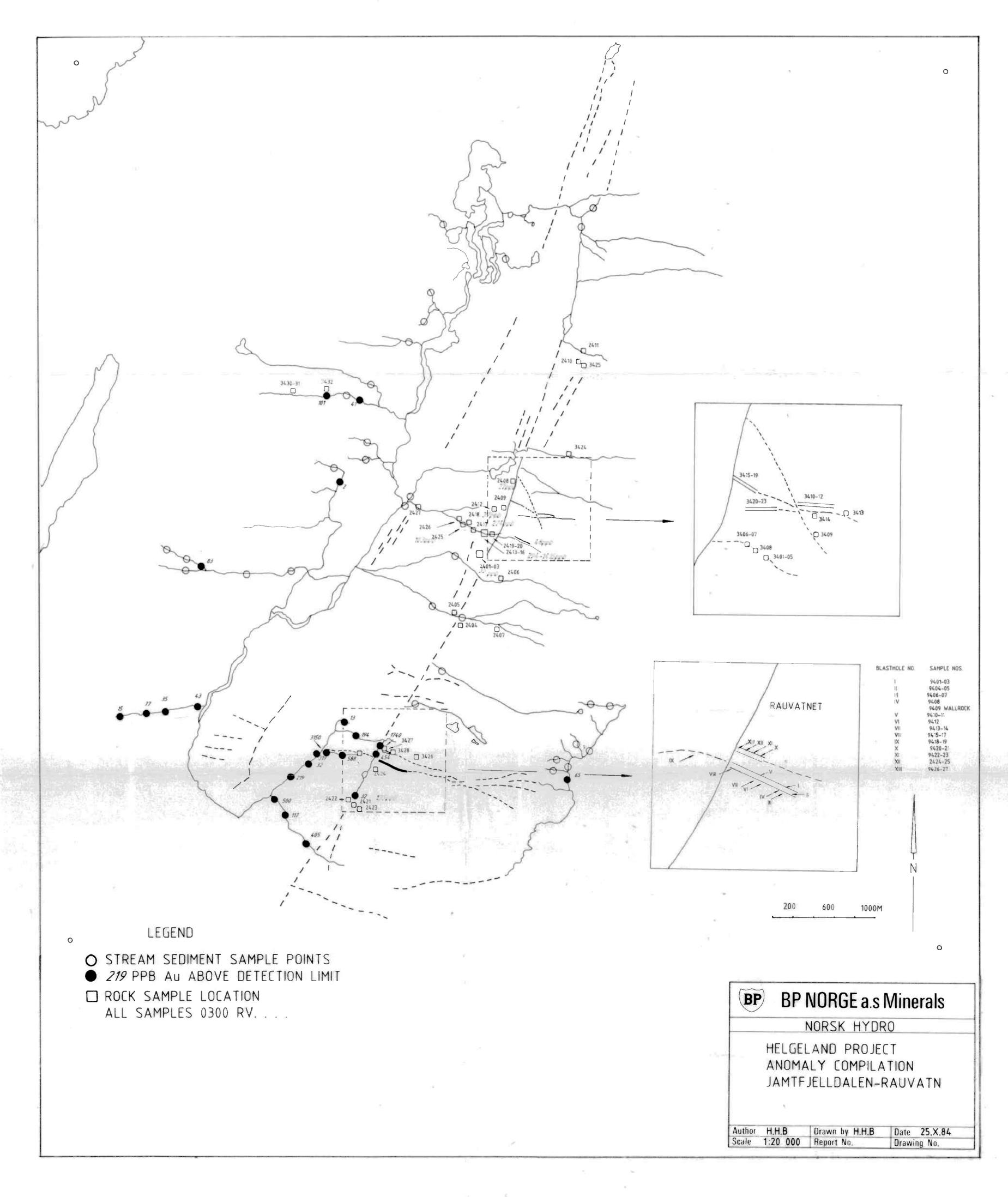


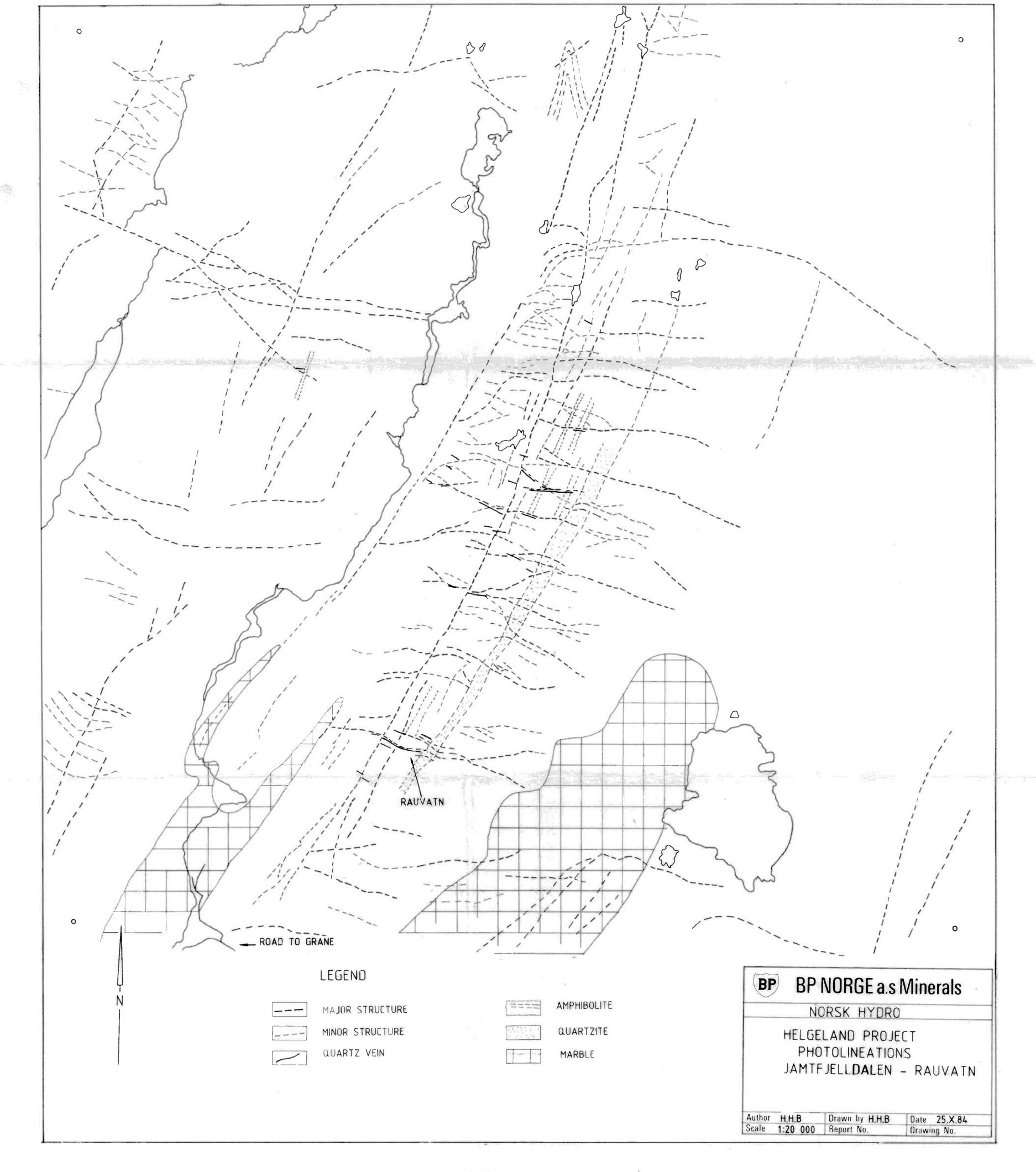












RAUVATNET DRILLING PROGRAMME

Following the discovery of a quartz-arsenopyrite-gold vein in outcrop, blast hole rock samples were collected and returned the following results:

SAMPLE NO.	Au	⊯ As	Sb	Bi	Pb	Ba	COMMENTS
9401	23.0 24.5	3.7%	31	40	1800	39 1	Interface and margin of qtz-vein (H.Wall)
9402	29.5 27.0	 10.5% 	56	106	 76 	275	Interface and margin of qtz-vein (H.Wall)
9412	21.0 21.0	1.3%	11	15	 306 	 76 	Interface and margin of qtz-vein (H.Wall)
9413	3.5 3.3	693 9	15	13	 122 	 92 	Interface and margin of qtz-vein (H.Wall)
9411	1.1 1.0	 154 	65	 199 	 3.3% 	 21 	 Fracture qtz-vein (center)
9404	2.7 2.5	 2165 	0	1 4 	21	 581 	 Qtz-vein at brecc. margin
9406	6.5 6.2	 4135 	 0 	 . 0 	 24 	205	 Qtz-vein at brecc. margin
9410	3.5 3.5	 1818 	 5 	 0 	324	 = 273 	 Fracture qtz-vein (center)
9408	0.43 0.411	 95 	0	 0 	 27 	910	 Wallrock
9403	0.192 0.058	 253	0	5 	1 2 0 	557	 Wallrock
9407	0.166 0.166	 190 	 0 	 0 	 16	800	 Wallrock
9409	0	 37 	 0 	 5 	 19 	 657	 Wallrock
9405	0	 48 	0	 5 	 16	 837 	 Wallrock
9415	8.3 8.7	 4.0% 	27	41	 12 	 329 	 Interface and margin of qtz-vein (H.wall)

9416	0.070	0.078	 984 	 0 	5	9	6 8 4	 Wallrock
3427	0.17	0.137	1577	0	0	321	130	Margin of northern qtz-vein
3428	0		71	 6 	28	3065	38	Qtz-net veining northern vein
3429	0.21	0.169	276	0	9	790	460	Altered ext. of main qtz-vein

For the location of the sample points please refer to enclosure.

During November 1984, a drilling programme was performed in order to:

- i) establish th true width of the mineralized vein and altered host rocks.
- ii) test the continuation of the vein between surface outcrop.
- iii) test the continuation of the vein to the west, across a 20 dgr. striking shear zone.
- iv) see if the shear zone itself is mineralized.
- v) confirm high grade Au-mineralization at depth. A total of 379 m were drilled in 5 holes. The core diameter was 42.3 mm.

DDH 1-3 were drilled towards north to intersect the mineralized vein with ESE-WSW strike and dip 70 dgr S. DDH-4 was drilled with 25 dgr inclination in south-easternly direction to intersect the junction of the vein with the shear zone.

DDH-5 was sited 120m west of the shear zone to intersect a possible continuation of the mineralization.

For the location of the drillholes refer to enclosure.

Results:

- i) The mineralized sections in DDH 1-3 indicate a true width of the vein between 4 and 5 meters. (Enclosures)
- ii) DDH-2 sited between two surface outcrops intersected mineralization so that an continuous vein between DDH 1 and DDH 3 is conceivable.
- iii) DDH 5 located west of the shear zone intersected a narrow zone of strongly altered quartz-fdsp-biotite-garnet schist with no arsenopyrite or gold mineralization. (Enclosure).
 - However, 40m further to the west blast hole sample no. 9, assayed 0.7-0.4 ppm Au.
 - iv) DDH 4 intersected moderately chloritized biotite-garnet schists with an intensely sheared zone consisting of graphite schists and massive pyrite at 164.75 to 166.25m. (Enclosure).
 - Gold was not detected in core samples from DDH 4.
 - v) Drill core sample 0300RV0024 from 43.00-43.25m in DDH 3 returned with 22.2 26.7 ppm Au in a duplicate analysis.

The grades obtained from blast hole samples of surface outcrops were thereby confirmed at depth and a supergene enrichment of gold can be ruled out.

Description of sample preparation and analysis: The core samples were logged and split twice using a diamond saw so that 3/4 of the core were despatched for analysis and 1/4 was retained for further analysis. With 25cm core length/sample, the resulting sample weight varies between 500-800 g and the average volume was 350 ccm.

These samples were crushed and milled to - 200 micron. Two splits of 50g were analyzed for gold after the volatilization of sulfides in two stages.

In some cases - when the duplicate analysis of one sample showed high variations (i.e. Sample no. 0300RV0026: 7.25 ppm, Dup: 2.45 ppm) another 4 analysis were done and the mean of 6 analysis reported (0300RV0026: 3.17ppm).

These variations indicate a nugget effect, that is to say, the gold content is not evenly distributed throughout the sample but rather concentrated in erratic, yet very small particles

Au assay results of 30 g/t, equals a gold grain of 0.078 cubic mm in a 50 g analytical sample provided all the gold would be concentrated in one grain.

All we know to date about the gold mineralization in Helgeland indicates that the gold forms small grains sitting in the interstices of arsenopyrite crystals.

Higher concentrations of gold are normally caused by repeated hydrothermal events leading to remobilization and redeposition of coarser gold in little veinlets. This gold is removed easily from a rock sample during drilling and sample preparation as the rock tends to break preferrentially along these fissures and veinlets.

This might explain that the assay results from DDH-2 and DDH-3 are somewhat lower than the assay results from blast hole samples collected at surface.

However, a generall trend with regards to gold-grades and dimensions of the vein in common to the drilling results as well as the surface observations:

DDH 3 the westernmost intersection of the vein went through 5 meters of low grade mineralization. (0.1 - 1.68 ppm Au, average 0.473 ppm Au). Blast hole samples collected from outcrop at the surface projection of this intersection returned with 8.3 - 8.7 ppm Au.

DDH 2 sited approx. 200m along strike to the east of DDH 3, went through two mineralized zones: lm of low grade mineralization ranging from 0.14 - 1.8 ppm, average 1.05 ppm Au between 31.0 and 32.0 meters.

The main zone was drilled between 60.25 and 65.00 with assays ranging from 0.1 - 6.8 ppm. The average grade of the intersection is 1.26 g/t. Surface blast hole samples from the area returned gold values between 1.1 and 21.0 ppm.

DDH 1 intersected the easternmost part of the vein where blast hole samples assayed between 0.43 - 29.5 ppm Au. Mineralization was intersected between 38.75 m and 39.75 with values ranging from 0.15 - 3.38 ppm, average 1.3 ppm and the main zone between 42.75m and 45.50 with assay results ranging from 0.1 - 26.7 ppm. The average grade is 3.45 ppm over 2.5 meters. It appears as if the overall gold grade increases towards east, whereas the width of the vein decreases.

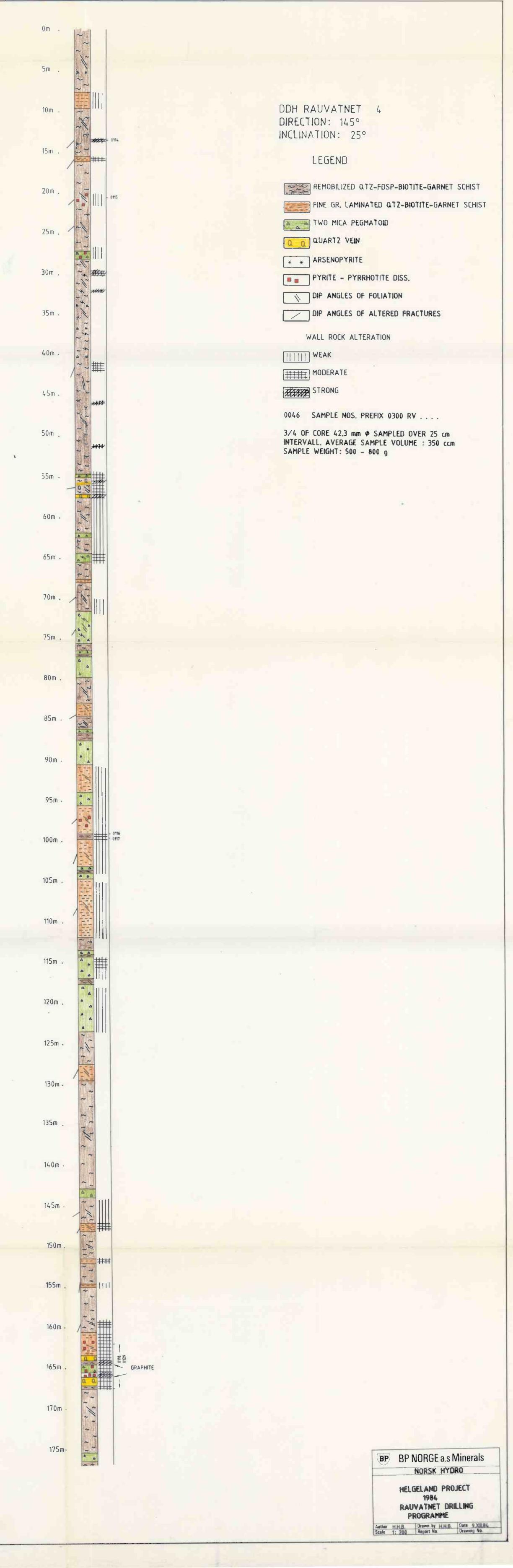
Surface mapping of the eastern continuation of the structure - which can be easily recognized from aerial photos for at least one kilometer - has been very limited to date.

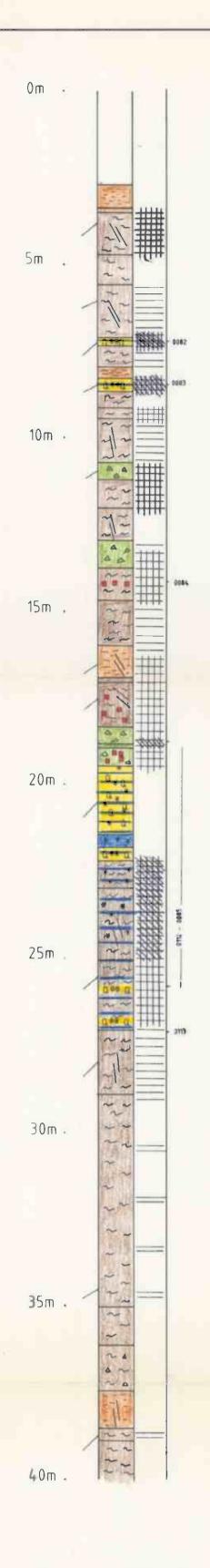
The structure can be seen cutting through a ridge of biotite-garnet schists and branching out into the carbonate sequence forming the next valley to the east. At the inferred intersection of the structure with the carbonate horizon a stream-sediment sample was collected during 1982 which returned with anomalous gold. (Enclosure).

Strong and consistent stream sediment gold anomalies were also found in a creek - running sub-parallel to the Rauvatn vein approx. 1.7 km to the south. (Enclosure).

Recommendations:

An area of 3 \times 3 km around the Rauvath mineralization should be geologically mapped in scale 1:5.000 in order to detect extended mineralization along strike or in sub-parallel system and direct the diamond drilling.


0m . DDH RAUVATNET 5 DIRECTION: 190° INCLINATION: 60° LEGEND 5m . REMOBILIZED QTZ-FDSP-BIOTITE-GARNET SCHIST FINE GR. LAMINATED Q.TZ-BIOTITE-GARNET SCHIST TWO MICA PEGMATOID QUARTZ VEIN 10m . ARSENOPYRITE PYRITE - PYRRHOTITE DISS. DIP ANGLES OF FOLIATION DIP ANGLES OF ALTERED FRACTURES 15m . WALL ROCK ALTERATION WEAK MODERATE STRONG SAMPLE NOS. PREFIX 0300 RV 20m . 3/4 OF CORE 42.3 mm # SAMPLED OVER 25 cm INTERVALL, AVERAGE SAMPLE VOLUME : 350 ccm SAMPLE WEIGHT: 500 - 800 g 25m . 30m -35m . 40m .


BP NORGE a.s Minerals

NORSK HYDRO

HELGELAND PROJECT
1984
RAUVATNET DRILLING
PROGRAMME

Author H.H.B. Drawn by H.H.B. Date 9.XII.84
Scale 100 Report No. Drawing No.

DDH RAUVATNET 3 DIRECTION: 12° INCLINATION: 50°

LEGEND

REMOBILIZED QTZ-FDSP-BIOTITE-GARNET SCHIST

FINE GR. LAMINATED QTZ-BIOTITE-GARNET SCHIST

TWO MICA PEGMATOID

Q QUARTZ VEIN

ARSENOPYRITE

PYRITE - PYRRHOTITE DISS.

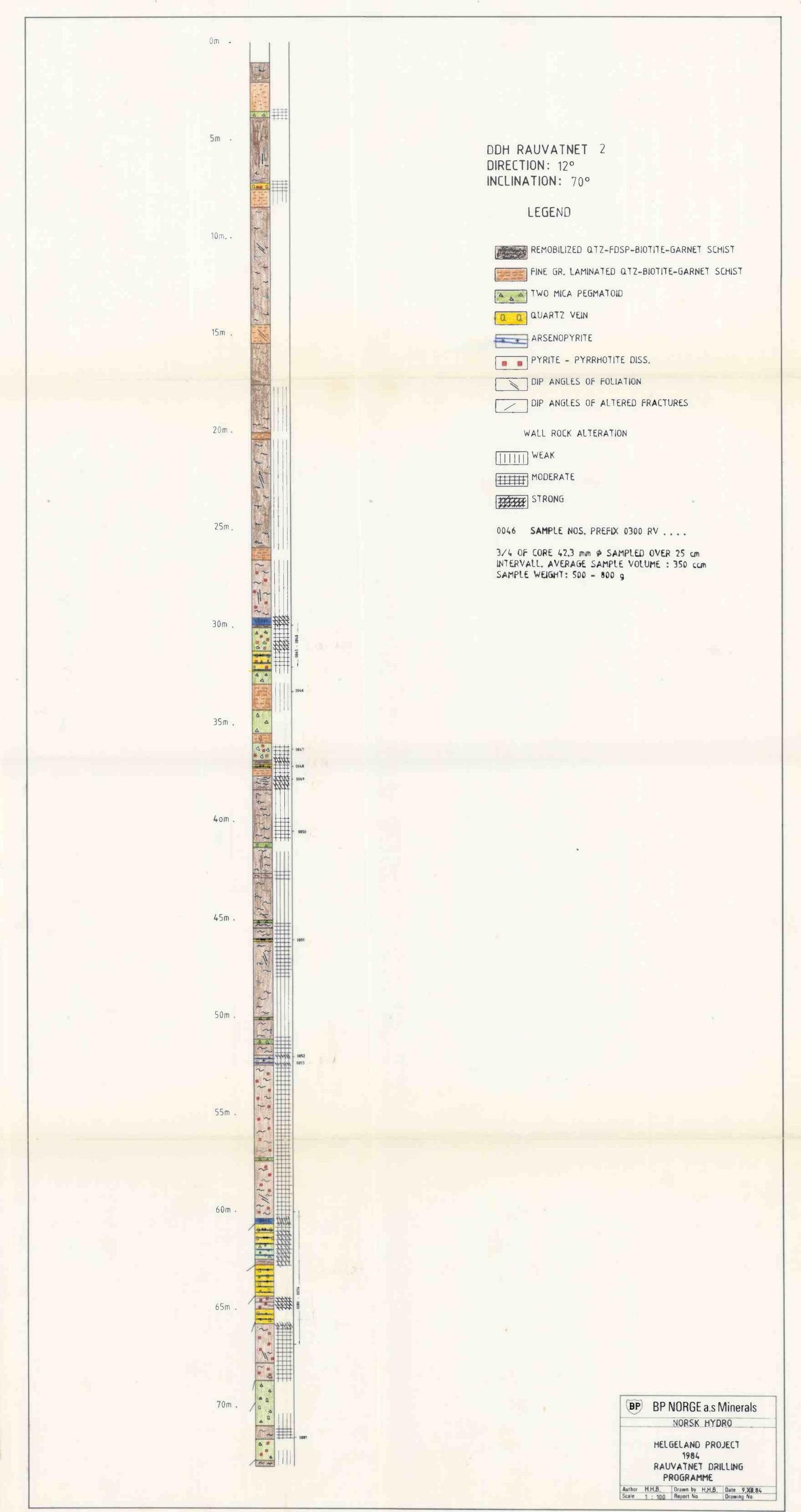
DIP ANGLES OF FOLIATION

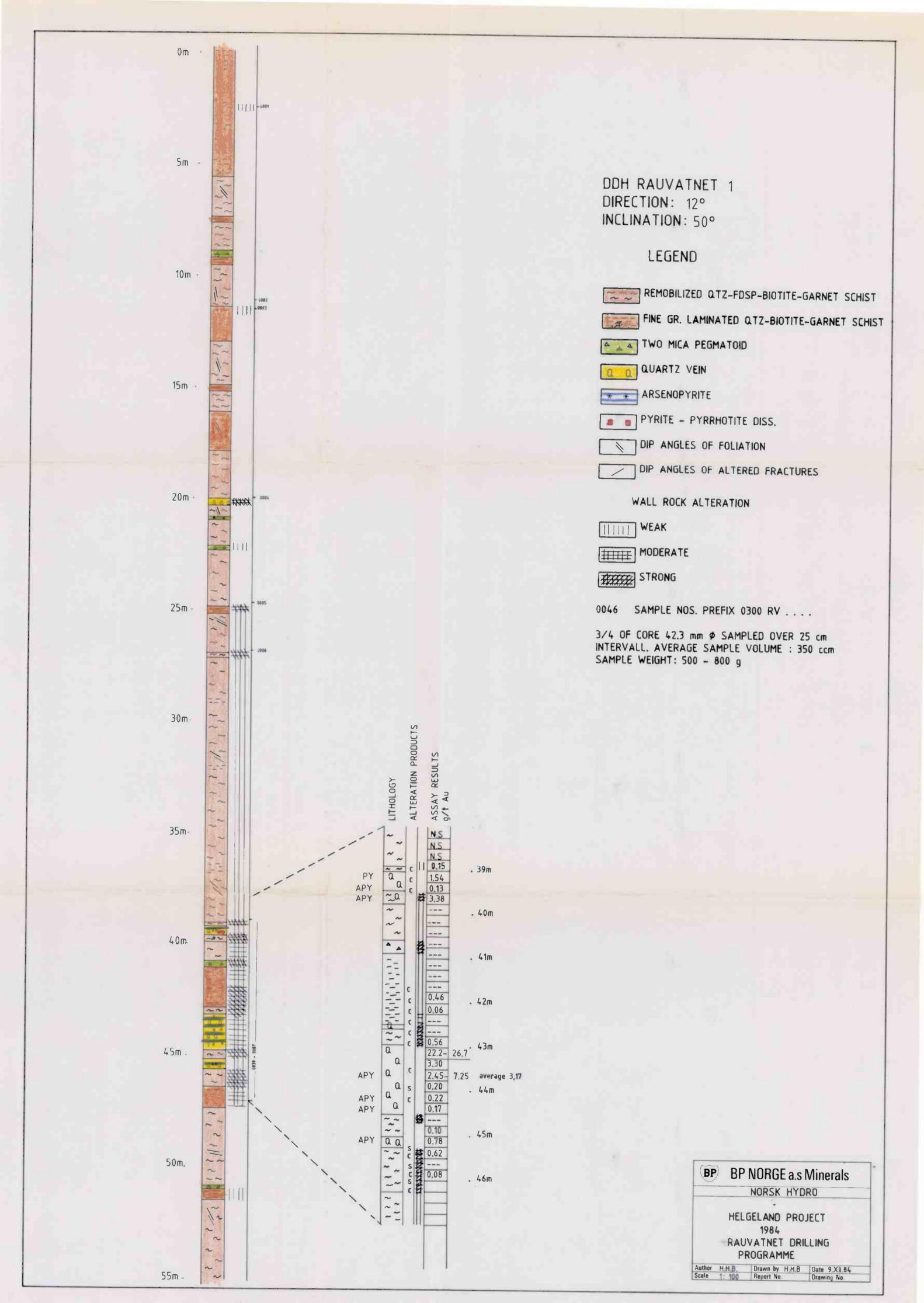
DIP ANGLES OF ALTERED FRACTURES

WALL ROCK ALTERATION

WEAK

MODERATE


STRONG


SAMPLE NOS. PREFIX 0300 RV

3/4 OF CORE 42.3 mm # SAMPLED OVER 25 cm INTERVALL. AVERAGE SAMPLE VOLUME : 350 ccm SAMPLE WEIGHT: 500 - 800 g

RAUVATNET DRILLING PROGRAMME

Author H.H.B. Scale 1: 100 Drawn by H,H,B. Report No Date 9,XII.84 Drawing No

1984 DETAILED FOLLOW UP

	Ī	М	711	1	Aerial	Photo	1	0ko.kart	1
Claim Location	1	1926	III		1:20.000	blown	up		ī

Glaim Name: RAUVATN

No: 17

Follow Up Team: JT/AS/CS/MK

Samples Taken:

Rock Samples: RV9401-9427; RV2401-2427

RV3401=3432

Pan Conctr: ./.

Other: ./.

Maps, etc. attached: Structures 1:20.000

Sample Points 1:20.000

Previous Work / Results:

1982:

Original stream sed. anomaly 219 ppb (Rauvatn) qtz-vein. The whole area stream sed. sampled. 50168-177, 030057, 110087-88.

1983:

14 anomalies in drainage of Au-bearing qtz-vein. 3 anomalies in stream on slope opposite Au-bearing qtz-vein (RV6013-6015).

1984 Summary:

Rauvatn South:

The area consists of uniform biotite-qtz-fsp gneisses interbanded with amphibolites and thin horizons of quartzites. It is considered an open question whether this horizon is volcanogenic or metasedimentary.

The valley to the west consists of biotite schist and marbles. Numerous pegmatitic dykes trending 120 dgr. occur in the area.

Two major directions of structures exist (1) 20 dgr. as exemplified by a major shear zone/thrust which can be followed throughout the area (2). ~E-W trending fracture zones which very often host mineralized qtz-veins. Most of these veins dip steeply to the south and when present Au-apy mineralization is always confined to fractured/brecciated margins at the qtz/wallrock contact. The main Rauvatn Au-apy qtz-vein contains rich Au-apy mineralization ranging from 4% As, 8.5ppm Au to 10% As, 30ppm Au at the fractured/brecciated margin. The thrust zone cuts the E-W trending qtz-veins and it appears that it swells at these localities (15-20m thickness). The thrust zone is likely to have been active both before, during and after the formation of the qtz-veins and the hydrothermal episode. It is not ruled out that the thrust zone could have gold potential at points were qtz-vein and the untersect. Blasting took place along a

300m section of the Au-bearing qtz-vein (samples RV9401-9427)

Rauvatn North:

After reconnaissance of ~12km2 north of the Au-bearing qtz-vein a set of E-W trending ~30cm wide qtz-veins was found. Most of the localities sampled held arsenopyrite mineralization in cracks and vugs along the qtz-wallrock contact. The wallrock very often shows chlorite alteration and in places also arsenopyrite dissemination. Strong diss. of pyrite with weak cpy and galena was observed in places where arsenopyrite is absent. The hydrothermal influence seems to be stronger when approaching the main 20 dgr. shear zone. The appearance of these veins is comparable to the Rauvatn Au-structure.

Recommendations:

The Rauvatnet structure can be traced on aerial photographs for at least 1km to the east and continues westward across the shear zone for another 400m. At the valley bottom the structure N 20 dgr. E striking marbles. This intersection should be followed up by DOB sampling. The Au-anomalous stream approx. 1.7 km south of the Rauvatn has not been followed up yet.

RAUVATNET SOUTH (Main Au-bearing qtz-vein)

SAMPLE Au As Sb Bi Pb Ba COMMENTS 9401 23.0 24.5 3.7% 31 40 1800 391 Interface and margin of gtz-vein (H.Wall) 9402 29.5 27.0 10.5% 56 106 76 275 Interface and margin of gtz-vein (H.Wall) 9412 21.0 21.0 1.3% 11 15 306 76 Interface and margin of gtz-vein (H.Wall) 9413 3.5 3.3 6939 15 13 122 92 Interface and margin of gtz-vein (H.Wall) 9411 1.1 1.0 154 65 199 3.3% 21 Fracture qtz-vein (center) 9404 2.7 2.5 2165 0 4 21 581 0tz-vein dental brecc. margin 9406 6.5 6.2 4135 0 0 24 205 0tz-vein at brecc. margin 9410 3.5 3.5 1818 5 0 324 273 Fracture qtz-vein (center) 9408 0.43 0.411 95 0 0 0 27 910 Wallrock 9409 0 37 0 5 19 657 Wallrock 9409 0 37 0 5 19 657 Wallrock 9409 0 48 0 5 16 837 Wallrock 9409 0 48 0 5 9 684 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of gtz-vein (H.Wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main qtz-vein		- 2	100					
9401 23.0 24.5 3.7% 31 40 1800 391 Interface and margin of gtz-vein (H.Wall) 9402 29.5 27.0 10.5% 56 106 76 275 Interface and margin of gtz-vein (H.Wall) 9412 21.0 21.0 1.3% 11 15 306 76 Interface and margin of gtz-vein (H.Wall) 9413 3.5 3.3 6939 15 13 122 92 Interface and margin of gtz-vein (H.Wall) 9411 1.1 1.0 154 65 199 3.3% 21 Fracture gtz-vein (center) 9404 2.7 2.5 2165 0 4 21 581 Qtz-vein at brecc. margin 9406 6.5 6.2 4135 0 0 24 205 Qtz-vein at brecc. margin 9410 3.5 3.5 1818 5 0 324 273 Fracture gtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9409 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9409 0 48 0 5 16 837 Wallrock 9409 0 71 6 28 3065 38 Qtz-vein veining northern vein 3428 0 71 6 28 3065 38 Qtz-vein veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	SAMPLE	Au	As	Sb	Bi	Pb	Ba	COMMENTS
9402 29.5 27.0 10.5% 56 106 76 275 Interface and margin of qtz-vein (H.Wall) 9412 21.0 21.0 1.3% 11 15 306 76 Interface and margin of qtz-vein (H.Wall) 9413 3.5 3.3 6939 15 13 122 92 Interface and margin of qtz-vein (H.Wall) 9411 1.1 1.0 154 65 199 3.3% 21 Fracture qtz-vein (center) 9404 2.7 2.5 2165 0 4 21 581 Qtz-vein at brecc. margin of 9406 6.5 6.2 4135 0 0 24 205 Qtz-vein at brecc. margin of 9410 3.5 3.5 1818 5 0 324 273 Fracture qtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9409 0.192 0.058 253 0 5 20 557 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 48 0 5 16 837 Wallrock 9409 0 48 0 5 16 837 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.Wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 9427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	NO.							B
9412 21.0 21.0 1.3% 11 15 306 76 Interface and margin of gtz-vein (H.Wall) 9413 3.5 3.3 6939 15 13 122 92 Interface and margin of gtz-vein (H.Wall) 9411 1.1 1.0 154 65 199 3.3% 21 Fracture gtz-vein (Genter) 9404 2.7 2.5 2165 0 4 21 581 Qtz-vein at brecc. margin 9406 6.5 6.2 4135 0 0 24 205 Qtz-vein at brecc. margin 9410 3.5 3.5 1818 5 0 324 273 Fracture gtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9409 0.43 0.411 95 0 0 5 79 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9409 0 37 0 5 19 657 Wallrock 9409 0 37 0 5 16 837 Wallrock 9405 0 48 0 5 16 837 Wallrock 9405 0 48 0 5 16 837 Wallrock 9406 0.070 0.078 984 0 5 9 684 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of gtz-vein (H.Wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0 0 321 130 Margin of northern gtz-vein (3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9401	23.0 24.5	3.7%	31	40	1800	391	
9413 3.5 3.3 6939 15 13 122 92 Interface and margin of qtz-vein (H.Wall) 9411 1.1 1.0 154 65 199 3.3% 21 Fracture qtz-vein (center) 9404 2.7 2.5 2165 0 4 21 581 Qtz-vein at brecc. margin 9406 6.5 6.2 4135 0 0 24 205 Qtz-vein at brecc. margin 9410 3.5 3.5 1818 5 0 324 273 Fracture qtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9403 0.192 0.058 253 0 5 20 557 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9405 0 48 0 5 9 684 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.Wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9402	29.5 27.0	10.5%	56 	106	76 	275	
9411 1.1 1.0 154 65 199 3.3% 21 Fracture qtz-vein (H.Wall) 9404 2.7 2.5 2165 0 4 21 581 Qtz-vein at brecc. 9406 6.5 6.2 4135 0 0 24 205 Qtz-vein at brecc. 9407 3.5 3.5 1818 5 0 324 273 Fracture qtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9409 0.192 0.058 253 0 5 20 557 Wallrock 9409 0 37 0 5 19 657 Wallrock 9409 0 37 0 5 19 657 Wallrock 9409 0 48 0 5 16 837 Wallrock 9405 0 48 0 5 16 837 Wallrock 9405 0 0 48 0 5 9 684 Wallrock 9406 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9412	21.0 21.0	1.3%	11	15	306	76	
9404 2.7 2.5 2165 0 4 21 581 Qtz-vein at brecc. margin 9406 6.5 6.2 4135 0 0 24 205 Qtz-vein at brecc. margin 9410 3.5 3.5 1818 5 0 324 273 Fracture qtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9403 0.192 0.058 253 0 5 20 557 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9413	3.5 3.3	6939 	15	13	122	92	
9406 6.5 6.2 4135 0 0 24 205 Qtz-vein at brecc. margin 9410 3.5 3.5 1818 5 0 324 273 Fracture qtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9403 0.192 0.058 253 0 5 20 557 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9411	1.1 1.0	154	65	199	3.3%	21	
9410 3.5 3.5 1818 5 0 324 273 Fracture qtz-vein (center) 9408 0.43 0.411 95 0 0 27 910 Wallrock 9403 0.192 0.058 253 0 5 20 557 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9404	2.7 2.5	2165	0	4	21	581	
9408 0.43 0.411 95 0 0 27 910 Wallrock 9403 0.192 0.058 253 0 5 20 557 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9406	6.5 6.2	4135	0	0	24	205	
9403 0.192 0.058 253 0 5 20 557 Wallrock 9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9410	3.5 3.5	1818	5	0	324	273	
9407 0.166 0.166 190 0 0 16 800 Wallrock 9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9408	0.43 0.411	95	0	0	27	910	Wallrock
9409 0 37 0 5 19 657 Wallrock 9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9403	0.192 0.058	253 	0	, 5 	20	557 557	Wallrock
9405 0 48 0 5 16 837 Wallrock 9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9407	0.166 0.166	 190 	0	l 0 	16	800 800	Wallrock
9415 8.3 8.7 4.0% 27 41 12 329 Interface and margin of qtz-vein (H.wall) 9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9409	0	37 37	0	 5 	19	 657 	Wallrock
9416 0.070 0.078 984 0 5 9 684 Wallrock 3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9405	0	48	0	 5 	16	 837 	Wallrock
3427 0.17 0.137 1577 0. 0 321 130 Margin of northern qtz-vein 3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9415	8.3 8.7	 4.0% 	 27 	! 41 !	12	 329 	
3428 0 71 6 28 3065 38 Qtz-net veining northern vein 3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	9416	0.070 0.078	 984 	 0 	 5 	 9 	 684 	Wallrock
3429 0.21 0.169 276 0 9 790 460 Altered ext. of main	3427	0.17 0.137	! 1577 !	0.	0	321	130	
17.2	3428	0	71 71	6	1 1 28 1	3065	38 	
	3429	0.21 0.169	276	0	9	790 1	460	•
			·			·		

^{*} N.B.: ALL VALUES IN PPM UNLESS STATED OTHERWISE!

RAUVATNET NORTH

SAMPLE NO.	Αι 	ı 	As	Sb	Bi	Pb	Ba	COMMENTS
2413	0.333	0.294	1.0%	5	6	29	52 !	Margin of qtz-vein (interface to wallrock)
2415	1.3	1.4	27.5%	64	298	248	3 53	Massive Apy (Gossan)
2416	0.358	0.381	2.9%	9	30	229	 786 	Margin of qtz-vein (interface to wallrock)
2417	0.274	0.254	2744	3	0	 26 	152	Margin of qtz-vein (interface to wallrock)
2418	0.037	0.037	1882	5	0	0	739 739	Wallrock
2425	0.103	0.094	6269	0	0	5 	1087	Random chip of contact zone (qtz-vein, wallrock)

^{*} N.B.: ALL VALUES IN PPM UNLESS STATED OTHERWISE!

1984 DETAILED FOLLOW UP

-		M 711	1	Aerial Phot o		Oko.kart
Claim Location	11926	IV	l l	No. of the State o		DP 185.5.2

Claim Name: STRAUMAN

No: 140

Follow Up Team: JT/MK

Samples Taken:

Rock Samples: 0300MJ 2401-2405

Pan Conctr: 0300MJ2501, 2503, 3501

Other:

Maps, etc. attached: a)Geological Scetch Map 1:5.000 b) Sample Point Overlay 1:5.000 (+ qeochem.)

Previous Work / Results:

Original spl. point 188 ppb Au. (180268) 180273?.

1983:

MJ7001-7011, MJ6001-6004

A cluster of anomalies at lower altitudes in drift covered areas.

1984 Summary:

Lower parts of Vefsn river valley consist of marble + numerous granitic, pegmatitic dykes. This carbonate unit gradually becomes finely interbanded with fine-grained mica schist and hornblende schist + calc silicates at higher altitudes. Towards the east this unit grades into a mica+fsp+qtz+garnet gneiss, locally with a granitic-gneiss appearance. This is considered to be an increase in metamorphic grade of the schist unit. At lower altitudes in the southern stream, (See transparent overlay), several 0.5m thick N-S striking qtz-veins with fracture fillings of pyrrhotite, pyrite was observed. These were sampled (MJ2402-5). Rather poor exposure and uniform geology makes it difficult to explain stream sed. Au anomalies. No structures except the fractured qtz-veins mentioned was observed. From aerial photo a weak pattern of 45 dgr. structures exist.

Recommendations:

If further follow-up is required, bank-soil sampling is recommended because the anomalies are confined to drift covered areas. To be followed-up together with Mjavatn. Samples from sulphide-bearing qtz-veins returned without Au, As, Sb, Bi.

1984 DETAILED FOLLOW UP

Ī		M 711	I	Aerial Photo Oko.kart	1
Claim Location		1926 III			Ī

Claim Name: Eiterasen II No: 128

Follow Up Team: JT/CS

Samples Taken: Rock Samples: ET9401-9404

Pan Conctr: ./.

Other: ./.

Maps, etc. attached: Sample points, Geochemistry 1:40.000

Previous Work / Results:

1982:

Anomalous sample 220 ppb Au

1983:

Six follow-up stream sed. samples (FF5077-5082). All were anomalous (2 med-range and 4 low-range).

1984 Summary:

Several 120 dgr. trending fracture zones crosscut the anomalous stream. Although the fracture zones can be 5-10m wide the hydrothermal activity as observed in the stream bed seems to be restricted to decimeter wide joints. These contain arsenopyrite and pyrite disseminations accompanied by a decimeter thick envelope of chloritization and sericitiation. The northern part of the stream consists of marbles with thin horizons of biotite schists and calc-silicate. The south is dominated by uniform biotite gneiss, which is also the predominant rock type in the region as a whole.

Hydrothermal joints containing sulphide dissemination were sampled at 3 localities of which one (the northernmost) contained disseminations of arsenopyrite over 1 dm thickness. Samples from this zone returned with 350, 290 ppb Au (9401-9402).

The analytical results show a clear Sb-As-Au association.

Recommendations:

The entire stream has to be followed to its source as 1983 Au-anomalies are open ended and even increase upstream. Geological mapping of structures and rock sampling!

1984 DETAILED FOLLOW UP

	M	711	l	Aerial Photo		Oko.kart	T
Claim Location	GRANE	1926	III		P	177 I, II	

Claim Name:

Vesterelva

No: 88

Follow Up Team: AS/MK

Samples Taken:

Rock Samples: 0300RF3401-RF3406

Pan Conctr: 0300RF3501-RF3508

Other: Stream seds. sieved:

RF3301-RF3323 Bank/soil: RF3601-3621

Maps, etc. attached: 1:5.000 Structures 1:5.000 Sample point

Previous Work / Results:

1982:

1 stream sediment sample (110030, 48 ppb Au)

1983:

9 stream sediment samples. 5 Au anomalous (3 high, 1 med, 1 low). D.O.B. on two grids. With 4 high range As anomalies in southern grid.

1984 Summary:

Geology

Large parts of the area are covered by thick glacial till and/or bog, it is therefore difficult to deliniate lithological units with great precision. Outcrops in the main part of the area are of porphyroblastic gneiss where porphyroblast of qtz and fsp up to 1-2cm are embedded in a mafic matrix of amphibole (hornblende) and minor biotite. In the northern part of the claimed area good outcrops of quartz-diorite can be seen which in composition is very similar to the above mentioned porphyroblastic gneiss. the outer margins of the quartz diorite foliation can be seen and it is speculated that the porphyroblastic gneiss is a strongly deformed deriviate of the granodiorite. Foliation measured in the gneiss has a strike of 20-400, parallel to the main regional strike of the enclosing metasediments. To the East and West of the qtz-diorite/porphyroblastic gneiss, metasedimentary bands consisting mainly of carbonates are found. To the west of Vesterelva the marbles are strongly invaded by granitic dykes (up to 80% dykes) of several generations. To the east along Glugvaselva the marbles form a 100 m broad band trending 30o. Here numerous sulphide bearing (py, po) amphibolitic bands and highly deformed nods often with "skarn" contacts to the marble

are found. The amount and size of these amphibolitite pods increases towards the qtz-diorite/porphyroblastic gneiss and they could be deformed dykes associated with the intrusion of the qtz-diorite.

In the SE and Northern part of the claimed area, where the cover of till is not present, straint joints/faults having a strike of 100-1100 can be seen, crosscutting all lithologies. This joint/fault direction is a common regional feature which combined with a joint/fault direction of 70-800 constitutes a late set of conjugate faults. Evidence from other areas seem to indicate that this set of conjugate faults are locil of qtz-apy-(Au) mineralization.

Within the Vesterelva claim deep overburden sampling during the winter revealed high arsenic values up to 220 ppm in 6 sample points taken along lineament 25-50m wide, trending 1000. High arsenic values (up to 250ppm) were detected in sieved sediment samples in the stream draining this area and it is recommended that a closely spaced deep overburden grid be sampled in order to further delineate the arsenic anomalous area. Towards the west the continuation of the linear feature striking 1000 is obscured by a thick cover of glacial till.

In the northern tributary of the stream draining the Vesterelva area gold was detected in the upper 2 (of 3) sieved stream sediment samples. During the 1983 follow-up stream sediment sampling programme, the stream was unfortunately not sampled above the upper of these anomalous samples. Stream sediment samples have been collected upstream this year to the top of the stream. Furthermore stream sediment samples have been taken in 3 minor streams not previously sampled, draining the Vesterelva claim.

During the sampling of these streams it became apparent that large parts of the drainage area was covered by glacial up to 10m thick till consisting of clay-silt-sand and pebbles up to 10cm. Euhedral crystals of pyrite were found in one locality in the till.

Recommendations:

Depending on the results on Sb and Bi analysis of high arsenic samples, a structural interpretation of the area should direct a very closely spaced DOB programme.

1984 DETAILED FOLLOW UP

	Ī	M 711		1	Aerial	Photo	1	Oko.kart	1
Claim Location	T	GRANE 1926	III	1				DP 176.5.1	<u> </u>
**************************************	Ì			İ			j	DP 176.5.2	j
	1			ĺ				DP 176.5.3	
								DP 176.5.4	-

Claim Name: FELLINGFORS No: 19

Follow Up Team: JT/CS

Samples Taken: Rock Samples: FF2401 (Svenningdal Mine)

FF3401-3408;9401-9404;2402-2402

Pan Conctr: FF2501-2503;9501-9502;3501-3503

Other:Soils: FF9601-9629 Stream seds: FF9301-9315

Maps, etc. attached: Sample overlay 1:5.000

Geology overlay 1:5.000

Previous Work / Results:

1982:

Taken in the three main rivers (Sample overlay 1:5.000)

1983:

FF5001-5025, 5102-5103, 6015-6026 (stream sed. samples)

1984 Summary:

At lower altitudes in the vicinity of Vefsn river the litholgies consists of thick marble units locally interbanded with calc-sil. and amphibolitic horizons reflecting a local facies change. These horizons are often pyrrhotite, pyrite impregnated. Close to the E6 at Fellingfors a similar horizon contains disseminations of sphalerite, chalcopyrite, pyrrhotite and magnetite over a strike length of 500M. Calc-silicates host the mineralization interbanded with thin carbonate bands. Sparse diss. of cpy and pyrrh. was observed in the footwall. At higher altitudes further east qtz-fsp-mica gneiss with numerous crosscutting but deformed pegmatitic dykes locally containing pyrrhoite, pyrite exist. This unit includes thin quartzite horizons. Further east along a north-south striking scar (depression) a homogenous marble unit exists containing amphibolitic lenses diss. with pyrrh. The marble unit contacts a hornblende-garnet-biotite gneiss to the East-west striking scars cut the area. They prob. reflect old fracture zones reworked several times by inland ice. The overall regional structural pattern shows a marked lineation

along 100-120 dgr. and 50-70 dgr. trends. The Svenningdal structure is ~120 drg.

Overburden

At lower altitudes the overburden consists of glaciofluvial sediments, marine clay and recent stream alluvium. This type of overburden is thick in the east-west depressions where a cluster of Au-anomalies exist. Along the scree slopes inmature locally derived soil exist (till with B-horizon) which was soil sampled. The upper part of northern stream bed consists of clayey till with rel. high amounts of pyrite.

Recommendations:

Gold anomalies cluster at lower altitudes in the streams, where the overburden is thick.

Around Sa. No. FF 5025 a good correlation between gold anomalies in the stream and in bank soil samples exists. Arsenic anomalies in soil samples are frequent. The old Svenningdalen mine - our samples from the ore returned 5 ppm gold - lies along strike of the east-west trending structures just across the Vefsn valley. Very closely spaced soil sampling on grids is recommended.

MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
TJOTTA H U A S R V E I A K	rock sampling base of slope soil sampling		team days	Husvik-lineament. Shearzones should be checked in connection with biotite schist-marble boundaries. Stream system with high range Au and Zn. Maybe analogous. with Herringbotn? Possibility of stratabound Pb-Zn-Au occurrence:	
	OVERJORD HESTDALEN	40		4 8 days	The proximity of these ano- malies to the Husvika Deposit is of particular interest.
MOSJOEN H A A T R T E A N	HATTEN	108	Geol. mapping/rock sampling, blasting	team days HELICOPTER SUPPORT 6 days	Mapping should place emphasis on tracing the contact between marble and intrusives (poss. shearzones, sulphide min.) The westernmost cluster of Auanomalies, associated with Pb-Cu-and As-anomalies, should be checked by geological traverses and detailed rock-sampling.
DREVJA D R R E E G V I J O A N	KJONNAASEN II	86	Geol. mapping/rock sampling. Possibly DOB. Await additional Sb and Bi analysis of high arsenic samples. Photo interpretation.	team days	Mapping should concentrate on the south western area where main cluster of anomalies occur. Traverses across lithologies (NW-SE directions) as well as checking the contact zone between marble and biotite schist/granodiorite gneiss. This transition zone is considered important (skarning-silification-shearing-sulfide impr. etc.).

MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
MAJAKLUMPEN	HOLMTJERN	114	Mapping and sampling of the thick quartz vein observed	2 team days	Overall high Pb-As anomalies. The mapping and sampling of the quartz veins up to 4m wide should clarify if they contain any gold.
	KALKLAVDALEN	137	The myloinite zone des- cribed should be mapped and sampled.	team days HELICOPTER SUPPORT 5 team days	Rock samples from sulfide dis- semination close to the mylonite zone contained 3000 ppm Cu and 120 ppb Au.
SOLSTAD	ROSVIK	151	Geological mapping, rock and bank soil sampling around Sa. P. RK 5005 (228 ppb Au)	team days 7 team days	The geological association of that anomaly with acid vol- canics, serpentinites and granodiorites is of interest.
				TOTAL 132 team days field work	6.6 man month or two follow-up teams in the field from June - October

MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
D R E E G I J O N	BJORKNES 117		Geol. mapping/rock sampling and DOB sampling	DOB 6 team days mapping/rec 4 team days	North-south traverses with DOB in lower terrains. Geol. mapping should emphasize on contact zones between basic-acid intrusions and metasediments at higher altitudes. Detailed follow-up in 1984 was restricted to northern stream where gold anomalous skarn horizons were found.
GRANE	EITERAASEN II	128	Detailed geology/rock sampling	4 team days	Clear Sb-Bi-As-Au association in rock samples with up to 350 ppb Au! Fracture controlled alteration zones. Stream sed. anomalies increase and are open towards south!
	LANGVATN II	96	Geol. mapping/rock sampling, bank soil sampling	3 team days	Au associated with base-metal anomalies. Along strike of Hjartskarmo deposit.
	SVEBAKK	129	dto.	3 team days	To be followed-up together with Fellingfors!
F E	LAKSFORS I	73	dto.	4 teamdays	A NW-SE trending zone of Au- anomalies extending over 500m and 3 streams.
L A I R N E G A F O R S	FELLINGFORS	19	Detailed soil sampling and VLF traverses.	7 teamdays	Numerous marble horizons and quartzites interbanded with biotite schist-granitic gneiss -garnet mica schist. Cross-cutting fracture zones. The old Svenningdalen mine with 5ppm Au in the ore lies along strike of a EW structure just across the Vefsn valley.
	STABFORSMOEN STORMOEN	171 161	Detailed geol. mapping/ rock sampling	10 teamdays HELICOPTER SUPPORT	Two rock samples returned with low-level gold content, which can not account for the strong and wide spread gold anomalies. Detailed mapping followed by blast hole sampling is recommended.

MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
GRANE R E I N R F J E E L E T	C - F	69 80 81 82 88	Geol. mapping/rock sampling, DOB, VLF Structurall analysis of aerial photos. Follow-up should be guided by Sb and Bi anomalies of high arsenic samples.	team days DOB/VLF 5 team days mapping HELICOPTER SUPPORT	Of particular interest due to proximity to Rauvatn occurrence. Similar tectonic regime. All E-W trending structures should be carefully followed-up.
	III	77 78 92 93	Detailed geol./rock sampling. DOB, VLF, Air photo interpretation	team days DOB, VLF 10 team days geology 35 team days	Fracture interpretation. De- tailed geol. of biotite schist- gneisses. DOB on western exten- sion of Au-bearing shearzone as well as VLF. Attention to where fracture zones meet or inter- sect carbonate horizons.
EITERAA E I A T R E E R A A		32	Detailed mapping/rock sampling. Samples high in arsenic will be analyzed for Sb and Bi.	team days HELICOPTER SUPPORT	Mapping out the metasedimentary raft to the north-east. Contact zones between marble and biotite hornblende schist. High Pb-Zn, W, As indicates stratabound shear and/or skarn related min. (E.g. Maalviken, Reppen). High As in surrounding granodiorite.
	FORHOLTEN	89	Detailed geol./rock sampling	team days	East-west trending structures with quartz-tourmaline veins should be examined as well as diorite-marble contact zone. High gold anomaly near the source of the stream.
	N. VESTERDALS- ELVEN	28	Geological mapping of headwaters	team days HELICOPTER SUPPORT	Strong Pb-Zn anomaly associated with sulfide impregnation in biotite schist. A similar horizon returned with 340 ppb Au approx. 1.5km to the north!

MAPSHEET	CLAIM/NO.	RECOMMENDATIONS	DURATION	COMMENTS
VEVELSTAD	NEDRE KVANLIVATN 23	Geol. mapping/rock sampling, base of slope soil sampling.	5 team days 5 team days	Sample the alteration zones in granodiorite as well as mapping out the metasedimentary rafts and fracture zones. Care should be taken to sample sheared, weathered alteration zones correctly in order to not miss the gold. High W, As, Zn may have it's source in mineralized alteration zone along fractures.
VEVELSTAD ANDALS-HATTEN AREA	KLAUSMARKELVEN 173	Geol. mapping/rock sampling + panning Structural analysis of aerial photos.	5 team days HELICOPTER SUPPORT 5 team days	The Klausmarkelven qtz-vein extends intermittently over 3kml Mineralization consists of arsenoppyrite and up to 2 ppm Au in grab-samples. More detailed mapping and blast hole sampling is essential!
GRANE	KVALFORS 94	Bank soil sampling and geological mapping	3 team days	The high gold anomaly is open towards the south, where a restricted catchment area awaits follow-up.
	LIA II 99	Geological Reconnaissance	l team day	Two of three sed. samples returned with increasing gold values upstream. Small catchment area.
	RAVATNET I 75	Stream sediment, soil and rock sampling	team days 7 team days	One very high gold anomaly detected in small tributary draining restricted catchment area. Fossible connection with SVARTVATNET anomalies!

FUTURE WORK

As a result from follow-up 1984, future work is proposed in the following areas (for detailed recommendations see follow-up sheets): Mjavatnet, Bjorknes, Vesterelva, Fellingfors, Stabbforsmoen, Klausmarkelva. These areas are already at an advanced state with regards to detailed sampling results and structural interpretation which should allow further work to be precise and not time consuming. Future work is also proposed for following areas described below. (See also 1:40.000 scetch maps).

HATTEN

The area consists of thin marble horizons enclosed by schistose amphibolites and biotite-amphibole gneisses.

Furthest to the west a granodioritic intrusive and a qtz-feldspar augen gneiss occur.

In the south-east a metadiorite/gabbro has produced skarning in contact with marbles. The highest stream sed. anomaly in the area (600 ppb Au) was collected near this contact zone.

The stream sed. sampling 1983 resulted in 14 Au anomalies, but no high arsenic (max. 9ppm).

The structural pattern shows two major directions:

a) N-Nw and b) NE to E. The latter direction is interpreted to be latest and a prior target for follow-up. This is confirmed by field observations which concluded that tourmaline-pyrrhotite mineralized fracture zone with chloritization was observed near stream sed. Au anomalies.

Rock sample of this mineralization was negative. However, closed investigation and rock sampling of similar zones is recommended.

NEDRE KVANLIVATN

The structural pattern is somewhat complex but the area has been selected as interesting (see 1:40.000 structural interpretation). Three directions of lineaments appear to converge in this region, namely, a)NW-SW b)NE to E and c)NS. Structures running NS and NW coinside with stream sed. Au anomalies (max. lppm combined with As).

Generally the region consists of mica-schist/gneiss and porphyroblastic granodiorite.

SORDALEN-HUSVIKA

A cluster of 4 Au anomalies occur in a NS running valley near a Pb-Zn occurrence. The major direction of structurs is EW. Structures having this direction should be followed-up in the vicinity of the Au-bearing stream.

LEKA

Consistent high stream sed. Au anomalies appear in streams draining a major lithological boundary between serpentinite and metagabbro. This contact is sheared, and the only alteration observed during field reconnaissance was low grade metamorphic talc-asbestos alteration of the serpentinite.

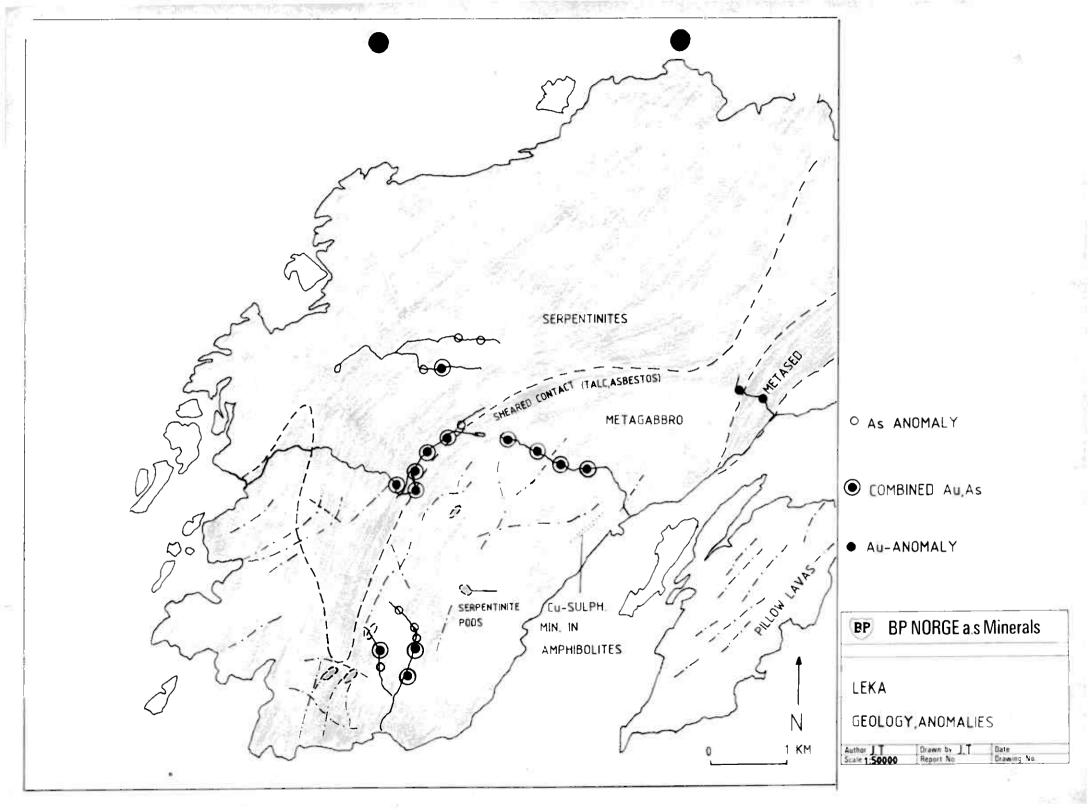
However, further detailed investigation of structures near this contact is recommended. The high range Au anomalies (>100ppb) combine systematically with arsenic. Qtz-veins were observed in the vicinity of Au anomalies, but they were not sampled. Late high temp., hydrothermal alterations in this region should be considered prospective.

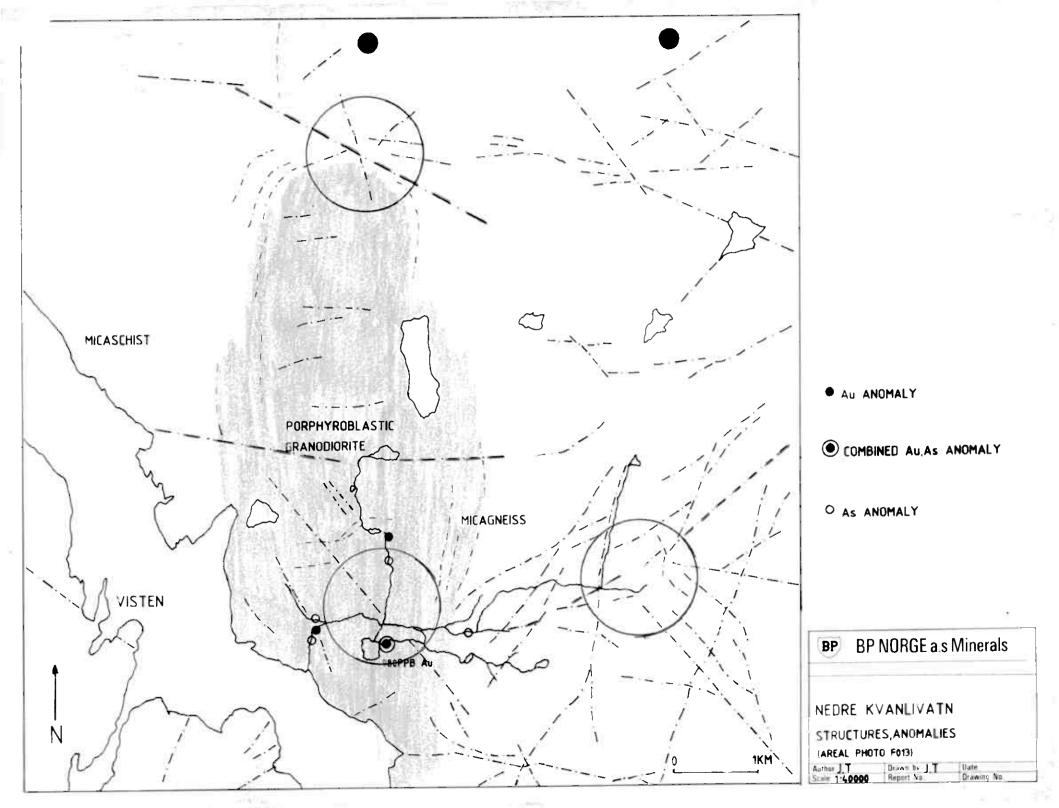
REINFJELLET

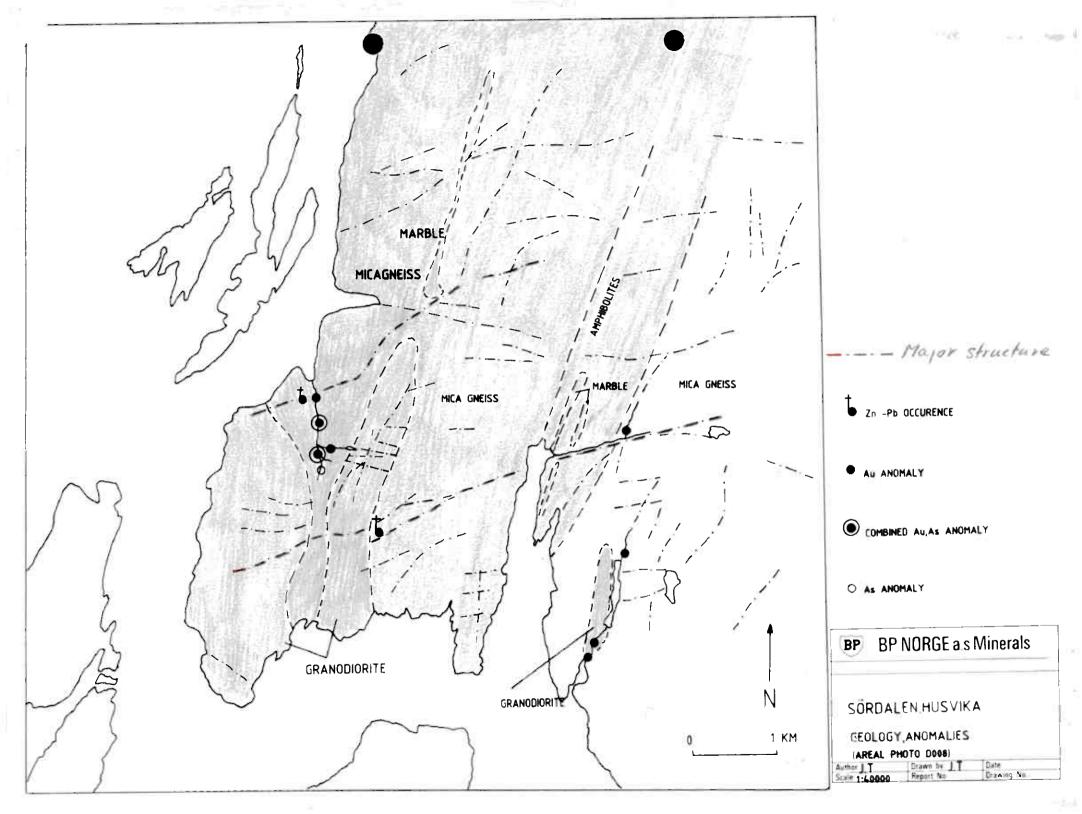
To be compared with Rauvatnet. Predominant structural directions are a)EW and b)NS. Several high range Au anomalies (>100ppb) exist combined with high arsenic (20-40ppm range). The highest Au anomaly occur near a skarned contact to the Reinfjellet granite (350ppb). This was sampled but returned negative. Soil sampling along structures coinciding with Au-As anomalies is recommended.

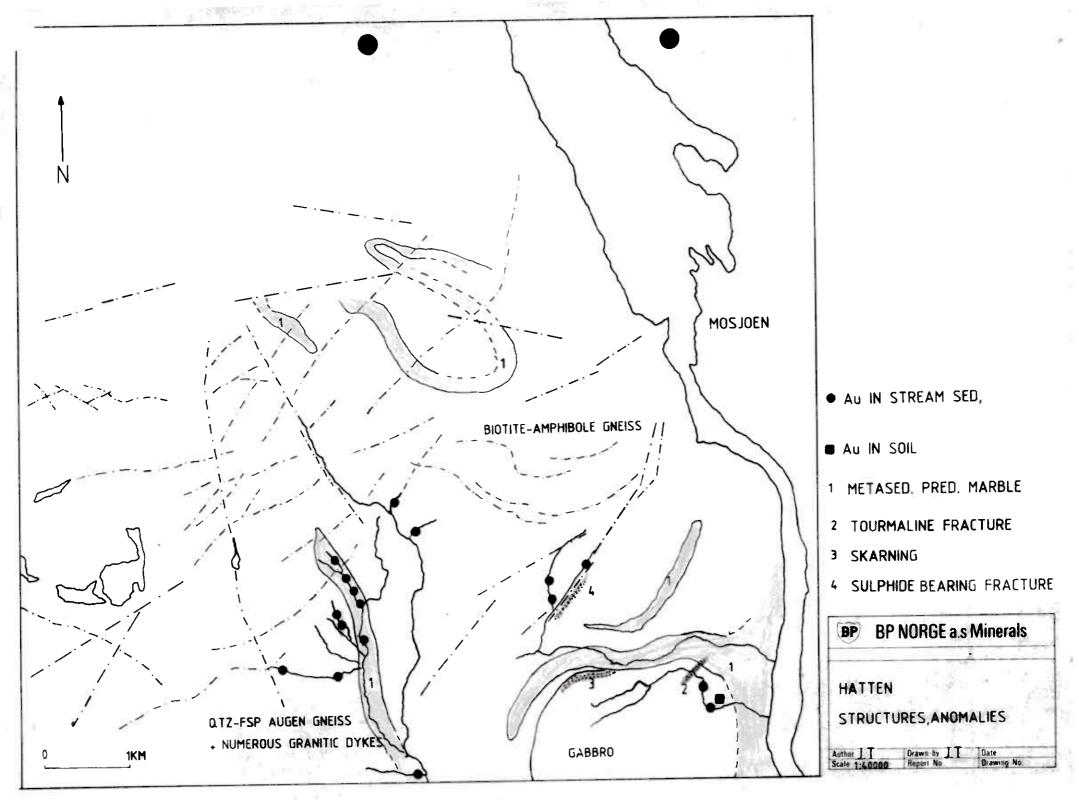
VISTVATNET

A cluster of Au anomalies exist in a stream running along a metasedimentary stripe (biotite-hornblende schist, marble). Very strong arsenic and tungsten concentration are associated with Au anomalies. A set of structures parallel to the stream occur in the drainage area. These are obvious follow-up targets. Another set of structures is running perpendicular in north-south direction. Abundant low temperature stilbite infilling along mm to dm wide joints occur in the area. These predominantly crosscut the stream at shallow angels. The area is very well exposed which means that field reconnaissance for hydrothermal alterations along structures should be effective.


MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
MAJAKLUMPEN	HQLMTJERN	114	Mapping and sampling of the thick quartz vein observed	2 team days 	Overall high Pb-As anomalies. The mapping and sampling of the quartz veins up to 4m wide should clarify if they contain any gold.
	KALKLAVDALEN	137	The myloinite zone des- cribed should be mapped and sampled.	3 team days HELICOPTER SUPPORT	Rock samples from sulfide dis- semination close to the mylonite zone contained 3000 ppm Cu and 120 ppb Au.
		-		5 team days	2 =1 2
SOLSTAD	ROSVIK	151	Geological mapping, rock and bank soil sampling around Sa. P. RK 5005 (228 ppb Au)	team days 7 team days	The geological association of that anomaly with acid vol- canics, serpentinites and granodiorites is of interest.
	5	2		TOTAL 132 team days field work	6.6 man month or two follow-up teams in the field from June - October
				İ	


MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
DRREGUIJO	BJORKNES	117	Geol. mapping/rock sampling and DOB sampling	DOB 6 team days mapping/rec 4 team days	North-south traverses with DOB in lower terrains. Geol. mapping should emphasize on contact zones between basic-acid intrusions and metasediments at higher altitudes. Detailed follow-up in 1984 was restricted to northern stream where gold anomalous skarn horizons were found.
GRANE	EITERAASEN II	128	Detailed geology/rock sampling	team days	Clear Sb-Bi-As-Au association in rock samples with up to 350 ppb Au! Fracture controlled alteration zones. Stream sed. anomalies increase and are. open towards south!
	LANGVATH II	96	Geol. mapping/rock sampling, bank soil sampling	3 team days	Au associated with base-metal anomalies. Along strike of Hjartskarmo deposit.
	SVEBAKK	129	dto.	team days	To be followed-up together with Fellingfors!
F E L	LAKSFORS I	73	dto.	4 teamdays	A NW-SE trending zone of Au- anomalies extending over 500m and 3 streams.
L REAR FORS	FELLINGFORS	19	Detailed soil sampling and VLF traverses.	7 teamdays	Numerous marble horizons and quartzites interbanded with biotite schist-granitic gneiss - garnet mica schist. Cross-cutting fracture zones. The old Svenningdalen mine with 5ppm Au in the ore lies along strike of a EW structure just across the Vefsn valley.
3 =	STABFORSMOEN STORMOEN	171 161	Detailed geol. mapping/ rock sampling	teamdays HELICOPTER SUPPORT	Two rock samples returned with low-level gold content, which can not account for the strong and wide spread gold anomalies. Detailed mapping followed by blast hole sampling is recommended.


MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
GRANE R E I N A F R	SOR-SVARTVATNET C - F VESTERELVA	69 80 81 82 88	Geol. mapping/rock sampling, DOB, VLF Structurall analysis of aerial photos. Follow-up should be quided by Sb and Bi anomalies of high arsenic samples.	10 team days DOB/VLF 5 team days mapping HELICOPTER SUPPORT	Of particular interest due to proximity to Rauvatn occurrence. Similar tectonic regime. All E-W trending structures should be carefully followed-up.
J E A L L E T	RAUVATNET JAMTFJELLDAL I II III IV	77 78 92 93	Detailed geol./rock sampling. DOB, VLF, Air photo interpretation	team days DOB, VLF 10 team days geology	Fracture interpretation. De- tailed geol. of biotite schist- gneisses. DOB on western exten- sion of Au-bearing shearzone as well as VLF. Attention to where fracture zones meet or inter- sect carbonate horizons.
EITERAA E I A T R E E R A	VESTFJELDENE	12)	Detailed mapping/rock sampling. Samples high in arsenic will be analyzed for Sb and Bi.	6 team days HELICOPTER SUPPORT	Mapping out the metasedimentary raft to the north-east. Contact zones between marble and biotite hornblende schist. High Pb-Zn, W, As indicates stratabound shear and/or skarn related min. (E.g. Maalviken, Reppen). High As in surrounding granodiorite.
A	FORHOLTEN	89	Detailed geol./rock sampling	3 team days 9 team days	East-west trending structures with quartz-tourmaline veins should be examined as well as diorite-marble contact zone. High gold anomaly near the source of the stream.
	N. VESTERDALS-	28	Geological mapping of headwaters	3 team days HELICOPTER SUPPORT	Strong Pb-Zn anomaly associated with sulfide impregnation in biotite schist. A similar horizon returned with 340 ppb Au approx. 1.5km to the north!


MAPSHEET	CLAIM/NO.	RECOMMENDATIONS	DURATION	COMMENTS
VEVELSTAD	NEDRE KVANLIVATN 23	Geol. mapping/rock sampling, base of slope soil sampling.	team days	Sample the alteration zones in granodiorite as well as mapping out the metasedimentary rafts and fracture zones. Care should be taken to sample sheared, weathered alteration zones correctly in order to not miss the gold. High W, As, Zn may have it's source in mineralized alteration zone along fractures.
VEVELSTAD ANDALS-HATTEN AREA	KLAUSMARKELVEN 173	Geol. mapping/rock sampling + panning Structural analysis of aerial photos.	team days HELICOPTER SUPPORT	The Klausmarkelven qtz-vein extends intermittently over 3km! Mineralization consists of arsenoppyrite and up to 2 ppm Au in grah-samples. More detailed mapping and blast hole sampling is essential!
GRANE	KVALFORS 94	Bank soil sampling and geological mapping	3 team days	The high gold anomaly is open towards the south, where a restricted catchment area awaits follow-up.
	LIA II 99	Geological Reconnaissance	l team day	Two of three sed. samples returned with increasing gold values upstream. Small catchment area.
	RAVATNET I 75	Stream sediment, soil and rock sampling	3 team days 7 team days	One very high gold anomaly de- tected in small tributary drain- ing restricted catchment area. Possible connection with SVARTVATNET anomalies!

MAPSHEET	CLAIM/NO.		RECOMMENDATIONS	DURATION	COMMENTS
TJOTTA H U A S R V E I A	SORDALEN	42	Geol. mapping/ rock sampling base of slope soil sampling	team days	Husvik-lineament. Shearzones should be checked in connection with biotite schist-marble boundaries. Stream system with high range Au and Zn. Maybe analogous. with Herringbotn? Possibility of stratabound Pb-2n-Au occurrence!
r	OVERJORD HESTDALEN	6 40		4 8 days	The proximity of these and- malies to the Husvika Deposit is of particular interest.
MOSJOEN H A A T E A N	HATTEN	108	Geol. mapping/rock sampling, blasting	team days HELICOFTER SUPPORT 6 days	Marping should place emphasis on tracing the contact between marble and intrusives (poss. shear ones, sulphide min.) The estormost cluster of Autanomaties, associated with Pb-Cu- and As-anomalies, should be checked by geological traverses and detailed rock-sampling.
DREVJA D R R E E G V I J O A N	KJONNAASEN II	86	Geol. mapping/rock sampling. Possibly DOB. Await additional Sb and Bi analysis of high arsenic samples. Photo interpretation.	team days	Mapping should concentrate on the south western area where main cluster of anomalies occur. Traverses across lithologies (NW-SE directions) as well as checking the contact zone between marble and biotite schist/granodiorite gneiss. This transition zone is considered important (skarning-silitcation-shearing-sulfide impr. etc.).

Claim Name: Sordalen No: 42 Size: 1.0 km2

Claim location: Map sheet 1826 IV Tjotta

:Air Photo

:Oko Kart

Pegged: Yes No -- PartlyClaim retained: yes/No

Stream length: 1.0 km/ Drainage area:1.0km2

Original sample point(72ppb Au) resampled: Yes No

Follow up team: CR/AK <u>Duration</u>:1.0 days

Nos. of follow up sample: HU 8001- HU 8008 Description of drainage system:

The stream splits into 4 small tributaries, all of which were sampled. Higher parts of the drainage run through talus, in lower parts glacial overburden dominates.

Geology:

The main lithology is a homogeneous biotite mica schist. No geological observations possible in lower part of the drainage, due to thick overburden.

Comments:

Four gold anomalies were detected in the lower part of the drainage, all of which are associated with elevated arsenic values.

Recommendations for further follow up:
Two samples show also anomalous Lead concentration. The proximity of these anomalies to the Husvik deposit is of particular interest. The catchment area is well defined and follow-up should

interest. The catchment area is well defined and follow-up should consist of: Base of slope soil-rock chip sampling and geological mapping.

Claim Name: Oeverjord No: 6 Size: 2.25 km2

Claim location: Map sheet 1826 II Tjotta, 1826 I Mosjoen

:Air Photo D 009,008.010

:Oko Kart

Pegged: Yes No Partly Claim retained: yes/No

Stream length: 0.4km Drainage area:0.1km2

Original sample points(15,20 ppb Au) resampled:YesNo

Follow up team: OK/GT Duration: 1.0 days

Nos.of follow up samples: Hu 4049- HU 4052 Description of drainage system:

Two minor streams draining narrow bedrock valleys (appx. 10 m wide) with birch dominated vegetation. Resampling took place in alluvial cones, follow up samples further upstream taken from active sediment.

Geology:

Main lithology is a biotite schist with boudins (cm-scale) of quartzo-feldspathic remobilisations. Cobbles of clear and milky quartz in the stream.

Comments:

See No. 40 Hestdalen.

Recommendations for further follow up: Ditto.

Claim Name: Hestdalen No: 40 Size: 0.5 km2

Claim location: Map sheet 1826 II Tjotta

:Air Photo

:Oko Kart DK 182 1

Pegged: Yes No Partly Claim retained: yes/No

Stream Length: 0.75km/ Drainage area:4.0km2

or Edinal sample point (30 ppb A supled: Yes No

Follow up team: OK/GT Duration: 1.5 days

Nos. of follow up sample: Hu 4053 - HU 4057

Description of drainage system:

The stream system drains the western slopes of Hamran, and flows into a lake elongated in a north-south depression . Overflow from the lake drains southward, and proceeds via an estuary into the sea.

Geology:

The area around the lake is dominated by a biotite gneiss, which commonly exhibits quartz-feldspar boudins. Locally a migmatite is formed by intense "Durchbewegung" of the biotite gneiss and an equigranular granodiorite.

Comments:

Sample No. HU 4053 returned with 132 ppb Au, and is the only sample collected from that drainage.

Recommendations for further follow up:

Follow-up should concentrate around Sa. No. HU 4053. Of particular interest is the presence of strong N-S trending structures, which are sub-parallel to the Husvik mineralization.

Try to locate the source of mifky-quartz pebbles in the stream.

Claim Name: Hatten No: 108 Size: 4.5 km2

Claim location: Map sheet 1826 I Mosjoen

:Air Photo

:Oko Kart DN 182 III.I

Pegged: Yes .No -- PartlyClaim retained: yes/ No

Stream length: 9.5 km/ Drainage area:3.0km2

Original sample points(40,34ppb Au) resampled: Yes No

Follow up team: IF/TO <u>Duration</u>: 3.5 days

Nos. of follow up sample: Mo 1041- Mo 1057

Mo 1061- Mo 1081

Description of drainage system:

The anomalous drainage systems in the Kvanndalsnesan area are a)6 streams draining the W. valley slope, descending from bedrock/thin peat bottomed ponds thence via waterfalls and rapids, frequently in the N. via karst tunnels, to the clay/peat valley floor b) the N. section of Kvanndalselva, supplied by small streams draining the E. valley slope via rapids and bog, and part of the N. West slope by the same.

Geology:

Biotite-fsp-(hbl)schists cont. abundant coarse-grained qtz-fsp deformed veins and lenses, and amphibolite horizons, together with interbedded calcite and dolomite marbles. These have been intruded by both biotite and biotite-muscovite granite, only locally tending pegmatitic, with minor skarning, rafts of marble and amphibole schists occur within granites. Minor gabbro also present on W. slope. Three bulk rock samples taken (0300M01003, 1004, 1005) of mineralization:

1003: Pyrrhotite impregnation in quartz-amph-calcailicate assemblage near contact of large marble enclosure in granite near contact zone.

1004: pyrrhotite-cpy impregnation in quartz-vein and mica-poor granite. The quartz-veining at this location is thick (1-2m), resembling a rusty, coarse-sugar textural quartzite.

1005:Fe hydroxide/limonite-rich, completely altd. gabbro/amphibolite with rusty quartz-veins, collected only ~150m from 1004.

Comments:

Numerous low to high range gold anomalies, the greatest concentration appearing to suggest a source northwest of Kvanndalsnesan.

Recommendations:

The westernmost cluster of Au-anomalies associated with Pb-Cu-and As anomalies should be followed up by geological traverses and detailed sampling.

Claim Name: Kjonnasen II No 86 /Size: 1.0 km2

Claim location: Map sheet 1926 IV Drevje

:Air Photo D 018

:Oko Kart P 182 IV

Q 182 III

Pegged: Yes No-Partly Claim retained: yes/ No

Stream length 1.5 + 0.5 km Drainage area: 1.5 km 2

Original sample point (9,24,8,8,44ppb Au) resampled: Yes No

Follow up team: OK/KA Duration: 2.0days

Nos. of follow up sample AD 4908 - AD 4921

Description of drainage system:

System drains the northern slopes of Reinfjellet. At lower altitudes bedrock crops out at relatively few places (overburden, mires, vegetation). At higher altitudes, bedrock is largely exposed. Mires are common along the streams.

Geology:

Bedrock is uniform in area. Granodiroite dominates and holds in places acidic veins which may form stockworks. Stream pebbles and glacial material show varying petrography.

Comments:

Although a source has not yet been recognized, the number of Au anomalies detected in this area (See also 1982), and the adjoining claim areas (112 Almdalen A, 146 Kjonnasen IV), together with high As values, precludes immediate dropping of the area.

Recommendations:

Provided the analysis of As-anomalous samples yields also Bi and or Sb anomalies a carefull follow-up consisting of bank sampling at lower altitudes and geological mapping at higher elevations is mandatory.

Structural analysis of aerial photos must come first.

Claim Name: Bjorknes Noll7 Size: 1.75 km2

Claim location: Map sheet 1926 IV Drevja

:Air Photo C 015

:0ko Kart DO 185 I, II, 11I, IV

Pegged: Yes No --- Partly Claim retained: Yes No

Stream length 3.0km Drainage area: 2.0km 2

Original sample points (345,22ppb Au) resampled: Yes No

Follow up team: IF/TO Duration: 1.0day

Nos.of follow-up sample : BK 1001 - BK 1010

Description of drainage system:

Two rivers sampled: a) southern: sources via seepage from beneath heavily vegetated overburden of boulders and gravel, descends via channels cut in same through pastureland to original sample point (180229), b) northern: rises in a bog draining gabbro hills, descends via rapids through gravel and clay overburden to original anomaly point (180228).

Geology:

From what little is exposed at lower levels and (better) near the stream sources, the area appears to be mainly homog. gabbro. In the vicinity of sample BK 1007 however, (at least) the gabbro is net-veined by thin (dm) granitic veins and quartz, with loc. abundant pyrrhotite mineralization. (Sample BK 1001 rock chip).

Comments:

Four high-range (to 446ppb) and one medium-range anomaly detected in both streams. Rock sample BK 1001 did not return with Au values.

Recommendations:

Detailed follow-up during 1984 was restricted to the northern stream, where gold-anomalous start horizons were found. Further follow-up should concentrate on the anomalies in the southern stream.

Claim Name: KvalforsNo: 94 Size: 1.0 km2

Claim location: Map sheet 1926 II Granea

:Air Photo

:0ko Kart DO 180 I

Pegged: yes-No---Partly Claim retained: yes / No

Stream length 1.5 km/ Drainage area:2.0km2

Original sample point (25 ppb Au) resampled: Yes-No

Follow up team: JT/GT Duration: 1.0 days

Nos. of follow up sample EI 2011- EI 2019

Description of drainage system:

The stream rises in a boggy area, and in gentle slope, descending gently partly over bedrock(thin overburden) to a swampy area near the river Vefsna. Tributaries entering from the West at higher altitudes were sampled individually.

Geology:

Uniform biotite schists/gneisses grading to granite gneiss.Locally pegmatites and quartz-schlieren.Overall very uniform lithology.

Comments:

One isolated high level gold anomaly, without accompanying pathfinder element anomalies.

Recommendations:

A rapid follow-up of the high gold anomaly is proposed, as the anomaly is open towards the south. Bank sampling and mapping in the head waters is necessary.

Claim Name: Eiterasen II Nol28 Size: 0.5 km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:Oko Kart

Pegged: Yes No-Partly Claim retained: Yes No

Stream Length 2.5km Drainage area: 3.0 km 2

Octainal sample points (220pph Au) resampled: Yes No

Follow up team: KB/KA Duration: 1.0 day

Nos. of follow up sample: FF 5077 - FF 5082

Description of drainage system:

The river is approx. 10m wide and up to 2m deep. It runs in a big steep-walled canyon with a large speed, and is only joined by 2-3 very small tributaries.

Geology:

The bedrock consists of an interlayered white to black marble and a dark mica-schist. The mica-schist often carries small red garnets. At sample point 5082 small (lmm) pyrite cubes, disseminated in a black marble, were observed, most probably of diagenetic origin.

Comments:

Six of the samples returned with detectable gold (four low and two medium range). The sampling was not continued to the headwaters.

Recommendations:

Detailed geology/lithogeochemistry.

Claim Name: Langvatnet II No: 96 Size: 1.5 km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:Oko Kart DO 176 II

Pegged: Yes No-Partly Claim retained: Yes No

Stream length 1.5km Drainage area: 1.5 km 2

Original sample points (84ppb Au) resampled: Yes No

Follow up team: KB/KA Duration: 1.0 day

Nos. of follow up sample: FF 5083 - FF 5087

Description of drainage system:

System rises in a lake, having no tributaries, and is relatively broad (3-5m), being braided in several places. Average slope is quite steep (~200), there being some larger waterfalls.

Geology:

Headwaters in biotite-gneiss with numerous pegmatites, grading downstream to slightly foliated biotite-rich granodiorite. A marble (?raft) occurs in the lake area.

Comments:

One medium and one high-range Au anomaly. The highest Au-anomaly is associated with Pb-Zn anomaly. The stream sed. anomaly is approx. along strike of the precious metal enriched polymetallic Hjartskarmo mineralization!

Recommendations:

Geological mapping and bank sampling.

Claim Name: Lia II No: 99 Size:0.75 km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:Oko Kart DO 177 IV

Pegged: Yes No-Partly Claim retained: Yes No

Stream length 0.7km Drainage area: 0.75 km 2

Original sample points (30ppb Au) resampled: Yes No

Follow up team: KB/KA Duration: 0.5 day

Nos.of follow up sample: FF 5092 - FF 5094

Description of drainage system:

The stream is sampled upstream from the railroad. In the lower part it has covered a canyon in marble. Further upstream there are some falls and the stream originates in a small moor. It has one small tributary.

Geology:

In the lower part the stream runs in marble. In the upper part there are some outcrops of granodiorite. There is a thin till overburden in most of the area.

Comments:

Two of three samples returned with Au, with increasing levels upstream.

Recommendations:

A brief check of the geology around Sample No. FF 5094 is warranted.

Claim Name: Svebakk No:129 Size: 0.5 km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:Oko Kart

Pegged: Yes No-Partly Claim retained: Yes No

S ream length 1.0km Drainage area: 1.5 km 2

Original sample points (54 ppb Au) resampled: Yes No

Follow up team: KB/KA Duration: 1.0 day

Nos. of follow up sample : FF 5095 - FF 5101

Description of drainage system:

The river is rather small, less than 2m wide. It's lower part has several falls. Above the moor is a fall, partly in talus and there is one tributary.

Geology:

The upper part of the river runs through talus with boulders of marble and granite. The moor lies in an area of till overburden and alluvial sediments. Downstream the lake there are outcrops of garnet - mica-schist.

Comments:

Two low and one high-range Au anomaly detected.

Recommendations:

The stream section from the high anomaly up to the lake should be followed up by bank sampling and geological mapping.

Claim Name: Laksfors I No: 73 Size: 4.5 km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:Oko Kart P 177 I, III

Pegged: Yes-No Partly Claim retained: yes / No

Fiream length 10.0 km/ Drainage area:4.0km2

Original sample points (ppb Au) resampled: Yes No

Follow up team: JT/GT OK/GT Duration: days

Nos. of follow up sample RF 2009 - RF 2040

Description of drainage system:

Geology:

Medium-grained massive white granite with local inclusions of biotite schist. Quite intense jointing of granite in upper part of stream. Here also stockwork of pegmatite and quartz-veins occur (former cut by latter). No mineralization has been noted in these as well as in the granite. The granite contacts marble (downstream) horizontally (marble lower) with a 1-2dm skarned zone (sparse pyrite, epidote crystalls). The granite varies between the mentioned fine-grained massive white granodioritic type and a coarser grained biotite richer type (locally foliated-gneissic). This seems to be intruded by the white granite but the actual relationship is unknown (if any?).

Comments:

Six Au anomalies were detected in 4 of the 5 tributaries forming the system (2 high-range and 4 medium-range), these draining a 'strike-length' of approximately 500m. During the second follow-up in 1983, 5 overburden samples were taken near anomalous sample points, two adjacent points having medium-range Au anomalies.

Recommendations:

A NW-SE trending zone of gold anomalies extending over 500m and 3 streams found. This zone should be followed up by soil and bank sampling and geological mapping.

Claim Name: Sor-Svartvatnet H No: 87 Size: km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:0ko Kart

Fedged: yes-No---Partly Claim retained: yes/ No

Stream length 1.0 km/ Drainage area:1.5km2

unbannal sample point (233 pph Au) resampled: Yes-No

Follow up team: CR/AK/JT Duration:1.0 days

Nos. of follow up sample RF 8037 - RF 8048

Description of drainage system:

Source is bog, descending through peatland and a heavily vegetated valley to join Vesterelven where the overburden consists of thick clay.

Geology:

Vesterelven follows a bed of marble which includes abundant granodiorite dykes and boudinaged amphibolite lenses which reflects the intense tectonic activity along the entire valley on the east side of the Reinfjellet granite. Micaschist hosts the marble at Svartvatnet, this being intruded by intensely pegmatite-veined porphyritic diorite. At the contact of the Reinfjell granodiorite, a thin marble stripe occurs, with local skarn mineralization. (pyrite, pyrrhotite)

Comments:

Taken along with claims nos.18,68, and 83 nine gold anomalies were detected. Three high range anomalies are concentrated in the south-east corner of the claims. These anomalies are broadly associated with strong arsenic anomalies, a pattern characteristic of the stream sediment anomalies downstream from the Quartz-arsenopyrite-gold veins at Rauvatn. This cluster of anomalies could be explained by a repetition of the mineralization aforementioned caused by strike-slip faulting in NW-SE direction.

Recommendations:

A high priority follow-up target. Deep overburden sampling with detailed geology/lithogeochemistry. In addition some tests with ground geophysics (EM and Mag.) are planned.

Claim Name: Ravatnet I No: 75 Size: 1.25 km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:Oko Kart P 178 I, III

Pegged: Yes No Partly Claim retained: yes / No

Allegan length 2.5 km/ Drainage area:2.0km2

us washed sample points (!1, 63 ppb Au) resampled: Yes No

Follow up team: JT/OK/GT Duration: 2.0 days

Nos. of follow up sample RF 2041 - RF 2055

Description of drainage system:

Stream with two large and various smaller tributaries drains the rocky slopes of Reinfjellet to the west as well as a large boggy plateau below the treeline.

Geology:

Rather uniform with extensive equigranular granitic-granodioritic bedrock. Locally, gneisose appearance. In a few places, pegmatitic stockwork of small extension (Down to a few m wide).

Comments:

Single (very) high-range Au anomaly detected in small tributary to sampled stream. N.B. claim area lies on opposite side of Reinfjell intrusive to the Sorsvartvatnet claim group.

Recommendations:

As Sample No. RF 2055 was collected from a small tributary, the follow-up with stream sediment sampling, geological mapping and rock sampling is straightforward.

Claim Name:Sor-Svartvatnet C No: 69 Size:6.0 km2

Claim location: Map sheet 1926 III Grane

:Air Photo

:0ko Kart D 179 I.II

Pegged: yes-No---Partly Claim retained: yes/ No

Stream length 6.0 km/ Drainage area:8.0km2

driotnal sample points (181,2 ppb Au) resampled: Yes-No

Follow up team: AS/BS Duration: 2.5 days

Nos. of follow up sample RF 3001 - RF 3069

Description of drainage system:

Numerous tributaries drain boggy areas and the well exposed western slopes of the Reinfjellet valley, thence meandering through bog and glacial till. For the lowermost 1.5 kms the stream flows in a shallow valley with small waterfalls/gulleys with good exposure. Geology:

Stream drains all the lithological units in the northern part of Reinfjellet i.e. eastern marble, biotite-gneiss, western marble and Reinfjellet granodiorite, lying as N-S to NNE-SSW orientated bands. Going from east to west the sequence is as follows:

1. Intrusives: Porphyritic granodiorite, intruded by a later

generation of more acid, equigranular dykes.

2.A 0.5 - 1.0 km broad eastern marble zone, running parallel to the mainstream between Svartvatnet and Nordre Svartvatnet. The marble is interbanded with granodioritic, gneissose rocks and

amphibolite lenses and pods. These rocks conceivably represent deformed and metamorphosed dykes. The amphibolites are often sulfide bearing (pyrrhotite, minor pyrite and very few grains of Cu-sulfides.)

The above mentioned rock types are all intersected by nearly undeformed granodioritic dykes.

- 3. The eastern marble zone is followed by a 2 km.broad biotite schist/gneiss zone. The contact between these two lithologies seems to be gradual over 10 30m with decreasing amounts of marble forming bands within the biotite gneiss. The proportion of mafic constituents in the biotite schists is highly variable.

 4. Western marble zone of 1 km width. This marble sequence is
- 4. Western marble zone of 1 km width. This marble sequence is frequently intruded by leucocratic dykes following the general strike direction.
- 5. Furthest to the west of the sampled area, intrusive rocks of granodioritic composition were encountered. A zone of $10-50~\mathrm{m}$ wide skarn alteration(with diss.py,po)was observed at the contact to the western marble.

Comments:

Taken together with Sor-Svartvatnet D - F ten gold anomalies were detected(4 high range, 2 mid range and 4 low range). As in the

Sor-Svartvatnet area as a whole the majority of the larger anomalies appear to be associated with the contacts of the Reinfjell porphyritic granodiorite to the metasediments.

Recommendations:

To be treated anologues with Sor Svartvatnet D-F-LU Vesterelva. DOB sampling along the rivers anomalous in gold and arsenic. Numerous larger scale structures parallel to the Rauvatn-vein crosscut the metasediments in the valley floor, where the anomalies are concentrated.

Claim Name:ForholtenNo: 89 Size:2.5 km2

Claim location: Map sheet 1826 II Eitera

:Air Photo

:0ko Kart DN 179 1, II, III, IV

Pegged: Yes No Partly Claim retained: yes/ No

stream length 3.0 km/ Drainage area:3.0km/2

uciqinal sample point (107 ppb Au) resampled: Yes No

Follow up team: TK/HK Duration: 2.0 days

Nos. of follow up sample EI 7030 - EI 7050

Description of drainage system:

Main stream rises in bog fed by meltwater, descending via karst systems. A triburtary has its source in Klubvatn. N.B. possible contamination on samples EI 7048 - 7050 from roads, forrest tracks.

Geology:

The high ground in the west consists of micaschist and granodiorite, grading into interbedded marbles and quartzites together with amphibolites and acid horizons(?tuffaceous) in the lower parts of the valley.

Comments:

Three low-range and one high range anomalies, which appear to have a source within quartz-diorite to the north-west.

Recommendations:

The high Au-anomaly of Sample No. EI 7047 was sampled near the source of the stream. Overall steep slopes indicate that active sediment was sampled - the catchment area is relatively small and a bedrock source should be found by geological mapping and rock sampling.

Claim Name: Vestfjeldene No: 32 Size:3.75 km2

Claim location: Map sheet 1826 II Eitera

:Air Photo

:0ko Kart DL 178 IV; M 178 III

Pegged: Yes No Partly Claim retained: Yes No

Stream length 7.0km Drainage area: 5.0 km 2

Original sample point (ppb Au) resampled: Yes No

Follow up team: AS/BS -(CR/AK/JT) Duration:3.5 day

Nos. of follow up sample : VV 2001 - VV 2005

VV 2011 - VV 2017 VV 3001 - VV 3017

Description of drainage system:

Source in snow-filled gulleys, descending via gulleys in well exposed terrain to a single gulley, thence into an area with numerous large overgrown boulders, (mainly derived from the surrounding slopes), with thin overburden which is probably morraine derived.

Geology:

The axis of the stream system follows a broad NE-SW trending raft of metasediments within both prophyritic and equigranular granodiorite. The metasediments are dominated by biotite-hornblende schist/gneiss which contain a thin marble horizon. The latter is skarned at contacts with numerous granite/granodiorite dykes, sulphides being observed at only one locality (VV 3001). To the N. West of the system, numerous smaller lenses and rafts of pelite occur in the granodiorite. Intense zones of stilbite introduction occur striking sub-parallel (i.e. approx. 0450) to the main gulley, the largest of these (approx. 70m broad x 200m strike), occurring near sed. sample points VV 3012, 3013.

Comments:

Seven Au anomalies were detected in the main stream and one of the upper gulleys along a 2.5km length (lx high-range, 3x med-range, 3x low-range). Skarn sample VV 3001 was not anomalous. The source is likely to be closely bound to the 045 fracture system within the metasedimentary raft. All gold anomalies are strongly correlated with As-Pb anomalies and concentrate along a major structure.

Recommendations:

High As-samples will be analysed for Sb and Bi. The resulting anomalies are to guide geological mapping and blast hole sampling.

Claim Name: Nedre Kvanlivatn No: 23 Size: 4.5 km2

Claim location: Map sheet 1826 III Vevelstad

:Air Photo F 012,013,014

:0ko Kart DK 180 III

Pegged: Yes No Partly Claim retained: yes/ No

Stream length 7.0km/ Drainage area:8.0 km 2

Original sample point (199 pph Au) resampled: Yes No

Follow up team: AS/BS <u>Duration</u>: 2.0 days

Nos. of follow up sample SF 3026 - SF 3046

SF 3001 - SF 3017

Description of drainage system:

The drainage system comprises a main stream with a general east-west direction. 4 tributaries to the north of the main stream with an orientation north-south were sampled. To the south of the main stream a stream system (A) parallel to the main stream was sampled. The lower (i.e. western) lkm of the main stream and the two tributaries in the western part (B+C) run in creeks. Often very narrow with rapids and small water falls. The overburden is local and thin. Most of the area is barren rock with sparse vegetation at higher altitudes. The creeks are often infilled with overgrown boulders. Between 1-2 km upstream from the coast the main stream and tributary system A runs in flat area. Here the main stream is strongly meandering and in places consists of a braided stream system. Tributary system A passes through a boggy area in the western part and drains a small lake further to the west. 3 small streams run into the small lake from the south and east. The tributary system drains the eastern slope of Hogfjeld.

The difference in drainage pattern between the western and eastern part of the sampled area, is mainly governed by the difference in lithology in the two parts. The rock type being porphyritic granodiorite in the western part and metasediments (mainly mica-schist) in the eastern part. The "N-S orientation of the tributaries B and C is governed by major N-S striking fracture zones.

Geology:

Strong alteration of the porphyritic granodiorite occurs in the western part of the area, in 0.1 to 10 m broad NW-SE and N-S trending zones. This consists of chloritization, sericitization and epidotization and the introduction of k-feldspar and quartz. Thin jasperoidal silica and stilbite occurs as veinlets. No sulphides were observed (Rock samples SF 3003-3008).

Comments:

Two anomalies detected. Regionally strong arsenic anomalies and a very high Zn-Pb anomaly at Sample P. SF 3044. 1 (very) high range =980 ppb, one medium-range).

Recommendations:

The follow-up should concentrate on Sa. P. SF 3035 with 980 ppb Au. A bedrock source should be reached to the south - where the topography indicates a major structure parallel to the eastern shore of Vaslivatn. Base of slope soil sampling and geological mapping with final rock sampling.

Claim Name: N. Vesterdalselven No: 28 Size: 1.5 km2

Claim location: Map sheet 1826 II Eitera

:Air Photo /

:Oko KartDK 175 II

Pegged: YesNo-Partly Claim retained: yes/No

Stream length: 0.8km Drainage area: 0.3 Mm2

Original sample point (9 ppb Aut remaples: e.s.

Follow up team: OK/CT Duration: 2.0 days

Nos. of follow up samples: TE 4015 - TE 4023

Description of drainage system:

The stream, with one tributary in the lower part, drains the eastern slope of Laksmarkelvdalen. Over the lower 300 m the stream runs with moderate slope angles through forrest, partly also on overgrown talus. At higher altitudes the slope angle becomes very steep and the stream passes through a gorge into more moderate slopes again.

Geology:

The area is dominated by granodiorite. In addition micaschists, marbles and greenish metasediments (skarn) were found. The granodiorite is greatly affected by stilbite alteration along north-south trending fissures. Rock sample 0300 TE 4016 was taken from this alteration. Upslope of stream sed. samples TE 4022/23 and TE 4021 a sulfide bearing biotite schist was detected. These horizons were between 0.4 and 4.0 meter wide.

Comments:

No gold anomalies detected, but samples TE 4017 and TE 4018 show very anomalous Pb-Zn values. The anomalies are open towards south-west.

Recommendations for further follow up:

Rapid check of headwaters to detect the source of Pb-Zn anomaly. Sulfide-bearing skarn horizons as mentioned in the description above, returned with 340 ppb Au from N-Westerdalen approx. 1.5 km further north.

Claim Name: Holmtjern I No:114 Size: 0.25 km2

Claim location: Map sheet 1825 II Majaklumpen/

:Air Photo 25-4 15

:Oko Kart

Pegged: YesNoPartly Claim retained: yes/No

Stream length: 0.5km Drainage area: 0.25 km2

Original sample point(7 ppb Au) resampled: YesNo

Follow up team: KB/KA Duratio

Duration: 1.0 days

Nos.of follow up samples: KD 5001 - KD 5002

Description of drainage system: Small stream of one meter width runs along a canyon, probably defining a fault . Most of the stream is snow covered, no tributaries seen.

Regional Geology: Predominant lithology is Biotite Gneiss.Local depressions are underlain by marbles and other metasediments.The contacts between the gneisses and the marble horizons is characterized by abundant skarns.Along the NW-shore of the lake intense Quartz veining is observable.These veins reach up to 4m in width.

Comments:

No gold anomalies detected, but overall high Pb-Zn-As levels.

Recommendations for further follow up:
The quartz veining of considerable width should be checked as a possible bedrock source for the base-metal, As anomalies.

Claim Name: Kalklavdalen III No:137 Size:1.25 km2

Claim location: Map sheet 1825 II Majaklumpen/

:Air Photo 25-4-14/

:Oko Kart DN 168/2

Peaged: YesNoPartly Claim retained: yes/No

Stroam length: 1.5km Drainage area:2.5 km2

Unisinal sample point(68 ppb Au) resampled: YesNo

Follow up team: KB/KA Duration:1.0 days

Nos.of follow up samples: KD 5013 - KD 5019

Description of drainage system: A mainstream and three tributaries were sampled. The mainstream runs mostly over bedrock, and is therefor irregular in width and depth. Generally shallow and up to 5 meters wide forms the stream occasionally little pods and lakes. The three tributaries as well as the mainstream follow the orthogonal N-S,E-W jointing.

Regional Geology: Main lithology is gneissose Diorite and Monzodiorite. In the east of the claim contact to granite. A pegmatitic quartz-vein with chalcopyrite mineralization (rock sample 0300 KD 5001) was found in tributary 1, which follows a N-S trending fault. Further upstream occurs a 10 meter wide mylonite?/shear zone.

Comments:

One middle range gold anomaly detected in area with 136 Kalklavdalen III. Rock sample KD 5001 returned with 120 ppb Au and 3000 ppm Cu.

Recommendations for further follow up: The mylonite zone should be mapped and sampled!

Claim Name: Rosvik Nol51 Size: 1.75 km2

Claim location: Map sheet 1725 II Solstad

:Air Photo

:Oko Kart

Fedged: Yes-No -- - Partly Claim retained: Yes No

Stream length 2.0km Drainage area: 3.0 km 2

gradual sample points(10 ppb Aus resampled:Yes-No.

Follow up team: KA/KB <u>Duration:1.0day</u>

Nos. of follow up sample: RK 5001 - RK 5017

Description of drainage system:

The stream is 2-3m wide and 0.3-0.4 m deep for the first 800m, where it runs in a flat area. The rest of the stream alternates between a steeply plunging and a meandering behaviour. The lowest part of the stream meanders through post-glacial marine sediments!

Geology:

Granite and granodiorite intruded into a fine-grained laminated, pink feldspathic lithology (possibly volcanics) and metasediments (mica schist). A serpentinite pod also occurs.

Comments:

One high and one middle range gold anomaly. The geological association (acid tuffs, serpentinite, granite/granodiorite) is of interest.

Recommendations:

Detailed geological mapping and lithogeochemical sampling and bank, base of slope soil sampling around Sa. P. RK 5005.

Claim Name:Lekatinden II No155 Size: 0.5 km2

Claim location: Map sheet 1925 III Leka

:Air Photo NLF 8001, 25-1 (frames 11-12)

25-2 (frames 04-05)

:Oko Kart

Peccel: Yes No -- Partly Claim retained: Yes No

Stream length 2.0km Drainage area: 1.5 km 2

Original sample point (49 ppb Au) resampled: Yes No

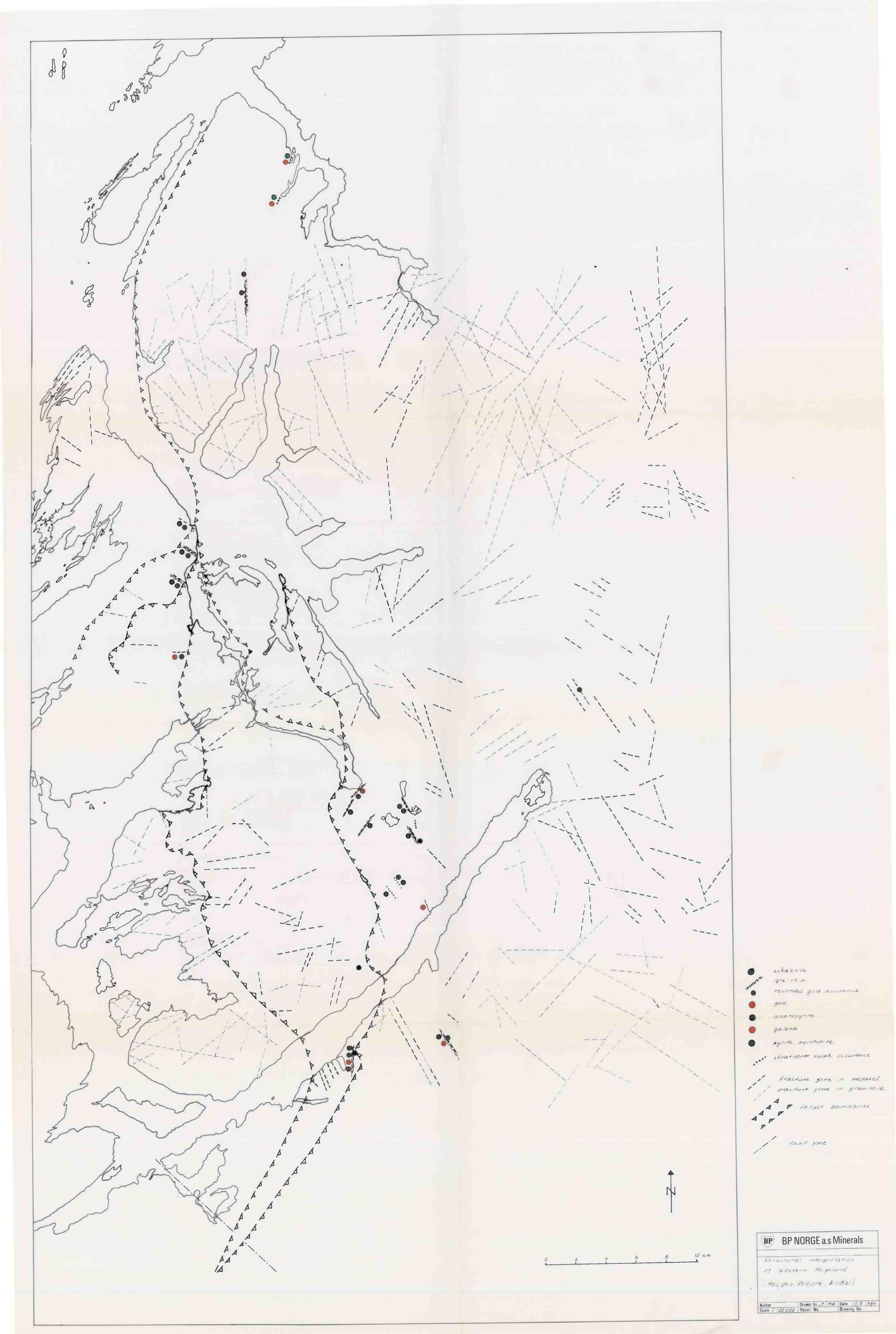
Follow up team: HB/IF Duration: 0.5day

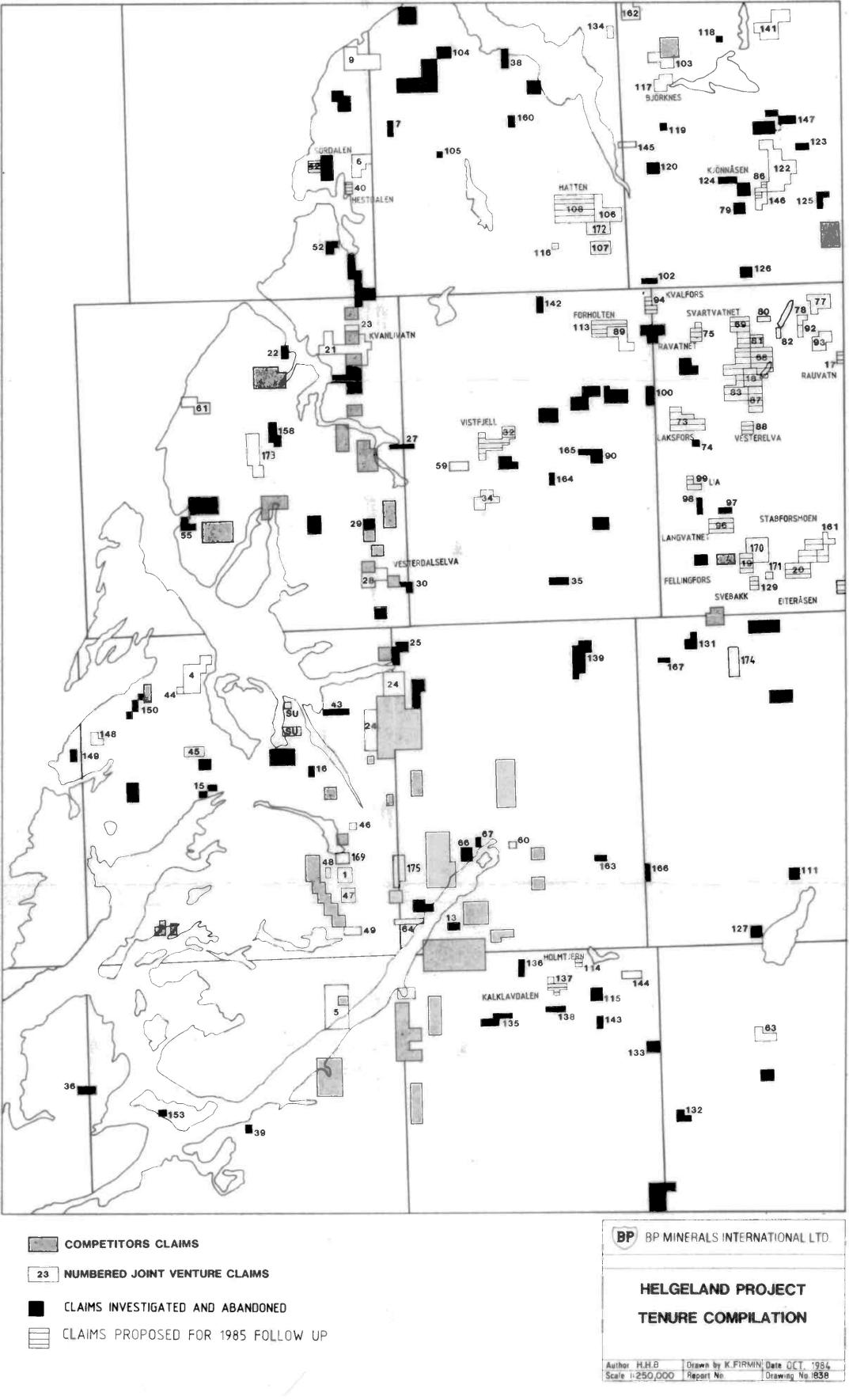
Nos. of follow up sample : LE 0005 - LE 0013

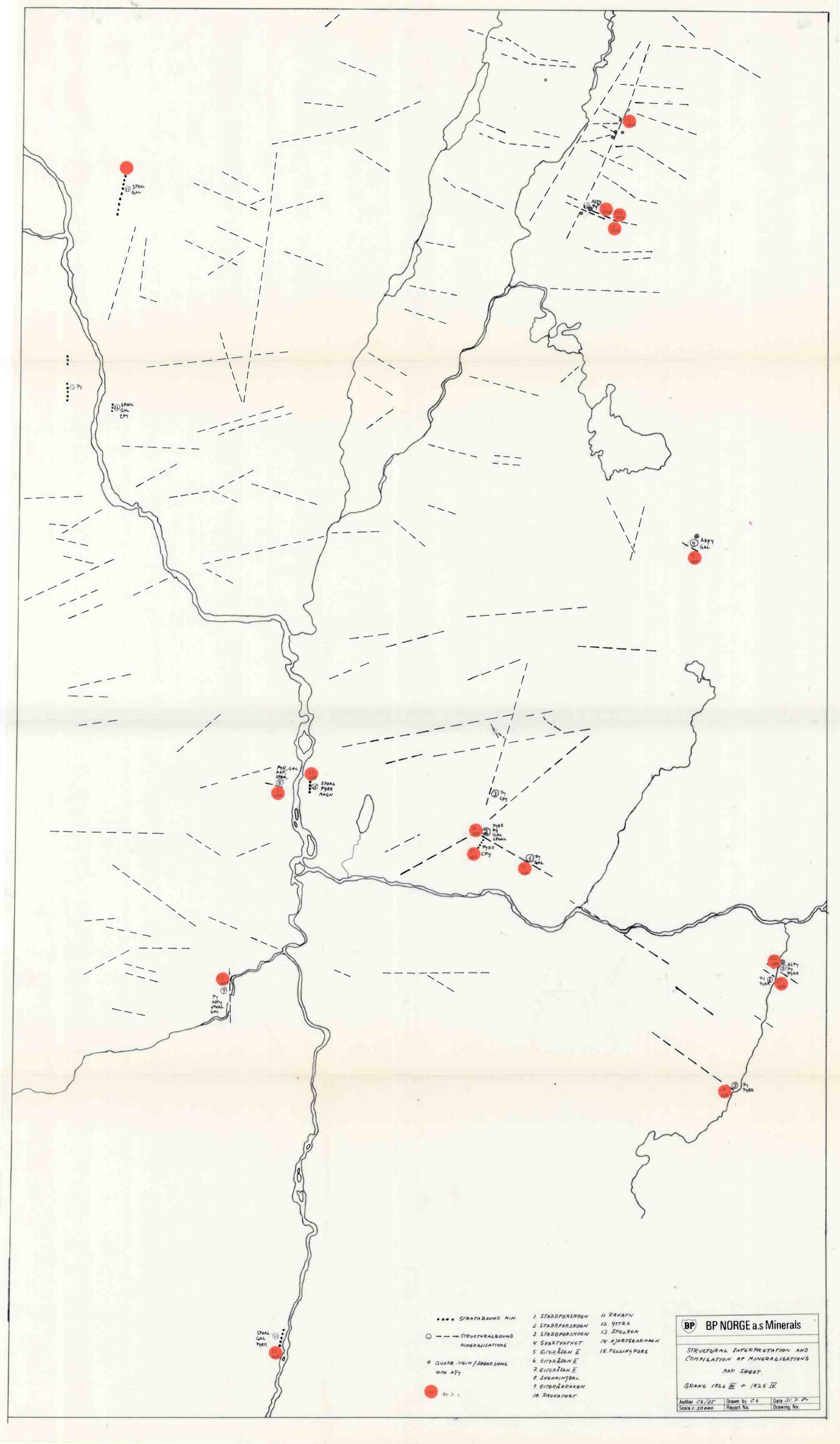
Description of drainage system:

Two major tributaries rising in mod. sloped semi-plateau with excellent exposure and numerous shallow gulleys, descent via steep waterfalls not uncommonly following bedrok fractures to a flat semi-bog area with no exposures. Thence through bedrock gulleys to the original anomaly point.

Geology:


Headwaters in metagabbro with strongly folded chloritic shear-zones. This is cut by sub-vertical fractures commonly containing minor traces of sulphide mineralization. Metagabbro and diorite near original anomaly point.


ments:


One high-range, 2 med-range and 1 low-range anomaly detected. Very good correlation between gold, arsenic and copper.

Recommendations:

The contact between the metagabbro in the east and the serpentinite in the west should be carefully inspected and sampled.

