

Bergvesenet

Rapportarkivet

Postboks 3021. N-7441 Trondheim

Bergvesenet rapport in 2427	Intern Journal nr 09/00084-1 vedl 1	Internt arkiv nr	Rapport lokalisering	Gradering
Kommer fraarkiv Intex Resources ASA	Ekstern rapport nr 11656-001	Oversendt fra Molynor AS	Fortrolig pga	Fortrolig fra dato:
Tittel An Investigation in	to the Recovery of N	Molybdenum Ore (Composite from the	Hurdal Orebody
Forfatter Mokrzycki Paul, Imeson Dan		Dato Ar 22.07 2008	Bedrift (Oppdragsgive Molynor AS v/ Intex	er og/eller oppdragstaker) Resources ASA
Commune Hurdal	Fylke B Akershus		1: 50 000 kartblad 9154	1: 250 000 kartblad Hamar
Fagområde Dokument tyl Oppredning miljø		Hurdalfe Nordli	ster (forekomst, gruvefelt Itet ekomsten	, undersøkelsesfelt)
Råstoffgruppe Råstofftype				
Råstoffgruppe	Råstofftype			

ammendrag, innholdsfortegnelse eller innholdsbeskrivelse


Rapporten er på engelsk og er utført av SGS Lakefield Research Limited på oppdrag for Intex Resources ASA). Rapporten omhandler formålstesting av reagenser og flytskjema-muligheter for flotasjonsutvinningen av molybden på malm fra Hurdalen.

En får beskrevet hvordan 155 kg med borkjernemateriale blir prossesert ned til aktuelle provestørrelser for de forskjellige testene som maletest og flere forskjellige oppredningstekniske forsøk.

Rapporten beskriver videre bruken av forskjellige reagenser i flot forsøkene, her oppnår en et konsentrat på 57% Mo med en utvinning på 78%. Det anslås at en kontinuerlig flotasjon vil øke utvinningen til 85-90%.

Det foreslås flere alternativer til flotasjonsagenser, flotasjon fra flere soner i forekomsten, malbarheten i forhold til malmhardhet og avgangens påvirkning på det ytre miljøet.

IKKE SKANNET

An Investigation into

THE RECOVERY OF MOLYBDENUM ORE COMPOSITE FROM THE HURDAL ORE BODY

prepared for

Intex Resources ASA

Project 11656-001 – Final Report July 22, 2008

NOTE:

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Minerals Services.

Table of Contents

Exec	cutive Summary	111
Intro	oduction	V
1.	Sample Receipt and Preparation	
2.	Material Characterization	
3.	Bond Ball Mill Work Index Testing	
4.	Metallurgical Testwork	
5.	QEMSCAN Characterization	
6.	Conclusions and Recommendations	19
App	pendix A – Drill Core Inventory List	21
App	pendix B – Bond Work Index Data and Calculations	23
App	bendix C – Rougher Kinetics Test Sheets	27
Арр	pendix D – Batch Cleaner Test Sheets	35
App	pendix E – Mineralogy Data	58

List of Figures

Figure 1. Hardness of Hurdal Ore Relative to SGS BWI Database	2
Figure 2. Mo Rougher Grade-Recovery Curves	
Figure 3. Mo Rougher Kinetics	5
Figure 4. Rougher Recovery as Function of Mass Pull	6
Figure 5. Mo Grade-Recovery Curves for Cleaner Tests	10
Figure 6. Open-Circuit Flowsheet of Cleaner Test F13	11
Figure 7. QEMSCAN and Direct Assay Reconciliation	
Figure 8. Average Grain Size Distribution of Minerals in Rougher Concentrate	15
Figure 9. Rougher Concentrate Molybdenum Liberation Statistics	16
Figure 10. Molybdenum Association Statistics	
Figure 11. Theoretical Size-Limiting Grade-Recovery Curves	18
Figure 12. Theoretical Molybdenite Liberation Curve	
List of Tables	
Table 1, Head Assay of Hurdal Drill Core Composite	l
Table 2. Test Summary of Initial Rougher Tests.	4
Table 3. Summary of Cleaner Test Results.	
Table 4. Operating Statistics for PMA	13
Table 5. XRD Identification of Crystalline Phases in -106+53 μm fraction	
Table 6. Criteria for Liberation Classification	15

Executive Summary

This report summarizes scoping testwork completed for Intex Resources ASA (formerly Crew Minerals AS). The testwork investigated reagent and flowsheet options for the flotation recovery of molybdenum, on ore from the Hurdal property in Sweden. The scope of the program involved; sample preparation of a single composite, grindability testing, high-definition QEMSCANTM mineralogical characterization, rougher kinetics testing, and batch cleaner testing. The Hurdal composite graded 0.12% Mo and 0.79% S.

Grindability testing on the Hurdal composite resulted in a Bond Ball Work Index (BWI) of 14.7 kWh/t. Relative to other BWI indices in the SGS database, this result is indicative of a medium hardness ore.

Four rougher kinetics tests were performed. Commercial diesel (Diesel #2) was used as the 'fuel oil' collector, and pine oil was used as the frother. The rougher kinetics tests indicated that a flotation time of at least 20 minutes would be required for maximum recovery of molybdenum, at a primary grind of P_{80} = 114 μ m. Rougher molybdenum recoveries using this primary grind were typically in the range of 90-92%.

Subsequent cleaner testing further explored changes and optimization to reagent addition in the roughers. Fuel oil dosage was reduced from 80 g/t to 55 g/t, and pine oil was eliminated in favour of MIBC. The combined effect of these two changes allowed for better molybdenum upgrading in the cleaners. MIBC dosage in the roughers was 50 g/t.

Six cleaner tests were performed to study the effects of different reagents, dosages, and regrind, on the upgrading characteristics of the ore. It was determined that only 4-5 cleaner stages were required to sufficiently upgrade the final concentrate to a saleable grade (at least 50% Mo).

Two dispersants were tested to mitigate the presence of talc-like mineralization (phyllosilicates) in the cleaner concentrates: carboxy-methyl cellulose (CMC) and sodium silicate (Na₂SiO₃). Sodium silicate was more effective at this function since CMC adversely affected molybdenum recovery. With higher sodium silicate dosages, concentrate grades improved but at the expense of molybdenum recovery to the final concentrate.

The cleaner test with the best metallurgical performance utilized a conventional lime/NaCN pyrite depressant scheme, five stages of cleaning, and a second regrind before the fifth stage of cleaning. The final concentrate graded 57% Mo with a 78% molybdenum recovery to the final concentrate. In a continuous environment with re-circulation of middling streams. SGS anticipates molybdenum recoveries would improve to 85-90%.

Mineralogical characterization (by XRD and QEMSCANTM analysis) of a rougher concentrate indicated that it largely consisted of molybdenite, with minor amounts of pyrite. The largest constituent of non-sulphide gangue was quartz. Molybdenite was highly liberated in the rougher concentrate sample. Based on the test results and the mineralogical investigation, the Hurdal ore is not considered to be highly refractory in nature. Molybdenite liberation of 96% can be achieved with a regrind size of $20 \, \mu m$.

M

Introduction

This report summarizes scoping testwork completed for Intex Resources ASA (formerly Crew Minerals AS). The testwork investigated reagent and flowsheet options for the flotation recovery of molybdenum, on ore from the Hurdal property in Sweden. The scope of the program involved; sample preparation of a single composite, grindability testing, QEMSCANTM mineralogical characterization, rougher kinetics testing, and batch cleaner testing. All work referenced in this report was completed under the internal SGS project number of CALR-11656-001.

The primary goal of this testwork was to assess the flotation response of the ore and conceptualize a flowsheet. Various reagents and flowsheets were examined to achieve this goal.

The testing program was completed over the months of September 2007 to January 2008, Mr. Jon Steen Petersen, and Ms. Jette Blomsterberg, both of Intex Resources ASA, were regularly updated with new results as the testing progressed.

Paul Moleysole

Paul Mokrzycki, M.A.Sc. Project Metallurgist

D. e - -

Dan Imeson, MSc. Manager – Flotation Group

Testwork Summary

1. Sample Receipt and Preparation

Approximately 155 kg of drill core shipped from Crew Minerals' Hurdal Molybdenum ore body was received at the SGS Lakefield site on August 28, 2007. This shipment was assigned the receipt number of 0373-AUG07. Upon receipt, sample inventory and weights were taken, and compared with a shipping list from the client. The inventory list is given in Appendix A. Once inventoried, the drill core was crushed to -6 mesh and combined, and 10 kg of material riffled out for Bond ball mill work index testing. The remainder of the material was stage crushed to -10 mesh and riffled into 10 kg charges. Approximately 150 grams of material was extracted for head sample chemical analysis.

2. Material Characterization

2.1. Chemical Analysis

The head analysis sample obtained from initial sample preparation was assayed for Mo, W, and S and included an ICP metal scan. A list of the assays is given in Table 1.

Element	Assay	Element	Assay
XRF		ICP	
Mo %	(),12	Li g/t	< 5
W %	< 0.01	Mg g/t	1800
S %	0.79	Mn g/t	200
ICP		Na g/t	28000
Ag g/t	0.3	Ni g/t	25
Al g/t	60000	P g/t	390
As g/t	< 10	Pb g/t	6
Ba g/t	460	Sb g/t	< 0.8
Be g/t	3.3	Se g/t	< 10
Bi g/t	< 0.6	Sn g/t	< 2
Ca g/t	2300	Sr g/t	160
Cd g/t	< 2	Ti g/t	1700
Co g/t	< 0.6	Tl g/t	0.5
Cr g/t	14	U g/t	5.3
Cu g/t	7.9	V g/t	3
Fe g/t	8600	Y 2/t	7.5
K g/t	37000	Zn g/t	29

Table 1. Head Assay of Hurdal Drill Core Composite

The analyses indicate that sulphides were mainly comprised of molybdenite and iron sulphides, in a ratio of approximately 1:6.

3. Bond Ball Mill Work Index Testing

The Bond ball mill grindability test is performed according to the original Bond procedure. The closing size of the BWI for this test was 150 mesh ($106\mu m$) with a product P_{80} of 127 μm . The BWI was determined to be 14.7 kWh/t for the Hurdal ore. This is considered to be a 'medium hardness' ore in the context of the SGS BWI database. A histogram of the relative hardness of the Hurdal ore is shown in Figure 1. Details on testing data and calculations can be found in Appendix B.

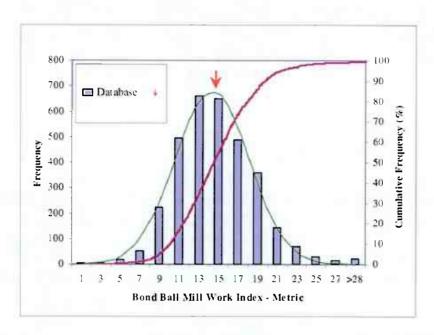


Figure 1. Hardness of the Hurdal Ore (Red Arrow) Relative to the SGSBWI Database

4. Metallurgical Testwork

The suite of tests discussed here serve as a 'scoping' test program to investigate the metallurgical response of Hurdal ore with flotation. An initial set of rougher tests were conducted to establish a basic rougher flowsheet and grind times for further testwork. Cleaner testwork was completed to assess upgrading potential of the ore to a saleable concentrate. In total, four rougher, and eight batch cleaner tests were completed.

4.1. Rougher Metallurgy

Four rougher tests, F1-F4, were conducted, with the results presented in Table 2. The test sheets are provided in Appendix C. Commercial Diesel Fuel was used as the collector (the Diesel has been called "fuel oil" in this report). Pine oil was used as the frother. These tests were performed to establish an appropriate rougher flowsheet, as well as to establish an appropriate grind for optimal Mo recovery. Up to four incremental rougher concentrates were collected for each test, followed by a scavenger concentrate. The fuel oil was added to the primary grind because high attrition forces are required to adequately disperse the fuel oil over the mineral surfaces. Test F1 had a rougher time of 10 minutes, with an additional 4 minute scavenger stage.

The rougher Mo recovery was 86%, and with the scavenger concentrate, overall Mo recovery of the flowsheet was 88%. Results for F1 (Appendix C) indicated that the Mo grade of the third rougher concentrate was 0.36% Mo. The rougher scavenger concentrate assayed at 0.56% Mo. Collector was added in the scavenger stage, and ideally, the scavenger concentrate should assay at head grade (since in a plant process the scavenger concentrate will be recycled back into the roughers).

The significance of the Mo grade in the scavenger concentrate being both higher than the third rougher concentrate, and the head grade, is that either more collector or more residence time is required in the roughers. An increase in rougher time was implemented in tests F2-F4, with the inclusion of a 4 minute rougher stage. Tests F1 and F4 had the same primary grind and the inclusion of the additional 4 minute rougher stage increased Mo recovery by 1%. The scavenger time in F2-F4 was extended to 6 minutes. The total float time in tests F2-F4 increased to 20 minutes. Test F3 had the highest Mo recovery in the overall rougher concentrate at 91%, and improved to 92% with the scavenger.

Test F3 had the finest grind at 114 μ m, with a total fuel oil dosage of 80g/t. Test F2 had the same fuel oil dosage as F3, but had a coarser grind at 150 μ m. Mo recovery in F3 was 2% greater than F2. Mass pull to the rougher concentrate was highest in F3 at ~ 4%. The kinetic and grade-recovery data of the rougher kinetics tests are illustrated in Figures 1-4.

Table 2. Test Summary of Initial Rougher Tests

			Grade (%)		Distribution (%)		
Test# / Flowsheet / Conditions	Product	Wt. (%)	Mo	S	Mo	S	
FI	Mo Ro Conc 1	1.06	9.26	0.81	75.1	32.4	
$P80 = 205 \mu m$	Mo Ro Conc 1-2	1.81	6.14	1.45	85.0	38.4	
Diesel in Grind: 40 g/t	Mo Ro Conc 1-3	2.16	5.19	1.77	85.9	39.7	
Total Diesel = $55 g/t$	Mo Ro Scav Cone + Ro Cone 1-3	2.65	4.33	2.20	88.1	41.1	
Pine Oil = 50 g/t	Ro TIs	97.3	0.016	0.14	11.9	58.9	
Float time = 14 min	Head (Cale)		0.13	0.23			
F2	Mo Ro Conc 1	1.12	8.67	1.19	77.0	18.7	
$P80 = 194 \mu m$	Mo Ro Conc 1-2	2.09	5.25	2.38	86.9	22.7	
Diesel in Grind: 60 g/t	Mo Ro Cone 1-3	2.76	4.06	3.22	88.9	23.8	
Total Diesel = 80 g/t	Mo Ro Conc 1-4	3.15	3.58	3.70	89.5	24.1	
Pine Oil = 50 g/t	Mo Ro Scav Conc + Ro Conc 1-4	3.65	3,11	4.34	90.1	24.6	
Float Time = 20 min	Ro Tls	96.4	0.013	0.43	9.9	75.4	
	Head (Calc)		0.13	0.55			
F3	Mo Ro Conc 1	1.81	4.99	2.47	70.0	21.6	
$P80 = 114 \mu m$	Mo Ro Conc 1-2	2.74	4.09	3,69	86.8	26.5	
Diesel in Grind: 60 g/t	Mo Ro Conc 1-3	3.24	3.60	4.38	90.3	27.6	
Total Diesel = 80 g/t	Mo Ro Conc 1-4	3.87	3.05	5.45	91.4	29.1	
Pine Oil = 50 g/t	Mo Ro Scav Cone + Ro Cone 1-4	4.33	2.74	6.19	91.9	29.7	
Float Time = 20 min	Ro Tis	95.7	0.011	0.42	8:1	70.3	
	Head (Calc)		0.13	0.57			
F4	Mo Ro Conc 1	1.16	7.50	1.05	68.0	15.1	
$P80 = 202 \mu m$	Mo Ro Cone 1-2	1.83	5.58	1.78	80.0	19.0	
Diesel in Grind: 40 g/t	Mo Ro Conc 1-3	2.41	4.48	2.38	84.5	20.5	
Total Diesel = 60 g/t	Mo Ro Cone 1-4	2.77	4.02	2.78	87.0	21.4	
Pine Oil = 50 g/t	Mo Ro Scav Conc + Ro Conc 1-4	3.22	3.49	3.30	87.9	22.0	
Float Time = 20 min	Ro Tls	96.8	0.016	0.42	12.1	78.0	
	Head (Calc)		0.13	0.52			

Figure 2 presents the grade-recovery curves of the rougher kinetics tests. It is evident that test F3 produced the highest recovery, but at the expense of grade. The grinds of tests F2 and F4 were coarser and thus likely had less Mo liberation than test F3. Figure 3 shows that for F3, Mo recovery to the first rougher concentrate is not as high as F1 or F2, even though Mo liberation should be better. It is possible that there was either more floatable gangue or slower flotation kinetics (due to finer grind) in F3. This may be compensated by the addition of more collector. Over the course of the test, F3 eventually recovers more Mo. The higher recovery appears to be also connected with a higher mass pull, as shown in Figure 3.

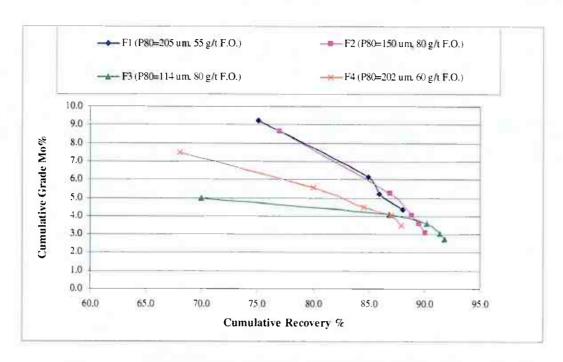


Figure 2. Mo Rougher Grade-Recovery Curves

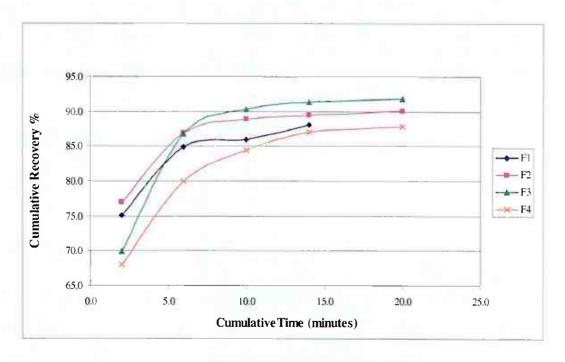


Figure 3. Mo Rougher Kinetics

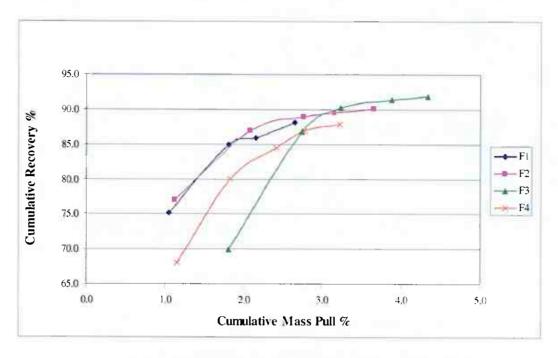


Figure 4. Rougher Recovery as Function of Mass Pull

The results of the rougher kinetics tests can be summarized as follows:

- Molybdenum occurrence is likely bimodal. Fast floating, well liberated molybdenum floats in the
 first several minutes of the roughers followed by more poorly liberated molybdenum in the later
 rougher/scavenger stages.
- Rougher Mo recovery appears to be partially related to mass pull. The finer grind in test F3 also appears to have a positive impact on recovery. A grind time of 45 minutes for P₈₀= 114µm, 20 minutes flotation time, and total of 80 g/t fuel oil produced the best overall molybdenum rougher recovery of 92%.

4.2. Cleaner Metallurgy

Eight cleaner tests. F5. F6, and F8-F13, were conducted to investigate various reagent and flowsheet alternatives for the production of a saleable molybdenum concentrate. A summary of these results is presented in Table 3. The test sheets are provided in Appendix D.

Tests F5 and F6 compared the effect of primary grind time on cleaner performance. Pine oil was used as the frother in these two tests. The rougher circuit targeted higher mass pull than the rougher tests. No regrind was applied to the rougher concentrate. Four cleaner stages were used. No depressants were added in the cleaner circuit. Both tests resulted in a concentrate with 85% molybdenum recovery, at a grade of 23% Mo. Molybdenum recovery to the final concentrate in F6 was also 85%, and graded 23%

Mo. The different primary grind times had no perceivable effect. Under a microscope, the gangue in the final concentrates appeared to consist of large liberated silicate particles and a small proportion of fine pyrite grains. With the large silicate particles reporting to the final concentrate, it was suspected that either the fuel oil dosage was too high or the pine oil frother was too aggressive.

Table 3. Summary of Cleaner Test Results

Test# / Flowsheet / Conditions	Ohimuse	Product	WECST	Mo	KIE	Mo	tion : 5.
13	Test alcongs with 15 pure.	Mi Cr4Cisc	0.5	22.6	15.3	84.8	13.1
Fu + 157 ini	primary great.	Mi-Cir 3 Cirs	0.6	17.5	14.4	86.7	19.5
David in Crist, 40 a/c	D	Mi-Cr2Oix	0.8	123	10.8	87.9	16.1
Intal Besel v #1 gd		M Cr1Cox	16	6.96	611	89.2	13.1
Pine Off = 50 gh		M. Reffers	6.9	1:76	\$00	809	21.4
Flori Book v 14 mm		R=Tis	83.T	0.012	0.47	6.15	78.4
120000000000000000000000000000000000000		He ad / Cak		(0.12	0.56		
		Head Direct	1	0.12	0.79		
16	Test carriers with 45 mm.	M Cr + Conc	8.5	22.6	6.79	K1 9	1111
F ₁₀ = 124 jets	prinary gried.	M Car 3 Cars	0.6	14.1	17.0	80.5	19.5
Direct in Crital 10 p/r	F1	M-Cr2C-s	0.8	18.3	12.7	82.7	111.7
Digital Digital + 40 g/s		M-Cr1Cis	16	1.70	6.71	80.1	20.7
Fire DEADE git		M. B. C.	4.8		7.71	W18	21.6
But Disc v 20 tm		Re Tis	10.5	0.78	0.43	938	76.4
Tem time 4 to time			10.7	2000	552	7.4	76.4
		Read Cox		8.12	0.52		
18	Lower development	Mi-Cir4One	0.5	55.1	35.3	49.6	6.0
Primary PNO n (197 gm)	and CMC in elegions	Mi-Chilon	0.1	54.0	35.2	5000	1.0
Second Respired PNO + N/A		Mi Cr 2 Circ	0.1	425	ITA:	90.4	8.0
Dissel at Crist, 40 ph		Mi-Cir I Circ	0.6	(4.1	11.8	20.1	14.0
Total Dissel + 56 g l		Mir Ca I Cox - Ca I Sup Cirk	0.9	10.0	8.43	88.3	10.2
N(N+0)gh		Min Rit Cink	4.0	3.38	2.25	Mile	18.9
MIRC + 40 g/l		M. R. Con . R. Service	5.0	1.95	1.90	81.0	29.5
CMC = i0 st		R Ds	95.0	600	0.41	8.0	80.5
		Head Cak	-	3.0	0.48		-
Fig.	Li wer diese it sage	Mi Cir 4 Conc	6.1	55.5	34.4	64.1	6.82
Privacy PSO = 119 pm	And Softern Sax de	Mil Cat 3 Cirk	0.1	53.4	82.1	70.1	7.46
Second Re-grind PNO + 18 µm	Na2O*iS O2 a cleaners	Mir Cir 2 Circ.	62:	42.5	15.8	76.4	8.22
Diesel in Crind: 4% g/s		Mil Cir I Circ	0.6	13.6	0.87	82.5	10.4
Tittal Diesel # 56 g/s		Mi-Ca I Circ. • Ca 1 Scin Circ.	0.8	100	2.27	550	70.7
NiCN = 40 g/t		Mill Rill Cox	2,6	1.25	4.00	92.1	16.9
MBiC + 42.5 g/s		Mi Rii Cinx + Ro Sciv Cirix	3.4	2.55	3.51	92.4	20.7
National (0.00 pt		K t k	(R).0	UXS	0.49	5.57	79.7
		Heat (Cax)		9.30	0.59		
	W	Mi Cz 4 Cirk		451		76.0	
Property PNO = 140 arm	Singed primary grand Line Social Science	Mi Cr 3 Cirk	0.2	45.5	XLI his	NZ.1	8.0
	1 4 5000 50 0						
Second Ranging PSU = 24 p.m. Elevel it Orisct 40 g/t		Mir Cir 2 Cine	62	27.9	28.5	84.5	10.7
		Mo Cir I Coss	6.5	34.9	13.9	88.7	31.6
NicN+41gh		Mr Cr I Circ. • Ch. I Scir Circ.	67	126	30.4	Mari	12.0
Line = 74 p/t		Mr. Re Circ	12	2.0	4.17	10.2	28.0
Total Diesel + 55.5 g/s		M+R+Cox - R+Scar Core	5.0	1,84	3.50	12.7	28.4
MIBC = 51.5 gh		Mir Ril Tis	95.0	UCON	0.47	1.3.8	71.4
No2046840, # 200 pt		Head Can		EL738)	11.63		
Fit	S god je navy grmd	Mil-Cir + Clinc	0.0	48.2	30.5	72.6	73
Princey PS0 = 142 am	Lower Sedion Scicate	Mir Car 3 Class	0.2	47.4	30:1	16.2	3.2
Second Regard PS) = 25 µm	N Nat N added	Mis Car 2 Circu	0.2	43.3	27.6	18.0	9.0
Diesel in Cried 40 g/f.	THE NAME OF THE PARTY OF	Micalda	0.4	263	15.3	82.8	8.7
Line = 10 gt		Mir Ca I Circ. + Ch. (Scin. Circ.	0.6	153	9.84	88.1	9.0
Total Diesel + 55.5 gm		M) Ro Cac	3.5	2.24	5.92	817	25.1
MBC = 51.5 gA		Mi Ra Cinc - Ro San Cinc	22	2.01	2.58	91.0	25.5
						91.0	
Nu30*s5iO ₃ = 200 jst.		Mr. Ro Tis Bleat (Cak)	10.6	E009	0.48 HA2	74	74.5
1		The state of the s			11.002	1	
F12	Suged printery grand	Mo Cz 4 Cox	815	55.6	M. 3	51.3	3.9
Printery PNI v 134 pm	Submittee NaHS for NaCN	Mr Cr 8 Cinc	0.1	50.8	33.0	67.0	2.0
Sound Re-grad PST = 27 pm	to depress pyriu	Mir Cir 2 Cins	0.2	43.2	29.5	76.7	1.3
Direct in Cross: 40 gA	1000 ph Sylvin Sissate	McCr1Cin	0.3	25.80	17.8	83.3	3.1
Linu = 20 a/s		Mi-Cr I Circ. + Cr. I Scin. Circ.	0.6	(5.7)	10.1	88.1	0.3
Notes = 200 g/t		Mu Ro Ciric	28	3.44	4.32	92.1	5.8
Total Diesel + \$5.5 pt.		M. R. Cox - R. San Cox	3.7	2.41	2.34	12.5	0.6
MIRC = 50 g/t		Mis Ro Tis	M. 2	1.00	0.48	2.7	79.5
Ni2026SiO ₂ + 1000 grt		Heal (Cak)		400	0.56		
F13	Suggest promaty prints	Mi-Cr5Cirk	0.7	56.6	31.0	77.6	10.0
Primary P ₆₁ = 148 µm	Add to see alregand	M Ca 4 Conc	92	19.5	29.8	80.6	10.2
Second Re-great Page 15 pm	in cleaners	MICE I CIN	0.2	44.6	30.5	82.9	11.2
Diesel in Crist 47 g/t		My Cly 2 Close	0.2	36.8	28.0	53.7	11.6
NCN+1041		M Cr 1 Cinc	0.5	3014	22.8	84.3	12.5
OP6 = 25.5 g t		Mi Cri Cik - Cri Six Disc	06	8.4	12.5	88.4	15.2
Lyini Dieset + 50 g/s.		Ma Ba Cax	3.0	3.50	5.92	910	41.5
MIRC = 55 gt		Mo Ro Conc + Ro Scan Conc	42	2.09	514	935	41.9
Na,04800, + 800 ph		Ma Ra Tls	15.5	0.000	531	9.5	68.1
		NEC 200 128	0.5		0.31	3.5	78.1
Line = 23 g/1		Heat (Cak)		3.10	11.5		

Another test, F7, was performed to generate a rougher concentrate which would then be used for QEMSCANTM mineralogical characterization. Fuel oil dosage in the roughers was kept the same as F5 and F6, and MIBC was used as the frother to determine if it would minimize the recovery of liberated silicates in the froth. A mock cleaner test was performed on the rougher concentrate. Throughout the cleaner stages, each stage concentrate was examined under microscope to determine the visual degree of concentrate upgrading.

Large silicate particles were still present in the final concentrate. It was decided that the fuel oil dosage in the roughers should be lowered. Another issue identified in the cleaner tests was the presence of talc-like mineralization (phyllosilicates) in the first cleaner concentrate. This would have to be addressed in future tests by the addition of silicate dispersants. A regrind in the cleaners would be included in further tests with the aim of improving cleaner concentrate grades.

Tests F8 and F9 incorporated the new flowsheet and reagent changes. Both tests had a lower fuel oil dosage of 45 g/t in the roughers, and an 8 minute regrind on the first cleaner concentrate with lime and NaCN to depress pyrite. Silicate dispersants were added to the second cleaner stage in both tests, with 10 g/t CMC added in F8 and 1000g/t Na₂SiO₃ added in F9. Concentrate upgrading was assessed visually under microscope throughout the tests. The final molybdenum concentrates appeared to be dominated by platey molybdenum clusters with no liberated silicates, and a very small fraction of finely dispersed pyrite grains. Test F8 final concentrate graded 55% Mo with a 50% molybdenum recovery. Test F9 final concentrate graded 56% Mo with a 64% molybdenum recovery. The lower molybdenum recovery in F8 is likely attributable to CMC, which has a tendency to depress molybdenum. This is evident in the second cleaner stage (where the CMC was added) which has 22% of the molybdenum reporting to the second cleaner tailings. The second cleaner tailings in F9 (with no CMC) only had 7% of the molybdenum reporting to it. The other change made to F8 and F9 was that the cleaner stage times were shortened, which also would have contributed in improving concentrate grades.

At this point in the testwork program, it was demonstrated that a saleable molybdenum concentrate could be produced from the ore. It was also noted that the combined concentrate P_{80} of test F9 was 18 μ m. With such a fine particle size in the first cleaner concentrate regrind product, it is possible that this resulted in lower stage recoveries of molybdenum in the cleaners. To address this issue, stage grinding of the rougher feed was implemented. Stage grinding in this case was comprised of a sequence of 5 minute grinds in the 10kg rod mill, in which the mill

product was wet screened over 65 mesh. The grind cycles continued until the plus 65 mesh weight distribution equated to that of the distributions in tests F8 and F9. After that, a rougher float was performed. A regrind was then applied to the rougher concentrates, rather than on the first cleaner concentrate. In F5 and F6, molybdenum loss to the 1st cleaner tailings was likely due to unliberated molybdenum in the form of middlings.

The objective of test F10 was to investigate the effectiveness of stage grinding on molybdenum recovery and to improve upon F8 and F9 (although at a saleable grade). Lime and NaCN were used to depress pyrite, and were adjusted as needed on a visual basis. Sodium silicate was added in the first cleaner at a lower dosage of 200 g/t which was just enough to disperse the talc-like minerals in the pulp (no silicates visible in froth). The final concentrate graded 45% Mo, with a 76% molybdenum recovery.

Test F11 investigated the use of lime only to depress pyrite, with slightly higher lime adjusted pH levels in the cleaners. The final concentrate graded at 48% Mo, with a 73% molybdenum recovery. The performance of tests F10 and F11 demonstrated improved molybdenum recovery, but did not attain a saleable concentrate grade.

Test F12 was conducted to investigate the use of NaHS as a substitute for NaCN in depressing pyrite. The NaHS was adjusted over the test based on examinations of froth sample under microscope. In addition to this, the Na₂SiO₃ dosage was brought back up to 1000 g/t as in test F9. It was suspected that the lower Na₂SiO₃ dosage in tests F10 and F11 had an impact on the final concentrate grades. The final concentrate of F12 graded 56% Mo with a 51% molybdenum recovery, which is closer the metallurgical performance of tests F8 and F9. This appeared to confirm the suspicion of Na₂SiO₃ influence on metallurgical performance.

Test F13 was conducted by using only 200 g/t sodium silicate in the regrind on the rougher concentrate, and utilizing the conventional lime/NaCN scheme to depress pyrite. A fuel oil surfactant, OP6, was added in the primary grind at 25 g/t to investigate its effect on rougher Mo recovery. Rougher Mo recovery was 91%, showing no improvement over rougher recoveries in the other cleaner tests. A second regrind on the fourth cleaner concentrate was implemented with an additional 100 g/t sodium silicate. A final concentrate grade of 57% Mo with 78% recovery was achieved in F13. This was a 13% improvement in recovery over the next best test, F9. The first dosage of Na₂SiO₃ was sufficient to disperse talc-like mineralization in the pulp without

depressing the molybdenite/silicate middlings. The molybdenum concentrate was successively cleaned through to the fourth cleaner stage, after which the second regrind liberated more molybdenum from the silicates. An additional 100g/t of Na₂SiO₃ was added in the second regrind for further dispersion of liberated insolubles. The results of the cleaner tests are presented graphically in Figure 5. The open-circuit configuration for test F13 is presented in Figure 6.

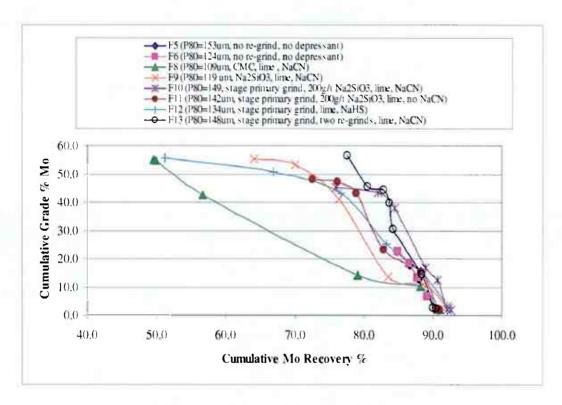


Figure 5. Mo Grade-Recovery Curves for Cleaner Tests

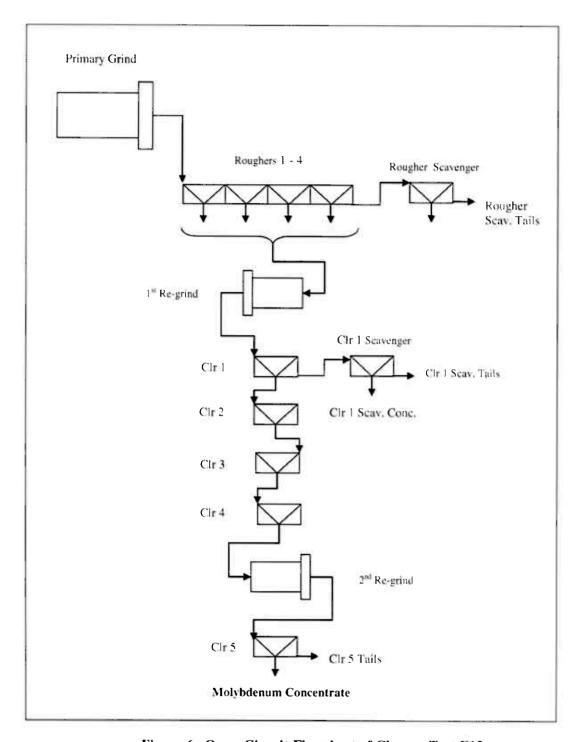


Figure 6. Open-Circuit Flowsheet of Cleaner Test F13

4.3. Summary of Cleaner Results

Poor final concentrate grades in tests F4 and F5 were attributable to a combination of too high a fuel oil dosage, and the use of pine oil as a frother. Subsequent testing used a lower fuel oil dosage of 45g/t of fuel oil in the roughers, and MIBC as a frother. Less free silicates were observed in the cleaner concentrate stages as a result.

Phyllosilicate dispersants are required to minimize phyllosilicates reporting to the froth. Sodium silicate is highly recommended for this purpose. It does not have as adverse an impact on molybdenum recovery as CMC.

It was observed that Na₂SiO₃ dosage has an impact on molybdenum concentrate grade and recovery. As the Na₂SiO₃ dosage increased, the concentrate grades increased, but at the expense of molybdenum recovery. This is likely due to the higher Na₂SiO₃ dosages depressing molybdenum-silicate middlings which would otherwise report to the concentrate at much lower dosage.

At the low dosage of 200g/t Na₂SiO₃ in the rougher concentrate regrind, in tests F10 and F11, final concentrate grades fell just short of 50% Mo.

When the Na₂SiO₃ dosage was increased to 1000g/t in F12, final concentrate grade exceeded 50% Mo.

Due to the impact that Na₂SiO₃ dosage has on Mo metallurgy, the effects of stage grinding and NaHS on Mo metallurgy, remain inconclusive.

The use of a fuel oil surfactant, OP6, did not improve molybdenum rougher recovery over that of earlier tests,

The addition of a second regrind in the cleaner circuit was demonstrated to improve concentrate grade, and significantly improve Mo recovery, with a Na₂SiO₃ dosage of 300g/t.

Based on the results of test F13, it would be anticipated that in a locked cycle test. Mo recovery in a final concentrate would be in the range of 85-90%.

5. QEMSCAN Characterization

Mineralogical investigations were conducted on four size fractions (-300/+106μm, -106/+53μm, -53/+20μm, -20/+3μm) of a rougher concentrate (test F7), using QEMSCANTM (Quantitative Evaluation of Materials by Scanning Electron Microscopy) technology. A more detailed description of this process and its operating modes is provided in Appendix E.

Four graphite-impregnated 30mm polished sections were prepared, and the coarsest fraction was submitted for XRD analysis. Each size fraction was also submitted for chemical analysis. The polished sections were carbon coated and analysed using the QEMSCAN Particle Mapping Analysis (PMA) mode. PMA is a two-dimensional mapping analysis aimed at resolving liberation and locking characteristics of a generic set of particles. A pre-defined number of particles are mapped at a point spacing selected in order to spatially resolve and describe mineral textures and associations. The operating statistics for the PMA mode are given in Table 4.

QEM Size Fraction	Weight (g)	Weight	Sections No.	Pixel Size (µm)	Particle No.	Points No.
-300µm +106µm	50	16.5		5	2749	2852837
-106 μm ±53 μm	22.2	7.3	1	4	5011	1582329
-53 μm +20 μm	19	6.3	1	2	5000	922188
-20µm -3µm	212	69.9	1	2	30059	267988
Total	303.2	100				

Table 4. Operating Statistics for PMA

Key QEMSCANTM mineralogical assays have been regressed with chemical assays and this is presented in Figure 7. The overall correlation, as measured by R-squared criteria, was 0.989. This is considered to be acceptable. Full QEMSCANTM and direct chemical assays are presented in Appendix E.

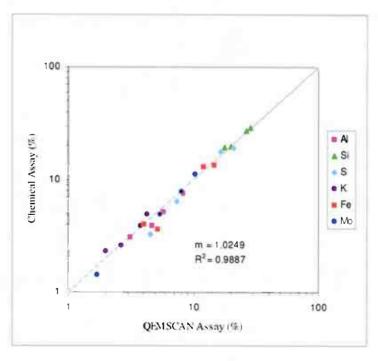


Figure 7. QEMSCAN and Direct Assay Reconciliation

5.1. Modal Analysis and Grain Size Distribution

Bulk modal analysis results, presented in Appendix E, indicate mineral distributions in the rougher concentrate for each of the size fractions. The main value mineral in the rougher concentrate is molybdenite, which comprises 5.7% of the concentrate. Pyrite is the predominant sulphide gangue accounting for 10% of the concentrate. Other sulphide minerals account for 1.4% of the concentrate. Quartz, feldspars, and micas/phyllosilicates make up the bulk of the non-sulphide gangue (NSG). These three NSG minerals account for 78% of the rougher concentrate mass. The -106/+53 µm fraction of the rougher concentrate contained the highest proportion of molybdenite, at 17% of the size fraction weight. This is shown in the graphs in Appendix E. An XRD scan was performed on the fraction, with the relative proportions of minerals classified into abundance categories of: major, moderate, minor, and trace. Table 5 lists the crystalline phase identification from the XRD analysis.

Table 5. XRD Identification of Crystalline Phases in the -106+53 µm fraction

	Crystalline Mineral Assemblage (relative proportions based on peak height)							
Sample	Major	Moderate	Minor	Trace				
F7 Mo Conc -106+53µm	quartz	molybdenite plagioclase	potassium-feldspar pyrite	*dolomite, *mica *magnesite *pyroxene *pyrrhotite *tetrahedrite				

^{*}Tentative identification due to low concentrations, diffraction line overlap, or poor crystallinity

The cumulative grain size distributions of molybdenite, pyrite, copper sulphides, and silicates are depicted in Figure 8. Molybdenite appears to be the coarsest mineral in the series with a P_{80} of approximately 60 μ m. The next coarsest mineral appears to be pyrite with a P_{80} between 55 and 60 μ m. Above 60 μ m, the size distributions of pyrite and molybdenite appear to overlap one another, implying that the two are closely associated with one another in this size range. This implication will be discussed in further detail in the liberation and association section of this text.

The finest mineral group in the series is the phyllosilicate group. This group consists of micas, chlorite, talc, serpentine, and clay minerals. Because of the fine size distribution of this mineral group, it may consist of a soft mineral such as talc. This assumption is strengthened by the appearance of talc-like mineralization of the froth in the cleaner tests.

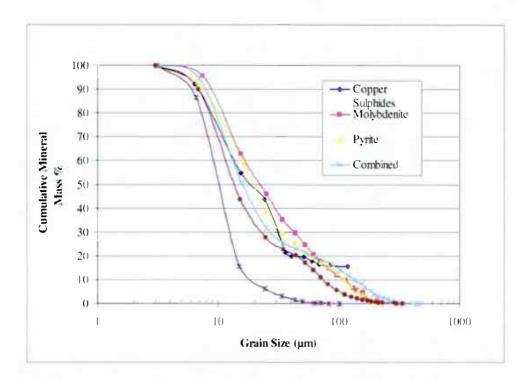


Figure 8. Average Grain Size Distribution of Minerals in Rougher Concentrate

5.2. Mineral Liberation

For the purpose of this analysis, particle liberation is defined based on 2D particle area percent. Particles are classified into the following groups based on the mineral area percent (in the order of decreased % area liberation): free, liberated, sub-middling, middling, and locked. The criteria for these categories is listed in Table 6.

Table 6. Criteria for Liberation Classification

Free	Area % >= 95
Liberated	Area % <95% & >= 80%
Middlings	Area % <80% &>= 50%
Sub-Middlings	Area % <50% & >=20%
Locked	Area % < 20

Combined and size-by-size distributions of molybdenite are presented in Figure 9. Molybdenum occurs as molybdenite throughout the entire sample.

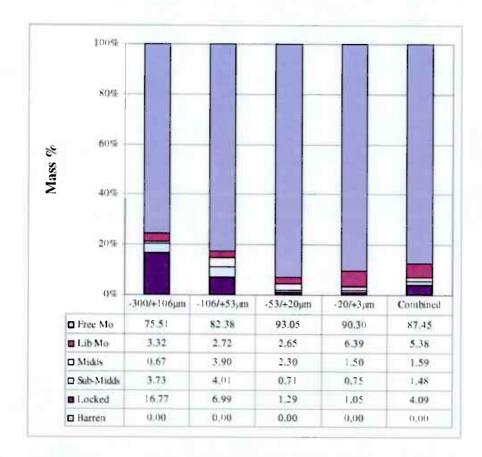


Figure 9. Rougher Concentrate Molybdenum Liberation Statistics

Free molybdenite for the global sample was 87%, with the highest proportion of free molybdenite occurring in the -53/+20µm fraction, at 93%. The highest proportion of locked molybdenite occurred in the -300/+106µm fraction at 17%, and correspondingly it had the lowest proportion of free molybdenite at 76%. A molybdenite liberation map is included in Appendix E.

5.3. Mineral Association

The chart for mineral associations with molybdenite is presented in Figure 10. In order to provide some clarification on some of the mineral groups, the Complex Sulphides category consists of complex combinations; pyrite, chalcopyrite, sphalerite, pyrrhotite and other copper sulphides. The Complex NSG category consists of complex combinations of: rutile, carbonates, micas/phyllosilicates, and quartz. Digital output of the mineral association textures is presented in Appendix E for more of a visual representation of the mineral associations found in the sample.

The mineral association analysis indicated that in the global sample, the largest association of locked molybdenite was with the complex sulphides group of minerals, at 6% of the sample weight. In the -300/+106µm fraction, the largest association with molybdenite was with complex NSG, at 15% of the sample weight. In the -20/+3µm fraction, the largest association of molybdenite was with the complex sulphides group, at almost 8% of the sample weight.

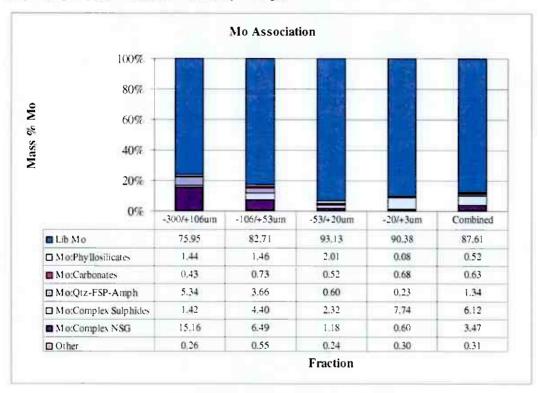


Figure 10. Molybdenum Association Statistics

5.4. Determinative Mineralogy

Figure 11 illustrates the mineralogically limiting copper grade-recovery curves for the rougher concentrate sample. This analysis provides an indication of the maximum achievable molybdenum grade by recovery based on individual particle liberation and grade. These results, of course, do not reflect gangue activation and entrainment, or other factors that could occur in the actual metallurgical process. The plots in Figure 11 indicate that metallurgical performance improves (grade-recovery curves shift upward and to the right) in the finer fractions. The coarser the fractions become, the metallurgical response becomes more limited. This is due to the poor liberation of molybdenite. The combined size fraction plot in Figure 15 predicts that a final concentrate grade of 54% Mo with 93% recovery is

achievable with the Hurdal ore. Figure 11 also shows the metallurgical performance of test F13 relative to the theoretical curves.

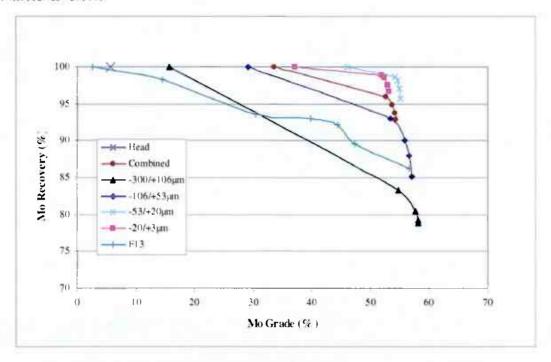


Figure 11. Theoretical Size-Limiting Grade-Recovery Curves

The plot for F13 in Figure 11 has recoveries normalized to the Mo content of the rougher concentrate going into the cleaner circuit (i.e. F13 is expressed as a stage-recovery plot).

The theoretical mineral release curve for molybdenite in Figure 12 is essentially a re-iteration of the liberation data discussed earlier, presented in a different graphical format. The graph shows that molybdenite is already well liberated in the -300/+150 μ m (P_{s0} = 122 μ m) at 79% Mo liberation. The minimum particle size for a regrind would appear to be at 20 μ m with 96% Mo liberation at this grind. In the cleaner tests, the reground rougher concentrates sized between P_{s0} =18-24 μ m.

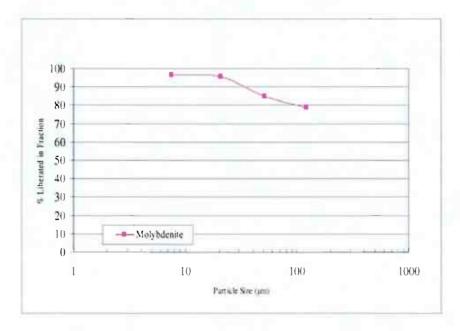


Figure 12. Theoretical Molybdenite Liberation Curve

6. Conclusions and Recommendations

The conclusions that can be drawn from the testwork can be summarized as follows:

- Based on the mineralogical characterization of the ore and results of the metallurgical testwork, the
 Hurdal ore does not appear to be highly refractory in nature. Gangue minerals of significance were
 phyllosilicate minerals and pyrite. The phyllosilicate minerals were controlled with the addition of
 Na₂SiO₃ dispersant. Pyrite was depressed by a combination of lime, higher pH, and NaCN
 depressant. Depending on reagent additions, saleable molybdenum concentrates can be produced
 with as few as 4 or 5 cleaning stages because of the nature of the ore.
- Sodium silicate dosage appeared to have the greatest influence on molybdenum cleaner circuit metallurgy. As dosage increased, concentrate grade improved, but with a much lower molybdenum recovery associated with it.
- The effect of stage grinding of the rougher flotation feed appeared to have no effect on molybdenum metallurgy.
- The addition of OP6 fuel oil surfactant appeared to have no effect on rougher molybdenum recovery.
- The effect of NaHS on depressing pyrite in one of the tests could not be determined, due to the
 masking effect of the high Na₂SiO₃ dosage.
- The introduction of a second regrind in the cleaner circuit was beneficial in upgrading the
 molybdenum concentrate, without excessive use of sodium silicate. Molybdenum stage recovery was
 also significantly improved with this flowsheet option.

Recommendations for future work include:

- Further tests should be conducted for flowsheet optimization. Using lime only in the cleaners, or use
 of NaHS as a substitute for NaCN, has the potential to produce a saleable molybdenum concentrate
 with further optimization.
- 2. A variability flotation study is an option to be considered to assess the metallurgical response of different zones of the Hurdal ore body.
- A grindability study is recommended to determine grinding equipment requirements and variability in ore hardness.
- 4. A study on the environmental impact of flotation tailings material is also recommended.

Appendix A – Drill Core Inventory List

Hurdal - Intervals for test work

Crew cores	3				Client Measured	5G5 Measured	
Drill hole	From	To	Sample no	MoS ₂ %	Weight (kg)	Weight (kg)	
Dr 02	370	375	43313	0.157	6.7	6.7	
Dh 02	385	390	43317	0.165	6.9	6.9	
Dh 02	395	400	43320	0.180	7.6	7.6	
Dh 02	410	415	43323	0.222	3.1	3.1	
Oh 02	415	420	43325	0.248	6.8	8.8	
Dh 02	430	435	43329	0.171	7.2	8.6 7.2	
Dh 02	470	475	43336	0.317	7.6	7.7	SGS weight includes bag weight
Dh 02	635	640	43376	0.180	6.6	5.7	
Dn 02	640	645		0.181	7.1	7.2	
Dh 02	655	660	43379	0.186	6.9	7.0	
Dh 02	660	665	43380	0.225	7.2	7.9	
Dh 02	755	760	43405	0.241	7.1	73	
Dh 03	560	565		0.293	6.9	7.5	
Dh 03	580	585	43439	0.215	7.9	7.9	
Dh 03	590	595	43441	0.159	7.5	7.6)
				Total	103.1	192.6	

Hydro core	s			Client Measured	SGS Meanured	1
Drill hole	From	To	Sample no MoS ₂ %	Weight (kg)	Weight (Kg)	
BH 7	330	335	0.180	4.5	4.5	
8H 7	335	340	0.234	4.4	4.8	
SH 7	340	345	0.351	4.4	4.4	
BH 7	355	360	0.218	4.6	4.7	505 weight includes bag weight
BH 7	360	365	0.231	4	4.1	× 1000 mm and 1000
BH 7	365	370	0.151	4.3	4.4	
BH 7	370	375	0.168	4.5	48	
8H 7	375	380	0.185	4.4	4.0	
8H 7	390	395	0.223	4.1	4.3	
BH 7	395	400	0.184	42	4.2	
			Total	43.4	443	

Appendix B – Bond Work Index Data and Calculations

SGS Minerals Services

Standard Bond Ball Mill Grindability Test

Project No.:

11656-001

Product: Minus 6 Mesh

Date: Jan 29 2008

Sample.:

Ore Drill Core

Purpose:

To determine the ball mill grindability of the sample in terms of a Bond

work index number.

Procedure:

The equipment and procedure duplicate the Bond method for

determining ball mill work indices.

Test Conditions: Mesh of grind:

100 mesh

Test feed weight (700 mL);

1230 grams

Equivalent to: 1757

kg/m3 at Minus 6 mesh Weight % of the undersize material in the ball mill feed:

13.0 %

Weight of undersize product for 250% circulating load:

351 grams

Results:

Average for Last Three Stages = 1.75g.

247% Circulation load

CALCULATION OF A BOND WORK INDEX

BWI =
$$\frac{44.5}{\text{Pl}^{0.23} \times \text{Grp}^{0.82} \times \left\{ \frac{10}{\sqrt{\text{P}}} - \frac{10}{\sqrt{\text{F}}} \right\}}$$

P1 = 100% passing size of the product

150 microns

Grp = Grams per revolution

1.75 grams

P80 = 80% passing size of product

127 microns

F80 = 80% passing size of the feed

2039 microns

BWI =

13.4 (imperial)

BWI =

14.7 (metric)

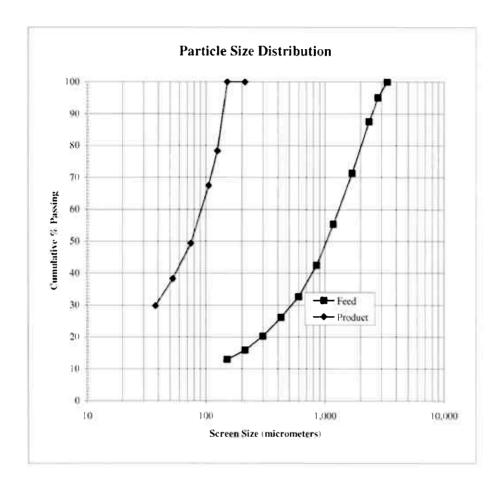
Calad		т	L
Grind	ability	LCS.	Data

Project	Noss	11656-001	Test No.	Ore Drill Core

					Unde	ersize	U'Size	Undersize Product	
Stage No. Revs	New Feed (grams)	In Feed (grams)	To Be Ground (grams)	In Product (grams)	Total (grams)	Per Mill Rev (grams)			
l	100	1,230	159	192	299	140	1,40		
2	224	299	39	313	363	324	1.45		
3	210	363	47	304	377	330	1.57		
4	193	377	49	30.3	381	332	1.72		
5	176	381	49	302	351	302	1.71		
6	179	35.1	45	306	361	316	1.76		
7	173	361	47	305	351	304	1.76		

Average for Last Three Stages = 354g.

1.75g.


Feed	K80					
Si	ze	Weight	% Ro	% Retained		
Mesh	μm	grams	Individual	Cumulative	% Passing Cumulative	
6	3,360	0,0	0,0	0.0	100.0	
6 7 8	2,800	41.5	5.0	5.0	95.0	
8	2,360	61.6	7.5	12.5	87.5	
10	1.700	133.3	16.2	28.7	71.3	
14	1.180	131.3	15.9	44.6	55.4	
20	850	106.7	13.0	57.6	42.4	
28	600	80.3	9.7	67.3	32.7	
35	425	54.2	6.6	73.9	26.1	
48	300	48.2	5.9	79.8	20.2	
65	212	36.0	4.4	84.1	15.9	
100	150	24.0	2.9	87.0	13.0	
Pan	-150	106.7	13.0	100.0	0.0	
Total		823.8	100.0	•	- 55	
K80	2,039					

Product K80

Size		Weight	% Ro	% Retained		
Mesh	μm	grams	Individual	Cumulative	Cumulative	
65	212	0,0	0.0	(),()	100.0	
100	150	0.0	0,0	0,0	100.0	
115	125	33.4	21.7	21.7	78.3	
150	106	16.7	10.8	32.5	67.5	
200	75	27.9	18.1	50.6	49.4	
270	53	17.1	11.1	61.7	38.3	
400	38	13.1	8.5	70.2	29.8	
Pan	-38	45.9	29.8	100.0	0.0	
Total	50541	154.1	100.0	3.77	•	
K80	127					

SGS Minerals Services

Project No.: 11656-001 Test No.: Ore Drill Core

Appendix C – Rougher Kinetics Test Sheets

Test No.:

Project No.:

11656-001

Operator: Date:

PSM Sept. 27/2007

FI

Initial Rougher Kinetics Scoping Test

Purpose: Procedure:

As outlined below.

Feed:

10kg of Hurdal ore composite

Grind:

25 minutes, Laboratory 10kg SS Rod Mill, 65 % solids,

Notes:

- pull rate every 10 seconds over entire test - stopped test after 3 rougher stages as froth was barren

Conditions:		Reagents added, gran	L. Bar Lanna	K80 (grind)			
		Reagents added, gran	is per tonne		Time, min	ules	
Stage	Diesel Fuel	Pine Oil		Grind	Cond.	Freth	pH
Grind	40			25			
Condition		50			î		Nat
Mo rougher I						2	8.3
Mo rougher 2						4	
Mo rougher 3						4	
Mo Ro Scav	15				5	4	
Fotal	55	50			6	14	

Stage	Rougher 1-Scav
Flotation Cell	10 kg
Speed rom	50% setting

Metallurgical Balance

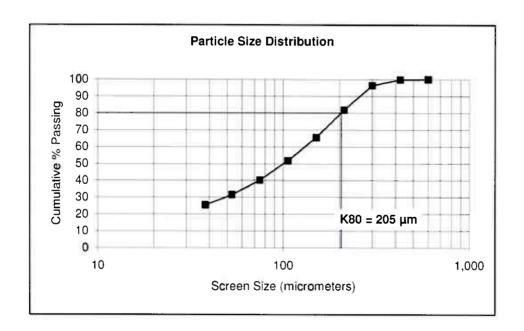
Product	Weight		Assays, C		& Distribution	
7 3	g	98	Mo	S	Mo	S
Mo Ro Cone 1	105.8	1,1	9.26	7.09	75.1	32,4
Mo Ro Cone 2	74.7	0.7	1.72	1.87	9.9	6.0
Mo Ro Cone 3	35.6	0.4	0.36	0.82	1.0	1,3
Mo Ro Scav Conc	49.1	0.5	0.56	0.69	2,1	1.5
Ro Tis	9734.8	97.3	0.016	0.14	11.9	58.9
Head (calc.)	10000	100	0,13	0.23	100.0	100.0
(direct)			0.12	0.79		

Combined Products

Product	Weight		Assays, %		Se Distribution	
	g	Ti.	Mo	S	Mo	S
Mo Ro Cone 1	105.80	1.1	9.3	0.8	75.1	32.4
Mo Ro Cone 1-2	180.50	1.8	6.1	1.4	85.0	35.4
Mo Ro Cone 1-3	216.10	2.2	5.2	1.8	85.9	39.7
Mo Ro Scav Cone + Ro Cone 1-3	265.20	2.7	4.3	2.2	88.1	41.1

SGS Minerals Services Size Distribution Analysis

Project No. 11656-001


Sample:

Ro Tis Sub

Test No.:

F1

S	ize	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
28	600	0.0	0.0	0.0	100.0
35	425	0.3	0.2	0.2	99.8
48	300	6.8	3.5	3.6	96.4
65	212	28.7	14.6	18.2	81.8
100	150	32.1	16.3	34.5	65.5
150	106	27.1	13.8	48.3	51.7
200	75	22.9	11.6	59.9	40.1
270	53	17.0	8.6	68.5	31.5
400	38	12.2	6.2	74.7	25.3
Pan	-38	49.7	25.3	100.0	0.0
Total		196.8	100.0	-	- 1
K80	205				

Test No.:

Project No.:

11656-001

Operator:

PSM Oct.11/2007

F2

2nd Rougher Kinetics Scoping Test

Purpose:
Procedure:

As outlined below,

Feed:

10kg of Hurdal ore composite

Grind:

35 minutes, Laboratory 10kg SS Rod Mill, 65 % solids,

Notes:

- pull rate every 10 seconds over entire test

Conditions:	1			K80 (grind)	150 (estima	ed)			
		Reagents added, gr	rams per tonne		Time, minutes				
Stage	Diesel Fuel	Pine Oil		Grind	Cond.	Froth	pH		
Grind	60			35					
Condition		.50			1		Nat		
Mo rougher						2	8.3		
Mo rougher 2						4			
Mo rougher 3						4			
Condition	16				5				
Mo rougher 4	-					4			
Mo Ro Scav	10				5	6			
Total:	80	50			11	20			

Stage	Rougher I-Scav
Flotation Cell	10 kg
Speed, rpm	50% setting

Metallurgical Balance

Product	Weight		Assays, %		C Distribution	
	g	%:	Mo	S	Mo	5
Mo Ro Cone 1	112	1.1	8.67	9.18	77.0	18.7
Mo Ro Cone 2	96.8	1.0	1.29	2.29	9.9	4.0
Mo Ro Cone 3	67.4	0.7	0.37	0.82	2.0	1.0
Mo Ro Conc 4	38.5	0.4	0.19	0.53	0.6	0.4
Mo Ro Scav Conc	50.3	0.5	0.15	0.51	0.6	0.5
Ro Tls	9635	96.4	0.013	0.43	99	75.4
Head (calc.)	10000	100	0.13	0.55	100.0	100.0
(direct)			0.12	0.79		

Product	Weight		Assays. 6		% Distribution	
	g	%	Mo	S	Mo	S
Mo Ro Conc I	112.0	1,1	8.7	1,2	77.0	18.7
Mo Ro Cone 1-2	208.8	2.1	5.2	2.4	86.9	22.7
Mo Ro Cone 1-3	276.2	2.8	4.1	3.2	88.9	23.5
Mo Ro Cone 1-4	314.7	3,1	3.6	3.7	89.5	24.1
Mo Ro Scav Cone + Ro Cone 1-4	365.0	3.7	3.1	4.3	90.1	24.6

Test No.:

Project No.:

11656-001

Operator:

Date

PSM Oct.11/2007

F3

3rd Rougher Kinetics Scoping Test

Purpose: Procedure:

As outlined below.

Feed:

10kg of Hurdal ore composite

Grind:

45 minutes, Laboratory 10kg SS Rod Mill, 65 % solids,

Notes:

- pull rate every 10 seconds over entire test

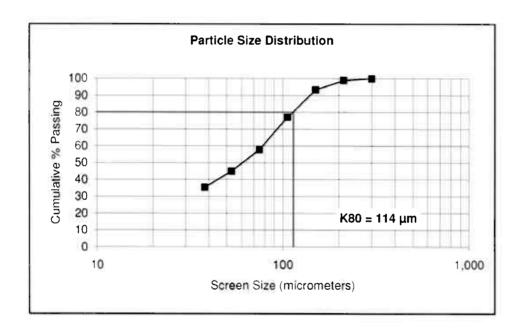
Conditions:	- 1			KS0 (grind):	114		
		Reagents added, gra	ms per tonne		utes		
Stage	Diesel Fuel	Pine Oil		Grind	Cand.	Freth	рН
Grind	60			45			
Condition		50					Nat
Mo rougher I						2	8.3
Mo rougher 2						.4	
Mo rougher 3						4	
Condition	10				5		
Mo rougher 4						4	
Mo Ro Scav	10				5	6	
Total	80	50			11	20	

Stage	Rougher I-Scav
Flotation Cell	10 kg
Speed, rpm	50% setting

Metallurgical Balance

Product	Wei	Weight		Assays, %		ibution
	g	%	Mo	S	Mo	S
Mo Ro Conc I	181.1	1.8	4.99	6.81	70.0	21.6
Mo Ro Cone 2	93	0.9	2.34	2 99	16.5	49
Mo Ro Cone 3	19.5	0.5	0.90	1.35	3.4	1.2
Mo Ro Conc 4	63.8	0.6	0.23	30	1.1	1.5
Mo Ro Scav Conc	45.9	0.5	0.13	0.75	0.5	0.6
Ro Tis	9566.7	95.7	0.011	0.42	8.1	70.3
Head (calc.) (direct)	10000	100	0.13	0.57	100.0	100.0

Product	Weight		Assays, %		% Distribution	
	g	٦	Mo	- 8	Mo	S
Mo Ro Cone I	181.1	1.8	5.0	2.5	70.0	21.6
Mo Ro Conc 1-2	274.1	2.7	4.1	3.7	86.8	26.5
Mo Ro Conc 1-3	323.6	3.2	3.6	4.4	90.3	27.6
Ma Ra Cone 1-4	387.4	3.9	3.0	5.5	91.4	29.1
Mo Ro Seav Cone + Ro Cone 1-4	433.3	4.3	2.7	6.2	919	29.7


Project No. 11656-001

Sample:

Ro Sc Tails

Test No.:

Si	Size		% R€	% Retained			
Mesh	μm	grams	Individual	Cumulative	Cumulative		
48	300	0.2	0.1	0.1	99.9		
65	212	1,5	1.0	1.1	98.9		
100	150	8.4	5.6	6.7	93.3		
150	106	24.5	16.3	23.0	77.0		
200	75	29.1	19.3	42.3	57.7		
270	53	19.3	12.8	55.1	44.9		
400	38	14.4	9.6	64.7	35.3		
Pan	-38	53.2	35.3	100.0	0.0		
Total	-	150.6	100.0				
K80	114	K					

Test No.:

Project No.:

11656-001

Operator: Date: PSM Oct.11/2007

F4

4th Rougher Kinetics Scoping Test

Purpose:
Procedure:

As outlined below.

Feed:

10kg of Hurdal ore composite

Grind:

25 minutes, Laboratory 10kg SS Rod Mill, 65 % solids,

Notes:

- pull rate every 10 seconds over entire test

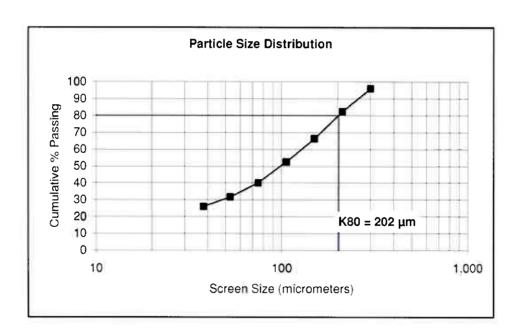
Conditions: K80 (grind): 202 um Reagents added, grams per tonne Diesel Fuel Pine Oil Stage Grind Cond. Froth pН Grind 40 25 Condition Mo rougher 1 50 1 Nat Mo rougher 2 Mo rougher 3 4 Condition 10 Mo rougher 4 Mo Ro Scav 10

Stage	Rougher 1-Scav
Flotation Cell	10 kg
Speed, rpm	50% setting

Metallurgical Balance

Product	Weight		Assa	Assays. %		ibution
	g	%	Mo	S	Mo	S
Mo Ro Conc 1	115.9	1.2	7.5	6.81	68.0	15.1
Mo Ro Cone 2	67.5	0.7	2.28	2.99	12.0	3.9
Mo Ro Conc 3	57.5	0.6	0.99	1.35	4.5	1.5
Mo Ro Conc 4	36.0	0.4	0.89	1.30	2.5	0.9
Mo Ro Scav Conc	45.2	0.5	0.25	0.75	0.9	0.9
Ro TIs	9677.9	96.8	0.016	0.42	12.1	78.0
Head (calc.)	10000	100	0.13	0.52	100.0	100.0

Product	Weight		Assays, %		% Distribution	
	g	C.	Mo	S	Mo	S
Mo Ro Conc 1	115.9	1.2	7.5	I,I	68.0	15.1
Mo Ro Cone 1-2	183.4	1.8	5.6	1.8	80.0	19.0
Mo Ro Cone 1-3	240.9	2.4	4.5	2.4	84.5	20.5
Mo Ro Cone 1-4	276.9	2.8	4.0	2.8	87.0	21.4
Mo Ro Seav Cone + Ro Cone 1-4	322.1	3.2	3.5	3.3	87.9	22.0


Project No. 11656-001

Sample:

Ro Sc Tails

Test No.:

Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48 65 100 15 0 200 270	300 212 150 106 75 53	6.1 20.4 24.1 20.7 18.8 12.6	4.1 13.6 16.0 13.8 12.5 8.4	4.1 17.6 33.7 47.5 60.0 68.4	95.9 82.4 66.3 52.5 40.0 31.6
400	38	8.4	5.6	74.0	26.0
Pan	-38	39.1	26.0	100.0	0.0
Total		150.2	100.0	-	
K80	202				

Appendix D - Batch Cleaner Test Sheets

Test No.:

Project No.:

11656-001

Operator: Date: PSM Nov. 19/2007

F5

1st cleaner test using 1/2 rougher conditions

Purpose:
Procedure:

As outlined below-

Feed:

10kg of Huntal ore composite

Grind:

35 minutes, Laboratory 10kg SS Rod Mill, 65 % solids,

Notes:

puli rate every 10 seconds over entire test
 10 kg float machine has new impeller
 Used machine #6 for cleaners

Conditions: K80 (grind): 153 Reagents added, grams per tonne Time, minutes Diesel Fuel Pine Oil Grind Cond. Froth Redox Stage pН 60 Condition 50 Mo rougher 1 Mo rougher 2 9.3 Mo rougher 3 9.6 Condition 10 Mo rougher 4 9.0 Mo Ro Scav 10 Cleaners as needed Cleanerl 10 8.0 180 Cleaner2 Cleaner3 7.8 150 Cleaner4 120 Lota

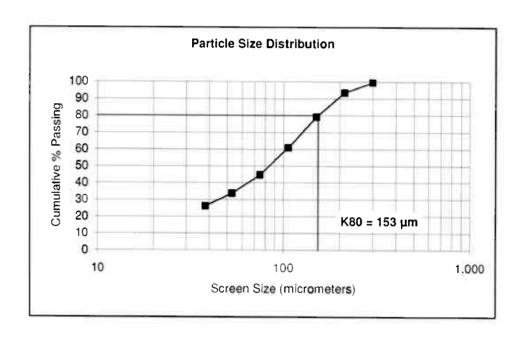
Stage	Rougher 1-Scav	Cleaner1	Cleaner2	Cleaner 3-1
Flotation Cell	10 kg	DL - 1000g	DI = 500 g	D1 - 250g
Speed, rpm	50% setting	1800	1500	1200

Metallurgical Balance

Product	We	ght	Assay	s. "c	7 Distribution	
	g	Se.	Mo	S	Mo	S
Mo Clr 4 Conc	45.8	0.5	22.6	18.3	84.8	15.1
Mo Clr 4 Tls.	14.2	0.1	1.64	1.85	1_9	0.5
Mo Clr 3 Tls.	23.3	0.2	0.65	1.45	1.2	0.6
Mo Clr 2 Tls	73.	0.7	0.21	0.79	1.3	1.0
Mo Cir I Tis.	536.4	5.4	0.038	0.44	1.7	4.2
Mo Ro Tis	9307.2	93.1	0.012	0.47	9.1	78.6
Head (cale)	10000	100	0.12	0.56	100.0	100.0
(direct)			0.12	0.79		

Combined Products

Product	We	Assay	s, %	Distribution		
	g	%	Mo	S	Mo	S
Me Clr.4 Conc	45.8	0.5	22.6	18.3	84.8	15.1
Me Clr 3 Conc.	60.0	0.6	17.6	14.4	86.7	15.5
Mo Clr 2 Conc.	83.3	8.0	12.9	10.8	87.9	16.1
Mo Cle I Conc.	156.4	1.6	7.0	6.1	89.2	17.2
Mo Ro Cone	692.8	6.9	1.8	8.0	90.9	21.4


SGS Minerals Services

Project No. 11656-001

Sample: Ro Ti Sub

Test No.:

Si	ze	Weight	% R€	% Retained			
Mesh	μm	grams	Individual	Cumulative	% Passing Cumulative		
48	300	0.7	0.4	0.4	99.6		
65	212	8.9	6.0	6.5	93.5		
100	150	21.1	14.3	20.8	79.2		
150	106	26.8	18.3	39.1	60.9		
200	75	23.9	16.3	55.4	44.6		
270	5 3	15.9	10.9	66.3	33.7		
40 0	38	11.1	7.6	73.8	26.2		
Pan	-38	38.4	26.2	100.0	0.0		
Total	-	146.7	100.0		95000		
K80	153		1371117		_		

Test No: F6

Project No

11656-001

Operator Date

PSM Nov.19/2007

Purpose:

2nd cleaner test using F3 rougher conditions

Procedure:

As outlined below

Feed:

10kg of Hurdal ore composite

Grind:

65 minutes, Laboratory 10kg SS Rod Mill, 65 % solids,

Notes:

Rougher pull rate every 10 seconds

Weight of red mill charge may have changed based on grind KSO

I sed machine #6 for cleaners

10 kg float machine has new impeller

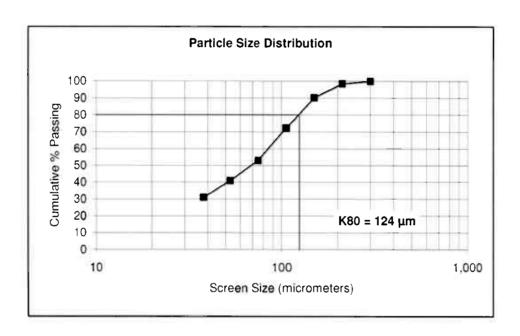
Cenditions:		Description of deal and		KSO emnd				
		Reagents added, gr	ans per tonne	- 1	Time, minutes			
Stage	Diesel Fuel	Pine Oil		Grind	Cond.	Froth	pН	Redox
Grind	60			145				
Roughers								
Condition		50			1		Nat	
Mo rougher I						2	8.3	
Mo rougher 2						- 4		
Me rougher 3						4		
Condition	10				- 5			
Mo rougher 4						- 4		
Mo Ro Scav	10				- 5	- 6		
Cleaners								
Condition								
		as needed			1			
Cleaner!		_				13	8.2	180
Cleaner2		-				13	8.0	180
Cleaner3		No.				.8	8.0	150
Cleaner4					_	6	79	100
Total	20					60		

Stage	Rougher 1-Scav	Cleaneri	Cleaner2	Cleaner 3-4
Flotation Cell	10 kg	Dt - 1000g	D1 - 500 g.	D1 - 250g
Speed mm	SOG setting	8.0	1500	1200

Metallurgical Balance

Product	Wei	ght	Assay	- %	To Distribution	
	g	· Ge	Mo	S	Mo	S
Mo Clr 4 Conc	45.5	0.5	22.6	20.4	84.9	17.7
Mo Cir 4 Tis.	11.6	0.1	1.64	3.85	1.6	0.9
Ma Cir 3 1'is:	22.5	0.2	0.65	1.76	1.2	0.5
Ma Cir 2 Tis.	81.4	6.8	0.21	0.91	1.4	1.4
Me Cir I Tis	517.5	5.2	0.038	0.29	1.6	2.9
Ma Ro Tis	9321.2	93.2	0.012	0.43	9.2	75.4
Head (culc.)	10000	100.0	0.12	0.52	100.0	100.0

Product	Wei	Assay	. 5	▼ Distribution		
	2	%	Mo	S	Mo	S
Mo Cir 4 Conc	45.5	0.5	22.6	20.4	849	17.7
Mo Cir 3 Conc.	57.1	0.6	18.3	17.0	85.5	15.5
Ma Cir 2 Conc.	79.6	0.5	13.3	12.7	87.7	193
Ma Cir I Cone.	161.0	1.6	6.70	6.75	891	20.7
Me Ro Conc	678.8	6.5	1.78	7.73	90.8	23.6

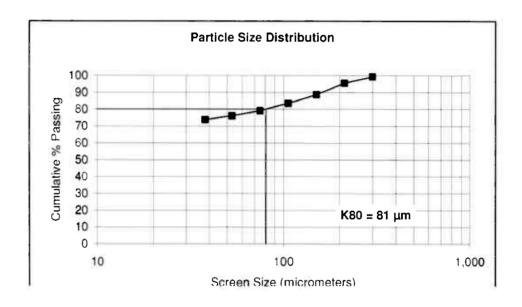

Project No. 11656-001

Sample:

Ro TI Sub

Test No.:

Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48	300	0.1	0.1	0.1	99.9
65	212	2.2	1.5	1.6	98.4
100	150	12.3	8.3	9.8	90.2
150	106	26.8	18.0	27.8	72.2
200	75	28,6	19.3	47.1	52.9
270	53	17.8	12.0	59,1	40.9
400	38	15,0	10.1	69.2	30.8
Pan	-3 8	45,8	30.8	100.0	0.0
Total	~~	148.6	100.0	*/\C:\A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Transferi
K80	124		1,225		


Project No. 11656-001

Sample:

Ro Con

Test No.:

Siz	ze	Weight	% Re	etained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48	300	2.1	0.7	0.7	99.3
65	212	11.6	3.8	4.5	95.5
100	150	20.5	6.8	11.3	88.7
150	106	15.8	5.2	16.5	83.5
200	75	13.3	4.4	20.9	79.1
270	53	8,9	2.9	23.8	76.2
400	3 8	7.3	2.4	26.2	73.8
Pan	-38	223.7	73.8	100.0	0.0
Total		303.3	100.0	. NET-25/3-4	18(0)
K80	81				

les No.: F8

11656-001

Operator.

PSM Dec. 5/2007

Purpose:

Cleaner test to observe effect of less fuel oil in roughers, re-grind on 1st Cleaner concentrate, and addition of cyanide and hime to depress pyrite. Achieve grade of \$000 Mo in 4th cleaner concentrate. CMC added in Clr 2 to depress tak. As outlined below.

Procedure:

Feed:

10kg of Hurdal one composite

Grind:

de manures, Laboratory 10kg SS Red Mill, 65 % sclids, il minutes re-grind in pubble mill

Notes:

R sugher pull rate every 111 seconds in Ro 1.3 Pull rate in Ro 4.5 every 15 seconds

KN (grind) KNI (re-grind)

Conditions:

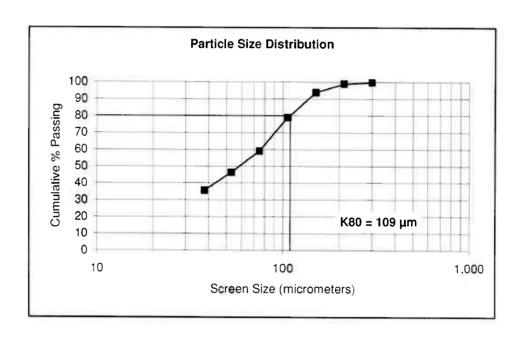
		Reagents as	dded, grams pe	r tonne		1	fime, minute	rs		
Stage	Diesel Fuel	MIBC	NaCN	Lime	CMC	Grind	Cond.	Froth	pH	Redox
Grind	40					45				_
Respect										
Condition		350					1		Nat	
Mo Rougher I								- 2	6.3	
Me Rougher 2								-4		
MicRouber 3								4	1	
Candition	2.8					i	9			
Mo Rougher 4								5		
Condition	2.5						5.			
Mo rougher 5								9		
Condition										
Mis Ris Scav (Sep. Conc.)	10						5	6		
Cleaners								-		
Re-Conc-1-5										
Condition	-									_
		as reeded								
Cleanert		-						1	8.21	
Cleaner: Seav								6.	8.09	
Re-grind Clef Com			20	100		-			11.55	-100
(leaner)	2	2.6	10		1.0			4	10.14	-90
Cleaner 1		Va.	10					3	9.71	-85
Cleaner4	0.5		10					2	9.70	-80
lenal	17.5	42.4	<(i)	100	10			45		

Stage	Rougher 1 Seav	Cleaner1	Cleaner	Cleaner 3-4
Flotation Cell	19 kg	D1 - 1 88)g	D1 - 500 g	131 - 25 g
Speed spite	50% setting	1800	2500	12(+)

Metallurgical Balance

Product	Wei	ght	. 1553	15, %	% Dist:	ribution
	2	G.	Ma	8	Ma	S
Mo Clr 4 Conc	9.5	0.1	55 1	24.2	49.6	6.9
Mo Ch 4 Hs.	0.1	0.001	38.1	23.2	0.4	0.05
Mo Clt 3 Hs.	4.5	0.045	16.0	11.4	6.8	1.1
MorCle 2 TIs	44.9	0.4	5.3	6.41	22.4	5 14
Mo Clr I Scav Cinc.	22.6	0.9	2.83	3.13	9.1	2.2
Mo Cle I Scav Tls.	309.0	0.3	0.083	0.42	2.4	2.2
Mo Ro Scar Core	95.0	1.0	0.040	0.33	66.7	0.6
Mo Ro Ils	9503.2	94.0	0.010	9.419	9.0	N 15
Head (cale) (direct)	19000	100.0	0.11 0.12	0.48	100.0	:1003

Product	Wes	ght	1552	15, %	C Distribution	
	2	- %	Me	S	Mo	5
Mo Clr 4 Cinc	2.5	.0.1	55.1	35.3	49.6	6.9
Mo Clr 3 Conc.	9.6	0.1	54.9	36.2	56.6	7,0
Mo Clr 2 Conc.	14.1	0.1	42.5	27.6	56.3	8.0
Ma Clr I Conc.	59.0	0.6	14.16	11.47	79.1	14.0
Mil Clr I Copc. + Clr. I Scav. Copc.	92.8	0.9	10.03	8.43	85.2	16.2
Mar Ra Cenc	3)1.5	4.0	2.38	2.27	90.6	15.9
Mo Ro Conc - Ro Scav. Conc.	496.8	5.0	1.93	1.90	91.0	19.5


Project No. 11656-001

Sample:

Ro Sc TI Sub

Test No.:

Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48 65 100 150 200 270 400 Pan	300 212 150 106 75 53 38 -38	0.4 1.3 7.1 21.5 28.5 18.3 15.3 51.1	0.3 0.9 4.9 15.0 19.9 12.7 10.7 35.6	0.3 1.2 6.1 21.1 41.0 53.7 64.4 100.0	99.7 98.8 93.9 78.9 59.0 46.3 35.6 0.0
K80	109	143.4	100.0		-

Test No.

Project No.

11656-001

Operator.

PSM Dec. 6/2007

Purpose:

Coance test to observe effect of less fuel oil in mughers, re-grind on 1st Counce oncentrate, and addition of examide and lime to depress pyrite. Achieve grade if \$5% Mo in 4th cleaner concentrate. Sodium silicate added to depress tale in Clr 2. As outlined below.

Procedure:

Feed:

Dikg of Hurdal are a mysiste

4° trimutes, Laboratory 10kg SS Rod Mill, 65 % solids. 8 minutes re-grind in pebble null

Notes:

Rougher pull rate every 15 seconds for first 10 minutes
 Rougher pull rate every 15 seconds after 10 minutes

K80 (re-grand)

		Reagents ad	ded, grams per	tonne		Time,	minutes			
Stage	Diesel Fuel	MIBC	NaCN	Lime	Sod Sil	Grind	Cond.	Froth	gH	Redox
										1
Crind	40					45				
Reaghers										$\overline{}$
Condition		40					1		Nat	
Me Rougher I					1	_		-	1.3	_
Mo Rougher?								- 1		
Mo Rougher 3								4		-
Condition	7.5						9			
Ma Roughet 4										
Condition	2.5				1		9			_
M. Riughet 5								- 4		
Condesse										_
Ma Ro Scav (Sep. Com)	10						5	- 5		
lesners								_		_
Rollor 15										
Condition	-						-	_		_
		as neceled			1 1					
Teaner!		-						- 1	8.3	-180
Beaner L Scav								6	8	+120
Regend Cirl Com			20	[(8)		- 5			12.4	-220
leaner2		2.5	10		1000			4	12.3	-210
leaner3		-	10					- 3	12.0	-200
Teaner-I		-						2	11.2	-100
I _O (a)	- 56	42.5	40	100	[900			45		

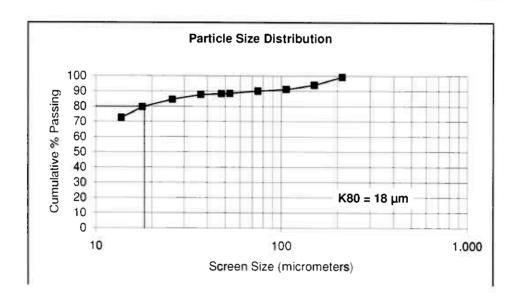
Stage	Rougher L-Scav	Cleaner1	Cleaner 2	Clearer 3.4
Fletation Cell	10 kg	D1 - 1000g	D1 - 500 g	D1 - 250g
Speed rpm	Side setting	1800	15(1)	1200

Metallurgical Balance

Product	Wei	aht .	Assay	5, %	% Distribution	
	2	5	Mo	- 5	Mo	- 5
Mo Clr 4 Conc	11.5	0.1	55.5	34.4	64.1	6.8
Me Clr 4 Us.	1.6	0.02	36.1	23.2	6.0	11.6
Mo Chr 3 Tls.	5.5	0.1	11.7	8.21	6.3	0.8
Me Cir 2 Tk.	43.6	0.4	1.67	2.95	7.1	2.2
Ma Clr I Scav Conc.	19.1	0.2	2.73	2.64	5.1	11:3
Mo Cle I Scav I b.	207.5	2.1	0.17	0.890	3.5	9.2
Mr. Ro Scav Cinc.	54	0.5	0.064	0.410	0.3	0.4
Ma Ro Tk	96.56.9	96.6	0.008	41.490	3.6	19.7
Head (calc.)	10000	100.0	0.102	0.534	100.0	100.0
(direct)			0.120	6.790		

Product	Wei	Assay	% Distribution			
	8	%	Mo	5	Me	8
Mo Clr 4 Conc	11.8	6.1	44.5	34.4	64.1	6.5
Mo Cle 3 Conc	13.4	0.1	43.1	33.1	70.1	2.5
Mo Clr 2 Conc.	18.9	6.2	41.3	29.5	76.4	8.2
Mo Clr 1 Cooc	62.5	0.6	13.65	9.87	82.6	305.2
Mi Clr I Cinc. + Clr. I Scav. Cinc.	81.6	0.8	11.09	7.77	88.6	1857
Mar Ro Conc	280.1	2.9	3.24	4.09	92.1	19.5
Mis Ro Cone + Ro Seav. Cone	343.1	1.4	2.75	2.41	92.4	20.3

Project No. 11656-001

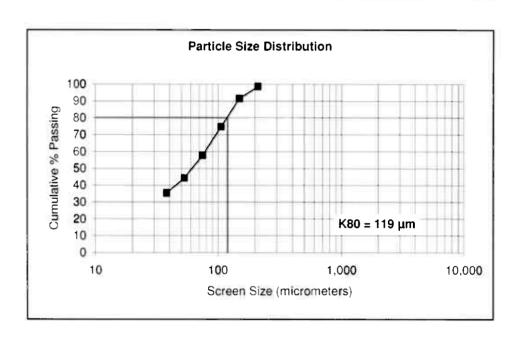

Sample:

Comb Prod

Test No.:

F-9

	ds S.G.=	2.63		nperature =	4.00 C ²
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65 100	212 150	0.4 2.6	0.8 5.2	0.8 6.0	99.2 94.0
150	106	1.5	2.9	8.9	91.1
200	75	0.5	1.1	10.0	90.0
270	53	0.8	1,5	11.5	88.5
	48	0.1	0.2	11.7	88.3
	37	0.3	0.5	12.2	87.8
	26	1.6	3.1	15.4	84.6
	18	2.5	5.0	20.4	7 9.6
	14	3.5	7.0	27.5	72.5
	-14	36.3	72.5	100.0	0.0
Total	-	50.0	100.0	- *	1720
K80	18				


Project No. 11656-001

Sample:

Ro Scav Tail

Test No.:

Si	ze	Weight	% Re	etained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	2.0	1.4	1.4	98.6
100	150	10.3	7.1	8.5	91.5
150	106	24.2	16.8	25.3	74.7
200	75	24.6	17.0	42.3	57.7
270	53	19.5	13.5	55.8	44.2
400	38	12.7	8.8	64.6	35.4
Pan	-3 8	51.1	35.4	100.0	0.0
Total		144.4	100.0	50,000	200
K80	119		VV.5. 12		

lest N= F10

Project No.

11656-001

Operator

PSM

Purposei

Cleaner test to observe effect of stage grinding of Bougher feed to avoid over grinding of liberated Mo-Re-grind on rougher concentrate, addition of cyanide and lime to depress pyrite. Softum silicate added to depress tale in Clr. 1. Achieve grade of 50% Mo in 4th cleaner concentrate. Improve Mo-recovery to final concentrate. above 1% and 1% As outlined below.

Procedure:

Feed:

10kg of Hurdal ore composite

Printary grind: Lab rea by 1 kg 88 R of Mill. 65 × solids immates. Rougher concentrate to-grand in pobble mill.

ofest

Rougher pull tate every 10 seconds for first 10 minutes
 Rougher pull tate every 15 seconds after 10 minutes
 onessared pH levels in cleaners that differ from target pH

KNI (re-grand)

		Reagents ad	ded, grants pe	r tonne		Time, n	Time, minutes			
Niage	Diesel Fuel	MIBC	NaCN	Lime	Sod Sil	Grind	Cond.	Froth	jН	Redox
Grind	40					Stage Gr.	_			-
Rougher										
Condition		40							Nat	
Mo Rougher 1							_	- 3	1	
Me Rougher 2								4		
Ma Rougher 3							-	4		
Condition	2.5						5			
Mo Rougher 4							5	5		
Condition	2.5	1					- 5			
Me rougher 5		9						5		
Condition										
MicRie Scav (See, Care)	10						. 5	6		
Ke grin!										
Ro Con. 15	0.5		20	as needed for pil 9.5 = 16.2%	200	19			4	
Condition		_								
		as needed		as needed						
Cleaner		2.5		13				4	10.0	+160
Cicaner Scare		1		0				6	10.0	-170
Cleaner2	5 U		16	- 6				4	10.5	-200
Cleaner ³		1	10	25				1	11.0	-180
Cleaner4		-		22				2	11.5	180
Tistal	55.5	51.5	(40)	26	290			45		

Stage	Rougher 1-Scay	Cleanerl	Cleaner 2	Cleaner 3.4
Flotation Cell	10 kg	D1 - 1900g	Dt - 500 g	1)1 - 25(kg
Speed rpm	\$0% setting	1800	1500	1200

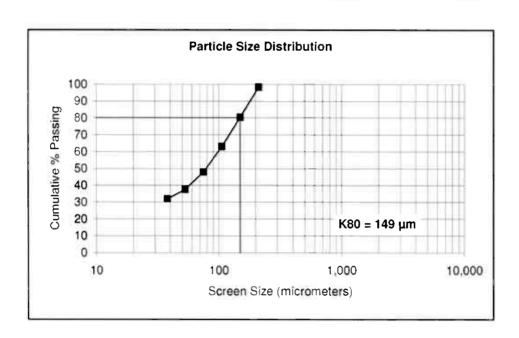
Metallurgical Balance

Product	Wes	ght	Assass	C 62	S Distribution	
8357	g g	4	Mo	S	Mo	8
Mo-Clr 4 Conc	16.7	0.2	45.1	32.1	76.0	8.6
M) CF 4 Ts	2	5.02	30.4	27.9	6.1	0.9
MorCle 3 Tis.	3.4	0.0	7.11	11.7	2.4	0.6
Ma Clr 2 Tis.	30.1	10.3	1.450	3.110	4.4	1.5
Mo Cir 1 Scar Core	19.4	0.2	0.92	2.880	1.5	6.7
Mr Ch 1 Sear Th.	1412	3.5	0.041	1.240	1.4	16.1
Mill Ro Seav Cone.	19.2	0.8	0.068	8.490	0.5	0.6
Ma Ra Th	9500	76 1	0.0076	6,420	7.3	71.4
Head (calc.)	10000	(1903)	0.099	0.626	min	100.0

Combined Products

Product	Wes	Assay	s. %	S Distribution		
	2	4	Ma	S	Me	S
Mo Clr 4 Cox	16.7	11.2	45.1	32.1	76.0	8.6
Mo Clr 3 Conc.	15.7	0.2	43.5	31.6	82.1	9.4
Ma Cir 2 Conc.	22.1	0.2	37.9	28.5	54.5	10.3
Mo Cir 1 Conc	42.2	1) 4	16.89	13.87	85.9	11.7
Mir Clr 1 Conc. + Clr. 1 Scav. Conc.	71.6	0.7	12.56	10.45	90.7	124
Mill Ro Conc	120.8	4.2	2.17	4.17	92.2	25
Mo R + Conc + Re Seav Conc	500	150	1.84	3.50	92.7	28.6

SGS Minerals Services


Project No. 11656-001

Sample:

Ro Scav Tail sub

Test No.:

Siz	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	1.9	1.7	1.7	98.3
100	150	19.7	17.8	19.5	80.5
150	106	19.4	17.5	37.0	63.0
200	75	16.8	15.1	52.1	47.9
270	53	11.5	10.4	62.5	37.5
400	38	6.2	5.6	68.1	31.9
Pan	-38	35.4	31.9	100.0	0.0
Total	2	110.9	100.0	. s	
K80	149		25.0		

MASTERSIZER

Result Analysis Report

Sample Name: 11656-001 Comb Prod - Average

Sample Source & type Factory - F10 Sample bulk for mf. 123-ABC

Parricle Name Detauli Particle RI: 1.520 Dispersant Name

Concentration. %Va 0.0096 Spe cific Surface Area

mäg

SOP Name: detaut

Measured by: LI_Mydro1 Result Source

Accessory Name; Hydro 2000G (A) Absorption: 0.1 DISCHTSARK RE

Span : 4.275

1.230

Surface Weighted Mean D[7,2]: 4.679

Measured: Filday, January 18, 2008 9:57:52 AM

Analyse d

Feday, January 18, 2008 9:57 53 AM

Analysis model; General purpose

Size range: 0.023 10 2000,000 um Weighted Residual

Uniformity: 1.72

Vol. Weighted Mean D(4.1): 19.375 bril

Sensitivity, Enhanced Obscuration

14.67 Result Emutation:

Volunte

D(0.80) : 24.12 µm dot- 1574 d(0.5): 8,953 Particle Size Distribution 100 90 80 ¥! 70 60 Volume 50 40 30 20 10 8.01 0.1 100 1000 3000 Particle Size (µm) -11656-001 Comb Pred - Average, Friday, January 18, 2008 8:37:52 AM 1372 13.16 15.13 17.37 21

1254 CEN 1950 UND 1155 UND 115 1-00 00 00 1-00 00 1-0 15.77 15.00 17.00 21.10 22.10 24.00 44.00 44.00 44.00 475 64 035 045

Operator notes:

Masterstan 2000 Ver 8.22 Senai numbar 1884 101400

File hame Armo 2006 Record Number 605

Test No.

Project No.:

11656-001

Operator

Purposet

Cleaner test to depress pyrite with lime only Achieve grade of \$1/2 Me in 4th cleaner concentrate Sodium silicate added to depress tak in Clr 1 Stage grinding of Rougher feed

Procedure:

As outlined below

Feed:

10kg of Hurdal ore composae

Grind:

Stage product of the interest of the SS Rod Mill. 65 % solids 10 montes re-grind in pebble mill.

Notes:

Rougher pull rate every 10 seconds for first 10 manutes
Rougher pull rate every 15 seconds after 10 manutes
In Ro-grind, lime added to pH 9.5 before sod, Sil, Added

Added to pH 9.5 before sod, Sil, Added

K80 (re grind)

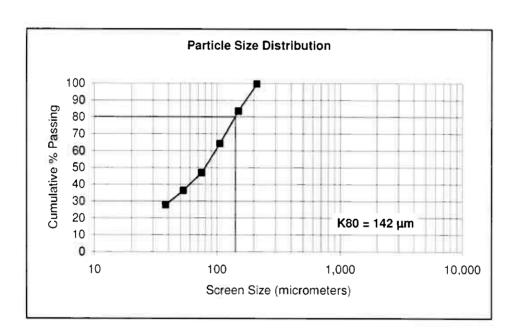
	R	eagents added.	grams per tonne		Ť	me, minute	s		
Stage	Diesel Fuel	MIBC	Lime	Sod Sil	Grind	Cond.	Froth	рН	Redox
Cirind	11				Stage Gr.				
Roughers									
Condition		4				1		Nat	
Me Rougher I							2	8.3	
Mo Rougher 2							4		
Mo Rougher 3							4		
Condition	2.5					- 5			
Mo Rougher 4		<					- 5		
Condition	2.5					- 5	12-7		
Mo rougher 5							5		
Condition									
Mo Ro Scav (Sep. Conc.)	10					5	6		
Re-grind									
R + Conc 1-5	0.5		as needed for pH 9.5 =16.g.t	200	10			9.5	-120
Condition									
		as needed	as needed						
Cleanerl		2.5	0				4	10 (11)	-180
Cleaner1 Scav			0				6	10.0	~150
Cleaner2		2	23				4.	10.5	-200
Cleaner 1			120				3	11.0	-180
Cleaner4		-	31				2	115	-120
া পাত্ৰ	55.5	51.5	91	200			15		

Stage	Rougher 1-Scav	Cleaner I	(Teaner2	Cleaner 3-4
Piotation Cell	10 kg	D1 - 1/00g	D1 ~ 500 g	D1 = 250g
Speed rpm	CIPE wetting	ISO	1500	120

Metallurgical Balance

Product	Wei	ght	Assay	s. %	S Distribution	
	g	5	Mo	S	Mo	S
Mo Chr 4 Conc	14.3	0.1	48.2	2/14	72.6	7.3
Mo Clr 4 Tis.	1	0.01	35.3	22.4	3.6	0.1
Ma Ch 3 The	2.1	0.0	12.5	9.13	2.2	0.3
Mo Clr 2 Tls	17.2	0.2	2 20	2.67	3.9	6.7
Mo Clr 1 Scav Conc	21.4	0.2	2.53	2.91	4.5	0.3
Mu Clr 1 Scav Tis.	337.9	3.4	0.067	0.840	2.3	16.1
Mo Ro Scav Cone	47.3	0.4	0.067	0.520	6.3	6.4
Mg Ro Ts	95554	94.6	0.0092	0.480	9.0	74.5
Head (calc.)	100(4)	1000	0.068	0.616	100.0	100
(direct)			0.120	0.790	11	

Product	Wei	Assay	S. Distribution			
	g	6	Me	S	Mo	S
Ma Chr 4 Conc	14.7	0.1	48.2	3114	73.6	13
Mo Clr 3 Conc	15.7	0.2	47.4	30.1	76.2	2.7
Mo Clr 2 Conc	17.8	0.2	43.3	27.6	78.9	5.0
Mo Clr 1 Conc.	35.0	0.4	23.1	15.3	82.8	8.7
Mo Cir I Cone + Cir 1 Scav. Cone	56.4	0.6	15.28	9.84	11.3	9.0
Me Ro Conc	394.3	2.9	2.24	1.92	90.7	25.1
Mo Ro Cone + Ro Seav. Cone.	441.6	4.4	2.01	2.54	91.0	25


Project No. **11656-001**

Sample:

Ro Scav Tail sub

Test No.:

1	ze	Weight	10.00	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	0.6	0.5	0.5	99.5
100	150	19.7	16.0	16.5	83.5
150	106	23.8	19.3	35.9	64.1
200	75	21.3	17.3	53.2	46.8
270	53	13.0	10.6	63.7	36.3
400	38	10.4	8.5	72.2	27.8
Pan	- 3 8	34.2	27.8	100.0	0.0
Total		123.0	10 0.0	-	
K80	142				

MASTERSIZER

Result Analysis Report

Sample Name: 11656-001 Comb Prod - Average

Sample Source & type: Factory = F11 Sample bulk los ref: 129-ABC

Particle Name: Default Particle Ri: 1 520 Dispersant Name:

Concentration 0.0132 5V

Specific Surface Area: 1.43 m/m

SOP Name: default

Measured by: Li_hydros Result Source Averaged

Accessory Name: Hydro 2600G (A) Absorption:

Dispersant RI:

Span :

Surface Weighted Mean D[3.2] 4.197 um

Measured: Friday, January 16, 2005 6 (45:11 AM

Assiysed: Fitter, January 18, 2008 6 46 12 AM

Analysis model: General purpose Size range: 0:020 to 2009 Weighted Residual: 1:350 % to 2000-000 um

Uniformity: 1.53

Vat Weighed Mean D(4.3) 17.635 um

Result units: Volume

Sensitivity: Enhanced

Obscuration: Result Emulation: Off

1 STATE OF		LEGITATE		BRITAIN		LEFTH		E स्टाप्टा ध	100 34	THE WATER	(Page &
4010	8.55	0.135	6.33	1.004	246	11.482	63	150.236	20.00	1231.03	1-302-00
0.011	8.00	0.133	6.00	1300	6.54	15.183	63.60	138.036	20	1015.040	100.00
6.013	2.00	6139	0.30	1446	836	15.136	ax.	158.463	22.36	1686.88	130,00
0.016	0.00	0.168	0.36	1,000	11.02	17.271	7286	101,570	25.61	1006,461	130.60
9 645	0.00	0.182	0.30	1.006	11.91	10.353	76.62	200.030	200	2167762	130,00
4 020	0.00	0.230	0.00	2186	14.06	22 200	00.15	236,883	20	2511,000	130.00
0.053	8.00	6.343	6.00	2512	16.61	26,303	03.36	271.423	26	2004 (202	190,00
0.004	0.00	625	0.00	2.864	19,00	30,200	85.12	715.228	66.71	3311.311	130.00
0.000	8.00	6316	0.00	3301	21 92	34.074	96.90	363.376	2079	3801.000	100,00
0.036	0.00	0.363	0.00	1.02	3.0	38,011	W. 53	416,000	25.64	4365.156	130.00
0.640	0.00	6,417	0.04	4.365	24.4	46,700	92.26	CASC	201	9011/F2	130,00
0.046	0.00	0.63	0.27	1,912	2.0	42.40	6.73	\$45,541	20	200	100.00
9.062	0.00	0.960	0.70	57%	36.13	61.256	9.2	130.057	100.20	993	190,00
0.060	0.00	0.631	1.35	6.007	40.00	00.193	9K.03	724.638	100.00	7996776	120
2.000	820	6.734	2.10	7.86	44.83	78.433	95.21	221,764	106.00	POR	100.00
9.00	0.00	0.832	216	6710		01 201	84	CC011355			
			211	100000	2.0			264.908	100.00	100000.000	100.00
0.001	0.00	0.000	4.26	10,000	43	134713	# .21	TELETE	100.00		

Operator notes:

Adalysish instruments LLS. Resilvent, UK

Test No.: F12

Project N

11656-001

Operation. Date PSM

Purpose

Cleaner test to depress pyrite with NaHS and time Achieve grade of \$100. Mo in 4th cleaner concentrate Sodium vikcate added to depress take in Cir. I Stage granding of Rougher feed

As outlined below.

l kg if Hurdal ite o ropiska

Stage grading of floration feed, laboratory 19 kg SS Rod Mill, 65 % selich in minutes re-grand in pebble mill

Rougher pull rate every 10 seconds after 10 minutes KN0 (permary gro Kougher pull rate every 15 seconds after 10 minutes KN0 (re-grind). Measured pH levels in cleaners that differ from target pH levels are bracketed in tot

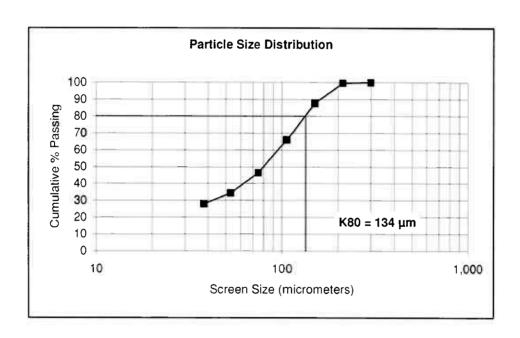
	Reagents added.	grams per tonne	e			Time, n	ninules			
Sta se	Diesel Fuel	MIRC	NaHS	Lime	Sod Sil	Grind	Cont.	Freth	pH	Redox
Great	49					Stage Gr.				
Boughery										
Condition		41					1		Nat	
Ma Rougher I			1					- 2	8.2	
Mo Rougher 2								4	9.5	_
Markingher 3		ξ.						4	N.6	
Condition	2.5						- 5			
Mo Reingher 1								5 .	8.5	
Cindition	24						5			
Mirrougher 5								- 5	83	
Cindinia										
Mak Syav (See Care)	10						4	- 6		
Regred								_	-	
R C = 13	0.		200	none	1000	20			MS(US) abor adding time (EL)	
Condition									120	-3(3)
		as needed	as needed	as needed						-900
Cleaner		2.5		0			_	- 4	10 (18)	300
Cleanert Seav				0				6	10	-300
Cleaner2		1.5	50	- 6			_	4	10.5	-250
Cleaner 3		1	4)	0				- 1	11.0	-270
									10.0	
(karn r4	_		10	20	-			- 1	11.5	-280
Hal	CC 4	50	300	20	1000			16		

Stage	Rougher 1 Seav	Cleaner1	Cleaner2	Cleaner 3-4
Hosarinn Cell-	like	Dt = 1000g	D1 = 500.g	D1 - 25(ie :
Speed rone	4 withing	1800	14(1)	12/95

Metallurgical Balance

Product	Wei	ght	15525	. %	% Distribution	
Paralle San Control	2	- 4	Mo	5	Ma	5
Me Clr 4 Cenc	9.5	0.1	55.6	34.2	51.3	9.0
Mo Clr 4 Th.	4.1	0.64	39 6	28.6	15.5	2.0
MarCk 3.1b.	4.2	2.0	21.2	15.8	9.7	1.8
MirCh 2 Ts	15.6	82	4.32	4.10	6.5	3.1
Mir Cle 1 Scav Cinc	24	62	2 16	2.420	5.0	10.5
Mit Cit I Scan Hs.	217.8	2.2	0.18	6.726	3.8	2.5
Me Re Scav Conc.	×9.3	2.2	0.05	0.370	0.4	0.6
Mor Ro Th	0635	96.4	0 008	0.480	2.5	79.1
Head scale is	11000	1000	6.103	0.584	1000	100
(direct)	Moon	77.57	0.120	0.790	ISCAACO.	1000

Product	Wei	ght	1441	1.50	% Distribution		
	g	i i	Ma .	S	Mo	S	
Mo Cir 4 Conc	9.5	0.1	<5.6	36.2	51 3	50	
Mis Ch 3 Conc.	12.6	0.1	50.8	33.0	67.0	3.0	
Mil Cir 2 Cinc.	1×3	0.2	43.2	29.5	76.7	9.2	
Mir Clr I Conc.	33.9	6.3	25.30	17.82	83.2	101	
Ma Cle I Core + Cle 1 Seas Core	57.9	E 6	15.71	10.23	18.3	ine	
Me Re-Conc	275.7	2.5	3.44	4.32	92.1	26	
Mil Ru Clinc - Ro Scav Clinc	365	3.7	2.61	1.36	92.5	201	


Project No. 11656-002

Sample:

Ro Scav Tails Sub

Test No.:

μm 300 212	grams 0.0	Individual 0.0	Cumulative	Cumulative
	0.0	0.0		
150 106 75 53 38	0.5 17.1 31.1 28.0 17.2 9.3	0.0 0.3 12.0 21.7 19.6 12.0 6.5	0.0 0.3 12.3 34.1 53.6 65.7	100.0 99.7 87.7 65.9 46.4 34.3 27.8
-38		52	100.0	0.0
124	143.0	100.0	.	-
	106 75 53	106 31.1 75 28.0 53 17.2 38 9.3 -38 39.8 - 143.0	106 31.1 21.7 75 28.0 19.6 53 17.2 12.0 38 9.3 6.5 -38 39.8 27.8 - 143.0 100.0	106 31.1 21.7 34.1 75 28.0 19.6 53.6 53 17.2 12.0 65.7 38 9.3 6.5 72.2 -38 39.8 27.8 100.0 - 143.0 100.0 -

Result Analysis Report

Sample Name 11656-002 Comb Prod - Average

Sample Source & type: Factory = F12 Sample bulk lot ref; 129-ABC

Particle Name: Detault Parsicle RI 1,520 Dispersant Name: Water

Concentration: 0.0112 %Yol

Specific Surface Area:

SOP Name: default

Measured by: Lr_hydrot Result Source Averaged

Accessory Name: Hydro:2000G (A) Absorption

Dispersane RI:

Span :

Surface Weighted Mean D[3.2]: 4.199 um

Measured: Tuesday, February 65, 2006 9:16:42 AM

Analyse d: Tursday, February 05, 2008 9, 15:43 AM

General purpose

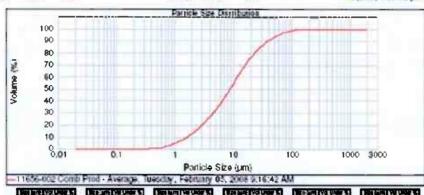
Size range; 0:020 to 2009 000 Weighted Residual; 1:374 %

Uniformity: 1.49

Vol. Weighted Mean D(4:3): 16.725. L/H

Result units: Volume

Sensidviny: Enhanced


Obscuration:

16.76 % Result Emulation

dan: 1.660

dos: 6.865

D(0.80) : 23.32 µm

ENTERE		ETHERE			STEEL ST	LEOTER D		FED TO LET		DESIGNATION OF	
400	8.50	613	C 55	1.00%	12	11.482	68.74	120226	2018	1258.925	190 00
6.011	8.00	0.122	0.09	1388	6.84	12 189	6.34	138-336	95.48	1648,640	100.00
0.013	800	6 136	C.30	1.465	8.32	15 136	IF.At	158.483	25.64	166.55	100.00
4 015	8.00	0.168	60.0	1,000	10.88	12.73	723	181.870	2574	1206.461	100.00
0.042	Q.T.	6.142	C.30	1,905	11.30	19 363	75.27	200.930	SSA	2167762	190.00
0.020	0.00	0.230	0.00	2.164	14.03	22,300	70.90	235,813	25.40	2511,006	190.00
4 023	0.00	0.341	0.00	2.512	16.43	25, 302	62.73	2543	26	2004.032	100.0
0.004	800	0.276	0.00	2.004	19.40	30.200	86.66	316.228	50.00	3311311	1-30.00
4.090	800	0.316	0.00	3311	22.01	36.674	86.16	363,971	25.00	3001 60k	100.00
4 036	0.22	0.361	6.00	2002	3.3	38,511	90.30	416,890	90.04	4366 198	190.00
0.040	800	0.417	C.E	4366	20.64	476	10.22	#1400	000	8011872	190.0
6.046	0.00	8.479	6.38	\$.012	22.34	62.481	654	845,641	50.00	E14.300	100.0
6002	833	0.951	£.7a	57%	KS	61.254	65.23	636.95	100 00	MC5.534	140.0
4.060	0.00	0.634	1.00	4.007	44	GE 103	85.40	724.436	100.00	7995776	190.0
100	233	0.734	2.21	7.596	44.06	78.433	6.2	831 764	100.00	FER	100 8
4.00	ax	200.0	1.19	6710	461	91 201	65, 15	354.903	100-90	10000.000	100.0
4.501	0.00	1.000	4.30	10,000	64.00	194713	00.78	IDLE	100.00		

Operator notes:

Maratar 2009 Var. 5 22 Setal Number 1882 (2147)

Test No.

Project No.

11656-001

Operator: Date:

PNI

Investigate effect of second re-grand in the cleaners on final conclusestigate the use of fuel oil dispersant, OPS, in mugher

As outlined below.

Freilt

1 kg of Hurdal see composac

Grind:

Laboratory II kg SS Red Mill 65 % saids formation first re-grand in pubble null minutes second re-grand in pubble mill

Notes.

Region pell rate every 10 seconds for first 10 minutes
 Recipher pell rate every 15 seconds after 16 minutes
 Some floration feed spiled while emptying rod mill
 Measured plf levels in cleaners that differ from range pff levels are bracketed in red

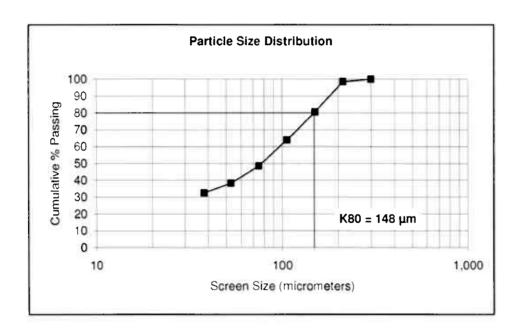
Lunditions.		Reagents add	ed, grams p	er tonne			Time,	minutio			
Nage	Diesel Fuel	MIBC	NaCN	Lime	OP6	Sod Sil	Grind	Const.	Froth	pH	Redax
Grind	4)				25		Sugnist.				
k agher											
in Itti m		40						1		Nat	
Mo Rougher I									2	Nat x 3	
Min Roughet 2									4		
Mr. Rougher 1		2.6							4		
TREATURE TO SERVICE TO	2.5							4.			
Mic Religiber 4		2.5							4		
enduen	2.5							5			
Mo rougher 5									5		
endition											
la Ra Scar (Sign Com)	10	2.5		-		_		5	6		
so gens											
Co Conc. 7-5	1		23	DEIDE:	4.5	200	- 18			55 (113)	-280
Condition											
		as needed									
leanert		2.5		as needed					- 4	10	-80
leaner) Seas	1	2.5							6	10 10 1	-20
% after 2		-	10.	- 30					- 1	10.5	10C
										96	-10
leaner t		1 -	10	- 0					3	11.0	-80
-100										9.8	-20
Teaner4		-		23					2	11.5	-100
Regras Code	.1		20			100	61				
Teather 5		2.5							- 1	11.5 (13.6)	-50
[Ital	54	5.5	40	29	25.5	300			4*		

Stage	Rougher 1-Seav	(leaner)	Cleanet2	Cleaner 3.5
Floration Cell		D1 - 1000g		
Spend rpm	SOVIL sutting	1800	1500	\$200.

Metallurgical Balance

Pricioct	Wei	ght	Assay	1.5	- % Distr	ribution
134100-3	2	- 1	Min	S .	Mu	- 5
M. Clr S Conc.	13.6	014	56.6	37.0	77.6	100
Ma Cle 5 Tls.	3.3	25,252	8.99	61.0	3.05	0.7
Mn-Clr 4 Tis	1.6	941	14.3	15.1	2.8	0.5
Mu Clt 3 Tis	2.4	10.02	3.57	8.72	0.9	0.4
Mir Clr 2 Tin	6.6	45107	0.810	6.47	0.5	0.9
Mu Cle I Scan Cine	33.3	0.34	1.23	4.58	4.1	0.4 0.9 2.1
Mo Clr I Scav TIs	255.4	24	0.055	4.06	1.6	26.3
Ma Ro Scav Conc	60.5	0.62	0.083	0:340	0.5	0.4
Me Ro Th	9409	95.5	0.010	0.340	8.5	51
Head (calc.)	9815	100.0	6.101	0.511	100.0	1(1)
(direct)			8.129	2.790		

Prestuct	Net.	ghs.	Assus	1. %	% Distribution		
	2	4	Mu	,	Mu	UIII.	
M - Cle 5 Clinc	13.6	0.14	56.6	37.0	.27.6	10.0	
Shi Cir 4 Cinc	16.9	0.17	47.9	31.9	90.6	10.7	
Ma Cir 3 Cond.	18.5	0.29	44.4	30.5	82.9	11.2	
Ma Clr 2 Conc	20.9	0.21	39.8	28.0	83.7	11.6	
Ma Cle 1 Conc	27.5	0.2	30.41	22 NE	84.3	12.5	
Mo Cle I Conc. • Cle I Scav. Conc.	60 3	0.62	14.43	12.54	88.4	15.3	
M. Ro Cenc	349.2	3.6	2.56	5387	90.0	41.5	
Me Re-Conc • Ro Scav Conc	409 7	4.2	7.09	5.13	1961 5	41 6	


Project No. 11656-001

Sample:

Ro Scav TIs

Test No.:

Siz	ze	Weight	% Re	etained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48	300	0.0	0.0	0.0	100.0
65	2 12	2.3	1,5	1.5	98.5
100	150	26.5	17.8	19.4	80.6
150	106	24.8	16.7	36.1	6 3 .9
200	75	22.9	15.4	51.5	48.5
270	53	15.3	10.3	61.8	38.2
400	38	8.5	5.7	67.5	32.5
Pan	-38	48.2	32.5	100.0	0.0
Total	-	148.5	100.0	856.8	14845
K80	148		2000-000		

Result Analysis Report

Sample Name: 11656-001 F13 Ciri Sc. Tis. - Average

Sample Source & type: Factory = Paris

Sample bulk lot ref: PSM

Particle Name: Detaul1 Particle RI; 1 520

0.0090

Specific Surface Area:

SOP Name : delzult

Measure d by Lr_hydro1 Result Sour Averaged

Accessory Name: Hydro 2000G (A.) Absorption:

Span : 3,054

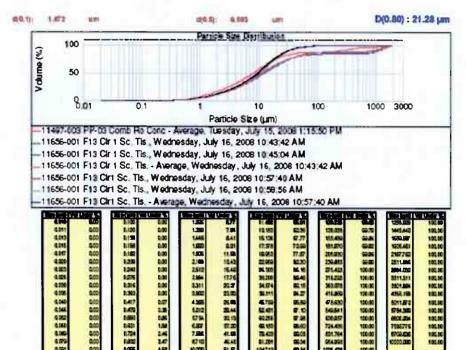
Surface Weighted Mean D(3,2): 4.260

Measured: Wednesday, July 16,2008 10:57:40 AM

Analyse d: Wednesday, July 16, 2008 10:57:41 AM

Analysis model . General purpose

Stze range:


to 2000 000

Vol. Weighted Mean D[4,3]:

#863 84054 610.05

Enhanced Obecuration

Result units:

Operator notes:

Appendix E – Mineralogy Data

DESCRIPTION of QEMSCAN

Mineralogical testing can be an extremely powerful tool that compliments any flotation program. Such studies are useful in establishing performance limits and identifying possible areas for improvement. This can be accomplished by either an optical petrography study or QEMSCAN® mineralogical characterization to evaluate various flotation products. QEMSCAN® is an automated SEM that is capable of producing quantitative data to assess bulk modal analysis, liberation characteristics, and mineral associations. QEMSCAN is an acronym for Quantitative Evaluation of Materials by SCANning electron microscopy, a system which differs from image analysis systems in that it is configured to measure mineralogical variability based on chemistry at the micrometer-scale. QEMSCAN® utilizes both the back-scattered electron (BSE) signal intensity as well as an Energy Dispersive X-ray Signal (EDS) at each measurement point. It thus makes no simplifications or assumptions of homogeneity based on the BSE intensity, as many mineral phases show BSE overlap. EDS signals are used to assign mineral identities to each measurement point by comparing the EDS spectrum against a mineral species identification program (SIP) or database. QEMSCAN® can map many thousands of particles in a polished section to obtain a detailed and statistically robust characterization of the ore liberation. QEMSCAN map the particles based on differences in chemical analyses and can differentiate amongst the various non-opaque gangues present in the ore body.

There are two general types of measurement: those using the linear intercept and those based on particle mapping. Bulk mineral analysis (BMA) is performed using the linear intercept method, while liberation is performed by particle mapping in particle analysis (PMA), specific mineral (SMS) and trace mineral search (TMS) modes. Specific details of the measurement modes are presented below.

Bulk Mineral Analysis, or BMA, is performed by the linear intercept method, in which the electron beam is rastered at a pre-defined point spacing (nominally 3 micrometers, but variable with particle size) along several lines per field, and covering the entire polished section at any given magnification. This provides a robust data set for determination of the bulk mineralogy, with mineral identities and proportions, along with grain size measurements. This would be performed on every section to accurately establish modal abundance. XRD analyses will be

performed to identify the significant crystalline phases present in the ore to support the OEMSCAN work.

The Specific Mineral Search (SMS) routine is a particle mapping method which uses BSE measurements to map only those particles which contain the constituents of interest. This provides a more statistically abundant analysis of the minerals of interest, and provides spatial information, allowing for full characterization of these minerals, including liberation, association and determinative mineralogical characteristics,

Each polished section prepared from an ore sample can be analyzed using the Particle Mineral Analysis (PMA) method. This ensures that the mineralogy of all minerals is captured. This method is a particle mapping mode of measurement which allows for complete analysis of the mineralogy of the sample. Like the BMA, it allows for a robust determination of the bulk mineralogy, with mineral identities and proportions, along with average grain size measurements. The PMA mode also provides an analysis of the spatial characteristics of minerals, including liberation, association and grain size distribution, and it allows for determinative mineralogical analyses such as grade vs. recovery curves and mineral release curves

Introduction

One F7 molybdenite concentrate containing four fractions was submitted for mineralogical analysis from Crew Minerals in December 2007. Four graphite-impregnated 30mm polished sections were prepared, and the coarsest fraction was submitted for XRD analysis. The polished sections were carbon coated and analysed using the QEMSCAN Particle Mapping Analysis (PMA) mode. The resulting data was processed to separate touching particles, resulting in the following particle counts:

Fraction	Sections	Particle
(µm)	No.	No.
-300/+106	1	2749
-106/+53	1	5011
-53/+20	1	5000
-20/+3	_ 1	30059

Reports included are as follows:

XRD summary

Operational statistics

Assay reconciliation

Modal data and distribution graphs

Mo liberation and corresponding image grid

Mo association and example textures

Mo grade-recovery curves

Mo release curves

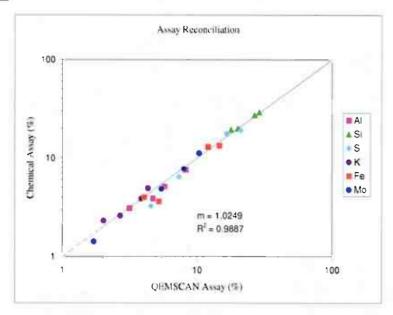
Cumulative grain size distribution curves

CALR-11656-001 MI5004-DEC07 Crew Minerals-Hurdal

XRD Summary

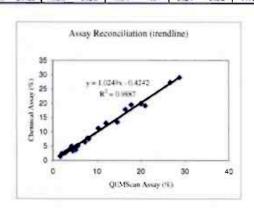
	Crystalline Mineral Assemblage (relative proportions based on peak height)									
Sample	Мајог	Moderate	Minor	Trace						
F7 Mo Conc -106+53µm	quartz	molybdenite plagioclase	potassium-feldspar pyrite	*dolomite, *mica *magnesite *pyroxene *pyrrhotite *tetrahedrite						

^{*}Tentative identification due to low concentrations, diffraction line overlap, or poor crystallinity


CALR-11656-001 MI5004-DEC07 Crew Minerals-Hurdal

Operational Statistics

Batch ID SIP ID		MI5004-DI		
Analysis Type		PMA		
Fraction	Sections	Pixel	Particle	Points
(µm)	No.	Size (µm)	No.	No.
-300/+106µm	1	5	2749	2852837
-10 6/+53 µm	I	4	5011	1582329
-53/+20µm	1	2	5000	922188
-20/+3µm	1	2	30059	267988

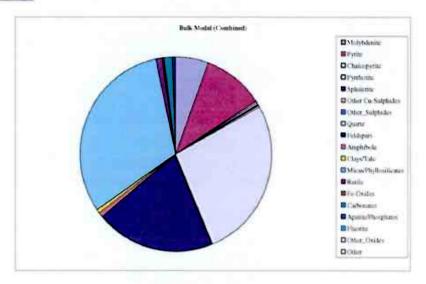

CALR-11656-001 M15004-DEC07 Crew Minerals-Hurdal

Assay Reconciliation

	55		Assaw (%)											
		A1		Si		S		K	I	e .		No		
Fraction	QEM	Chem.	QEM	Chem	QEM	Chem	QEM	Chem.	QEM	Chem.	QEM	Chem.	1.1	Line
-300/+106um	5.78	5:16	28.78	29.03	7.39	6.44	3.84	3.87	4,06	4.01	5.45	1.88		
-106/+53µm	3.16	3.08	17.86	19.45	21.00	19.10	2.03	2.30	14.61	13.43	10.36	11.20	100	100
-53/+20um	4.73	3.87	20.05	19.82	16.50	17.80	2.69	2.59	12.06	13.01	8.02	7.78		
-20/+3um	8.27	7.62	26.63	27.25	4.56	3.26	4.34	4.94	5.24	3.62	1.72	1.42		

QEM	Chem				
5.78	5.16				
3.16	3.08				
4.73	3.87				
8.27	7.62				
28.78	29.03				
17.86	19.45				
20.05	19.82				
26.63	27,25				
7.39	6.44				
21.00	19.10				
16.50	17.50				
4.56	3.26				
3.84	3.87				
2.03	2.30				
2.69	2.59				
4.34	1.94				
4.06	4.01				
14.61	13.43				
12.06	13.01				
5.24	3.62				
5.45	4.88				
10.36	11,20				
8.02	7.78				
1.72	1.42				

SGS Minerals Services

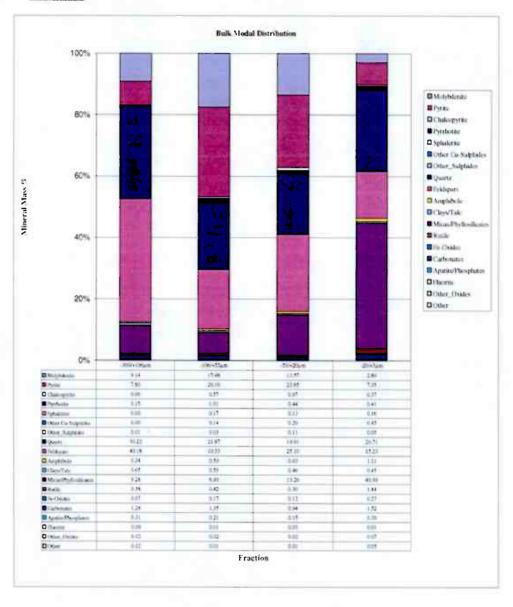

CALR 11656-001 MI5004-DE-C07 Crew Minerals-Hurdal

Bulk M. dal Analyses

Survey	Name Id	Crew Minerals Hundal MI5004-DEC07									
Sample Fraction	Name Name Mass Size Distribution (%) Particle Size (um)	F7 Moly Con Combined 3000+106µm 41060+53µm -537+20µm -209+3µm								Lim	
1 10000000		100.00	16.49 122		132 51 -108/+53um		6.27 21		69.92 S		
		10									
		Combined = 300/+106um		-106um							
		Sample		Traction		Iraction		Fraction.	Sample	Tractor	
Mineral Mass (%)	Mulybdente	5.66	1,51	9.14	1.28	17.48	C.85	13.57	2.02	2.89	
	Pyrite	10.04	1.29	7.80	2.14	29.19	1.48	23.65	5.14	7.35	
	Chaic pyrite	0.37	0.01	0.06	0.04	0.57	0.06	0.97	0.26	0.37	
	Pyrrhotite	0.41	0.02	0.5	0.07	1.01	0.03	0.44	0.29	0.41	
	Sphalerne	0.13	0.00	0.00	0.01	2.17	0.01	0.13	0.11	0.16	
	Other Cu-Salphides	0.34	0.00	0.00	0.01	0.14	0.01	0.20	0.32	0.45	
	Other Sulphales	0.09	0.00	0.01	0.00	0.03	00:	0.11	0.08	0.11	
	Quartz	26.51	4.98	30 22	1.60	21.87	1.25	19.91	18.68	26.71	
	Feldspars	20.26	6.63	40.18	1.42	19 33	1.57	25.10	10.65	15.23	
	Amphib &	0.91	0.06	0.34	0.04	0.59	0.04	0.63	0.77	1.11	
	Clays Tak	0.49	0.11	0.65	0.04	0.53	0.03	0.46	0.32	0.45	
	Micas/Phyllosilicates	31.53	1.53	9.28	0.50	6.90	0.83	13.26	28 66	40.99	
	Rutile	1.12	0.06	0.38	0.03	0.42	0.02	0.30	1.01	1.44	
	Fe-Orades	0.22	0.01	0.07	0.01	C 17	0.01	0.12	0.19	0.27	
	Carbonates	1.43	0.21	1.28	0.10	1.35	0.06	0.94	1.06	1.52	
	Apatite/Phosphates	0.35	0.05	0.31	0.02	0.21	0.01	0.15	0.27	0.39	
	1 lucinity	0.02	0.01	0.09	0.00	0.01	0.00	0.03	0.00	0.01	
	Other Oxales	0.05	0.00	0.02	0.00	0.02	0.00	0.02	0.05	0.07	
	Other	0.04	0.00	0.02	0.00	0.01	0.00	0.01	0.03	0.05	
Ciram Size (jim)	Molybdenite	1	- 4	4	- 2	28	-	14	8		
	Pyrite		7	2	49		24		8		
	Chakopyrue	33	72		38		18		5		
	Pyrrhotae		26		20		8		6		
	Schulerite	- 23	19		80		19		8		
	Other Cu-Sulphides	1 -		8		15		3		8	
	Other Sulphides	- 55		7		6		12		3	
	Quartz	1 29	€	66		40		14		5	
	Feldspars		43		28		14		6		
	Amphibule	1 1	11		10		6		5		
	Clays/Tak		- 3	8	8		4		3		
	Micas/Phyth silicates	1	1		9		<u>£</u>		6		
	Rutile		23		18		11		7		
	Fe-Oxxles	- 8	21		16		7		4		
	Carly nates			32		25		16			
	Aputite/Phosphates	- 51		34		21		9		5	
	Phorite	- 27	26		11		14		4		
	Other Oxdes	41	13		9		5		5		
	Other	33	9		9		8		4		

CALR-11656-001 MISO:4-DECU? Crew Mineral-Horizal

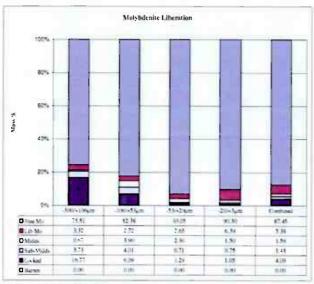
Bulk Model Atraces



		Cattleband 300 - 100 minutes		-10	Shirts.	-53%	Diam.	-29	+ 1um	
		Sample	San	I make e	Same	Frictain	Same	I tota n	Sample	Instan
Inetal Masse kee	Malshlezate	5,66	1.51	9.14	1.29	17.48	0.85	13.57	2.02	2.89
	Pyrite	10.04	1 29	7.80	214	29.19	1.48	23 65	5 14	7 35
	Clark opythe	0.37	0.01	0.06	0.04	0.57	0.06	0.97	0.26	0.37
	Pyrebotite	0.41	0.02	0.15	0.07	1.01	0.03	0.44	0.29	0.41
	Sphalerite	0.13	0.00	0.00	0.01	0.17	0.01	0.13	0.11	0.16
	Other Cu Sulphides	0.34	0 00	0.00	0.01	0 14	0.01	0.20	0.32	0.45
	Other Sulphides	0.05	0.00	0.01	0.00	0.03	0.01	0.11	0.04	0.05
	Quieta	26.51	4 98	30 22	1.60	21.87	1.25	19.91	18 68	26.71
	Festigues	20.25	6.63	40 18	1.42	19 33	1.57	25 10	10 65	15.23
	Anglishola	0.91	0.06	0.34	0.04	0.19	0.04	0.63	0.77	1.11
	Chrys/Tak	0.49	0.11	0.65	0.04	0.53	0.03	0.46	0.32	0.45
	MANITHENIARS	31.53	1.53	9.29	0.50	6.90	0.83	13.26	28.66	40.99
	Russle	1.12	0.06	0.38	0.03	0.42	0.02	0.30	1.01	1.44
	to Oxides	0.22	0.01	0.07	0.01	0.17	0.01	0.12	0.19	0.27
	Carbonsaton	1.43	0.21	1.29	0.10	1.35	0.06	0.94	1.06	1.52
	Aparte Phi sphales	0.35	0.05	0.31	0.02	0.21	0.01	0.15	0.27	0.39
	Districts	0.02	0.01	0.09	0.00	0.01	0.00	0.03	0.00	0.01
	Other Oxales	0.05	0.00	0.02	0.00	0.02	0.00	0.02	0.05	0.07
	Other	0.04	0.00	0.05	0.00	0.01	0.00	0.01	0.03	0.05

		-300 + 66um	-106-53um	-51 - 3/1m	-20 × 3µm
Macral Mass 43	M lybikmite	9 14	17.48	13.57	2.89
	Paritu	7.80	29 19	23 65	7.35
	Chak appra	0.06	0.57	0.97	0.37
	byerts one	0.15	1.01	0.44	0.41
	Spladente	6.00	0.17	0.13	0.16
	Other Co Nulptales	0.00	0.14	0.20	0.45
	Other Sulphales	0.01	0.03	0.11	0.05
	CAURTA	30 22	21.87	19.91	26.71
	Feldspurs	40 18	19 33	25 10	15.23
	Amphil (k)	0.34	0.59	0.63	1.11
	Clays/Tak	0.65	0.53	0.46	0.45
	Micas Phyllesikates	9 28	6.90	13.26	40.99
	Ratike	0.38	0.42	0.30	1.44
	Fu Chales	0.07	0.17	0.12	0.27
	Cub nutes	1 28	1 35	0.94	1.52
	Aparity The spheres	0.31	0.21	0.15	0.39
	Phoeto	0.09	0.01	0.03	0.01
	Chier Chales	0.02	0.02	0.02	0.01
	Other	0.02	0.0	0.01	0.05

CALR 11856-001 MISCH-DECO! Crew Miterals Hurdal


Buk Medal Analysis

CALR-11656-0-1 MISOM-DECO7 Crew Minerals Hurdal

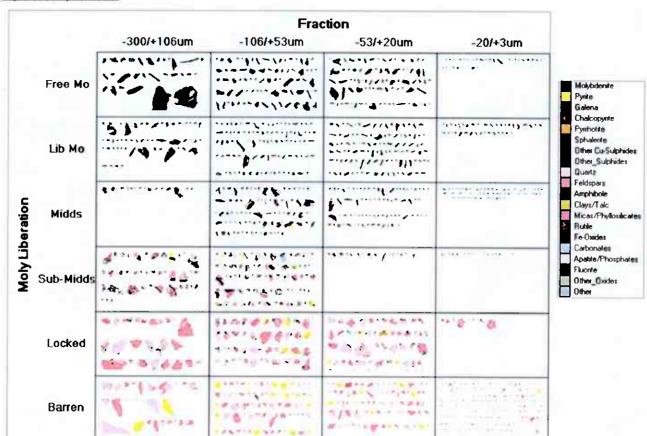
Note: All Molyhdenum occurs as molyhdenite

Majob dende Liberation

Categories are based as particle area percent. Free >= 95% Lin <95% d >=20% Lin hed <20% d >= 50% Sab Model <50% d >=20% Lin hed <20%.

Absolute Material Mass

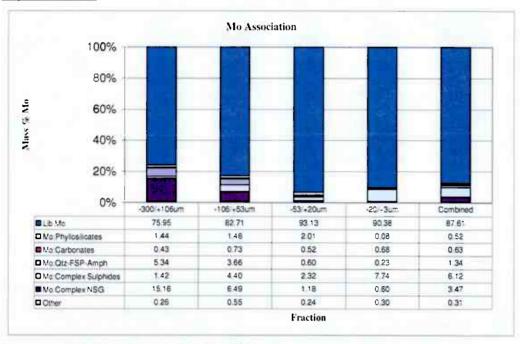
	- en-losum	-106 + 43µm	-5% - Muns	-200+Rum	Combined
Free Mo	1,14	1.05	0.79	1.83	4.81
Lib Mo	0.05	0.03	0.02	0.13	6.24
Midds	0.01	0.05	0.02	0.03	6.11
Sub-Malds	0.06	0.05	0.01	0.02	0.13
Locked	0.25	0.09	0.01	0.02	0.37
Buren	0.00	0.00	U 00	0.00	0.00
Total	1.51	1.28	£ 5€	2.02	5.66


Normalized Moneral Mass

	-344+[18uta	-106-433um	.53 +2 um	, 71 + 3 ₁₀ [2]	Combacd
ince Mis	75.51	N2 4s	93 Pc	ag to	57.45
Lib Mo	3.32	2.72	2.65	630	< 24
Midds	0.67	3 90	2.39	1.50	1.59
Sub-Malds	3.73	4.01	6.71	0.75	1.48
Locked	16.77	6.99	1.29	1.05	4 (8)
Ватеп	0.00	0.61	(x) (x)	6000	0.00
tal	100.00	100	100 10	FP0.00	100

Free + Liberated Melybdenite

366/-10funi	-luk+Gum	53 - 2 tem	-20 - lum
10.82	12.5		10.00


Image Grid - Cu Sulphide Liberation

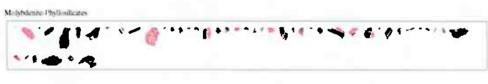
Categories are based on particle area percent

Free >= 95% Lib < 95% & >= 80% Midds < 80% & >= 80% Sub Midds < 80% & >= 20% Locked < 20% at >= 20% Cocked < 20% at >= 20% at >

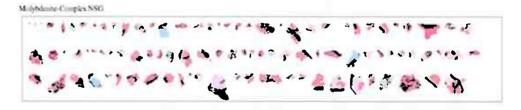
Molybdenite Association

Note: Categories are tosed on having paracles more than 95% of the combined mineral masses.

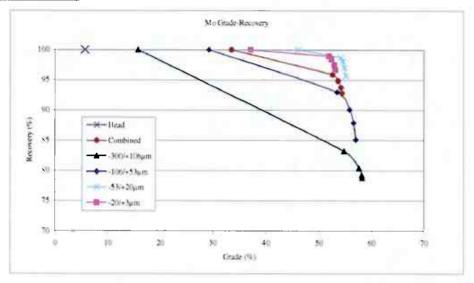
Mass of Molyhdenite (g)


	~300/+106um	-106/±53um	-53/+20um	-20/+3um	Combined
Lib Mo	1.14	1.06	0.79	1.83	4.82
Mo:Qtz-FSP-Amph	0.08	0.05	0.01	0.00	0.14
Mo; Carbonates	0.01	0.01	0.00	0.01	0.03
Mo:Phyllosilicates	0.02	0.02	0.02	0.00	0.06
Mo:Complex Sulph	0.02	0.06	0.02	0.16	0.25
Mo:Complex NSG	0.23	0.08	0.01	0.01	0.33
Other	0.00	0.01	0.00	0.01	0.02
Total:	1,51	1.28	0.85	2.02	5.66

Normalized by fraction


	-300/+106um	-106/+53um	-53/+20um	-20/+3um	Combined
Lib Mo	75,95	82.71	93.13	90.38	87.61
Mo:Qtz-FSP-Amph	5.34	3.66	0.60	0.23	1.34
Mo:Carbonates	0.43	0.73	0.52	0.68	0.63
Mo:Phyllosilicates	1)44	1.46	2.01	0.08	0.52
Mo:Complex Sulphides	1.42	4.40	2.32	7.74	6.12
Mo:Complex NSG	15.16	6.49	1.18	0.60	3,47
Other	0.26	0.55	0.24	0.30	0.31
Total:	24.05	17.29	6.87	9.62	100.00

Examples of limaty and Tertiary Mineral Textures in the Crew Minerals samples Uxumples are from all fractions combined.



Mo Grade vs. Recovery

A.C. Ekmora Mill. (M. Niena, 12) Nag-

11-2-3	- AD 1 Full	the stage	111 Page 1	20 AM T	Distance
1000	22.98	18.18	58.11	16.56	89.77
Mex. 50	1865	E 5.2	8.21	0:36	1.38
Contaction	031	6.49	3.70	4.95	0.34
Markett.	:0.15	0.6m	3.46	0.04	1.56
ALDI	4.87	1.19	3109	1.400	6.60
0.01	100	6.00	0.00	0.00	0.00
34 E S	16.6	0.45		10.12	

A COMMON TO SELECTION ME AND SECURITY THE

	Aller Section	180 S 180	N.C. Philip		- Clear
A>480	2399	14.7	14.71	4.9	55.1
Circula B	24.09	11.58	14.56	14.61	70.46
and a	1100	00.77	1474	15.50	10.70
Ticalch	1519	11.14	UKNE	M to	71.1K
sAs.Y	3642	3110	15.00	30.74	196.00
4.0	2542	20.60	16.00	76.74	18.10

A.S. Married y Square Colores Draw

	SEATS OF	No. of Lot	65.300	20.50	Tietee
240.	5.8	31,75	34.76	6137	4(3)
Gentaliti	621	1.78	6.50	4.01	30.86
(SexAuti	11.87	1.26	0.44	0.30	0.45
Sechel.	529	-0.65	8.37	0.00	6.16
LACT.	TNA	16.80	5.11	35.00	41.50
645	8.00	400	2000	1.81	3.00

All All Printed Base

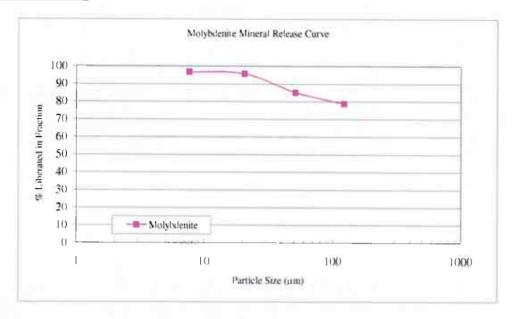
	3.82 x 1 mg/s	120-120-2	F 4. F2 W	25-3-2	£ 200°
z=60	70.16	14.11	2. 4	65	44 7
CleakeRI	19.00	35.10	31.76	87.0	56.07
(Conference)	11.18	C86.60	2110	67.29	60.70
North (4147	39.56	21.39	68.23	64.00
44.3	30650	15.45	77,500	BC55	Links
8-7	100.55	01.48	90.00	Sec 91.	and the same of

4 1 4 cm

	Mile Trum	1 1 1 1 1 1 m	64.300	- 50 c 100	1000 mm
FredU	1000				
Sank B	199.05	1.76(6)	0.5	TOTAL T	200.00
(Student)	99.86	200	100	100 000	
"maked	3000		100	1000	
-A-M	12.70	9.55	100	20.50	120
Aug Suid	23/90	4.00		200	

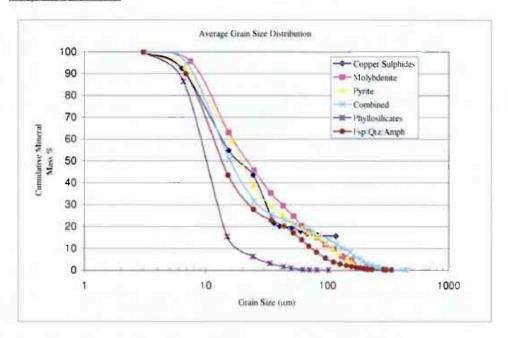
Grillec Mo

	Still Block	Eq. Car	-1.72-	4,00	The said
Kanfi	0.71	0.58	0.44	1.17	
North St.	0.00	0.02	0.01	0.01	0146
Allera Audit	0.01	8.72	0.01	0.01	1004
Tin-Arti	0.90	8.52	2.00	0.01	1100
NAZO.	9.15	8.56	0.01	3.01	6.25
Aut	0.00	0.00	0.36	0.00	0.80
464	190	8.77	211	131	100


D. Foreign Mary & W. S. Stranger L. Barre

	301.100pm	10K/155/m	15.75	Distant	Lincoln
And	76.61	85.11	96.7%	P-89	No. 14
Mark No.	0.41	3.79	1.37	0.80	10.40
4 allere	1.56	2.15	1700	3.36	236
Panket	2.62	2.88	C1 548	23.45	7.00
44.20	16.37	6 PW	1.29	1.06	4.20
Fuel	0.00	0.00	0.00	9.00	2.00
sei Cita	100.00	28.00	10.8	18.8	2.0

1. Calabara conductor (M. Name co. by Japan


	30 . B.m	1785 . 6 Egm	63.70	25.30	- megnas	
Andt	19.20	198		1 100	100	
a and the	25.54	20.00	1 979		5210	
4 4.0	C 842.60				100	
S-4-61	60.30	14.00	100457	100		
54.20	1000	10000			100.00	
Aut .			-			

Mineral Release Curves

Name		-300/+106µm	-106/+53μm	-53/+20µm	-20/+3µm
Particle Size		121.92	51.08	20.61	7.59
Mineral Mass @					
Molybdenite	80% Lib	78.83	85.10	95.70	96.69

Average Grain Size Distribution

All Particles

	Size	Mass		Size	Mass
+600	0.00	0.00	+600		0,00
+540	0.00	0.00	+540		0.00
+480	0.00	0.00	+480		0.00
+420	460.40	0.09	+420	460,40	0.09
+390	436.68	0.06	+390	436.68	0.15
+360	0.00	0.00	+360		0.15
+330	338.74	0.04	+330	338.74	0.19
+300	330.97	0.27	+3()()	330.97	0.45
+270	296.79	0.30	+270	296.79	0.75
+255	277.98	0.15	+255	277.98	0,90
+240	259.03	0.44	+240	259.03	1.35
+225	256.13	0.42	+225	256.13	1.76
+210	229.73	0.66	+210	229.73	2.42
+195	209.19	0.64	+195	209.19	3.06
+180	195.09	1,00	+180	195.09	4.06
+165	185.78	1.26	+165	185.78	5.32
+150	163.66	1.42	+150	163.66	6.74
+135	154.03	1.58	+135	154.03	8.32
+120	133.53	1.74	+120	133.53	10.06
+105	119.26	1.93	+105	119.26	11.99
+90	102.61	2.11	+90	102.61	14.10
+75	87.05	2.34	+75	87.05	16.44
+66	74.07	1.58	+66	74,07	18.01
+57	64.27	1.50	+57	64.27	19.51
+48	53.96	1.62	+48	53.96	21.13
+39	44.20	1.99	+39	44.20	23.13
+30	34.60	2.30	+30	34.60	25,43
+21	25.10	6.28	+21	25.10	31.70
+12	15.67	18.92	+12	15.67	50,62
+4	6.95	44,21	+4	6.95	94.84
-4	3.15	5.16	-4	3.15	100.00
	Total:	100.00			,,

Molybdenite

	Size	Mass	Norm		Size	Mass
+600	0.00	0.00	0,00	+600		0.00
+540	0.00	0.00	0,00	+540		0.00
+480	0.00	0.00	0,00	+480		0.00
+420	0.00	0.00	0.00	+420		0.00
+390	0,00	0.00	0,00	+390		0.00
+ 60	0.00	0.00	0.00	+360		0.00
+330	0.00	0.00	0.00	+330		0.00
+300	0.00	0.00	0.00	+300		0.00
+270	0.00	0.00	0.00	+270		0.00
+255	0.00	0.00	0.00	+255		0.00
+240	0.00	0.00	0.00	+24()		0.00
+225	226,20	0.04	0.62	+225	226.20	0.62
+210	0.00	0.00	0,00	+210	5.1740.55	0.62
+195	206.74	0.04	0.68	+195	206.74	1.30
+180	0.00	0.00	0,00	+180		1.30
+165	165.69	0.06	1.00	+165	165.69	2.31
+150	158.01	0.13	2.37	+150	158.01	4.67
+135	140.06	0.06	0.98	+135	140.06	5,65
+120	131.49	0.04	0.79	+120	131.49	6.44
+105	112.73	0.18	3.28	+105	112.73	9.72
+90	96.05	0.12	2.10	+90	96.05	11.83
+75	81.71	0.18	3.24	+75	81.71	15.07
+66	69.95	0.15	2.66	+66	69.95	17.73
+57	61.41	0.15	2.76	+57	61.41	20,49
+48	52,64	0.23	4.12	+48	52.64	24.61
+39	43.11	0.27	4.88	+39	43.11	29.50
+30	34.15	0.32	5.75	+30	34.15	35.25
+21	24.96	0.59	10.44	+21	24.96	45.69
+12	15.42	0.97	17.32	+12	15.42	63.00
+4	7.50	1.83	32.69	+4	7.50	95.69
-4	3.10	0.24	4.31	-4	3.10	100.00
	Total:	5.61	100.00			

Pyrite

	Size	Mass		Size	Mass
+600	0.00	0.00	+600		0.00
+540)	0.00	0.00	+540	1	0.00
+480	0.00	0.00	+480		0.00
+420	0.00	0.00	+420		0.00
+390	0.00	0.00	+390		0.00
+360	0.00	0.00	+360		0.00
+330	0.00	0.00	+330		0.00
+300	0.00	0.00	+300		0.00
+270	0.00	(),()()	+270		0.00
+255	0.00	0.00	+255		0.00
+240	0.00	0.00	+240		0.00
+225	0.00	0.00	+225		0.00
+210	216.52	0.25	+210	216.52	0.25
+195	201.12	0.56	+195	201.12	0.81
+180	192.20	0.66	+180	192.20	1.47
+165	170.43	0.39	+165	170.43	1.86
+150	157.23	.98	+150	157.23	3.85
+135	144.23	1.38	+135	144.23	5.23
+120	124.89	2,40	+120	124.89	7.63
+105	110.95	2.26	+105	110.95	9.89
+90	96.79	2.73	+90	96.79	12.62
+75	81.86	2.93	+75	81.86	5.56
+66	70.09	.89	+66	70.09	17.44
+57	61.53	1,88	+57	61.53	19.33
+48	52.44	2.20	+48	52,44	21.52
+39	42.89	4.04	+39	42.89	25.56
+30	34.36	3.83	+30	34.36	29.40
+21	24.47	9.24	+21	24,47	38.64
+12	16.37	20.66	+12	16.37	59.30
+4	6.76	33.86	+4	6.76	93.16
-4	3.11	6.84	:4	3.11	100,00
	Total:	100,00			

Phyllosilicates

	Size	Mass		Size	Mass
+600	0.00	0.00	+600		0.00
+540	0.00	0.00	+540		0.00
+480	0.00	0.00	+480		0.00
+420	0.00	0.00	+420		0.00
+390	0.00	0.00	+390		0,00
+360	0.00	0.00	+360		0.00
+330	0.00	0.00	+330		0.00
+300	0.00	0.00	+300		0.00
+270	0,00	0.00	+270		{) _* ()()
+255	0.00	0.00	+255		0.00
+240	0,00	0.00	+240		0.00
+225	0.00	0.00	+225		0.00
+210	0.00	0.00	+210		0.00
+195	0.00	0.00	+195		0.00
+180	0.00	0.00	+180		0.00
+165	0.00	0.00	+165		0.00
+150	0.00	0.00	+150		0.00
+135	0,00	0.00	+135		0.00
+120	0.00	0.00	+120		0.00
+105	0.00	0.00	+105		0.00
+90	101.81	0.06	+90	101,81	0.06
+75	82.08	0.00	+75	82.08	0.07
+66	70.99	0:11	+66	70.99	0.17
+57	62.85	0.05	+57	62.85	0.22
+48	50.12	0.78	+48	50.12	1.01
+39	43,40)	0.60	+39	43.40	1.60
+30	33.54	1.52	+30	33.54	3.12
+21	24.39	3.19	+21	24.39	6.32
+12	14.97	9.15	+12	14,97	15.47
+4	6.55	71,00	+4	6.55	86.47
-4	3.08	13.53	-4	3.08	100.00
	Total:	100.00			

Fsp:Qtz:Amph

	Size	Mass		Size	Mass
+600	0.00	0.00	+600		0,00
+540	0.00	0.00	+540		0.00
+480	0.00	0.00	+480		(),()()
+420	0.00	0.00	+420		0.00
+390	0.00	0.00	+390		0.00
+360	0.00	0.00	+360		0.00
+330	335.76	0.07	+330	335.76	0.07
+300	302.11	0.02	+300	302.11	0.09
+270	288.30	0.17	+270	288.30	0.26
+255	0.00	0.00	+255		0.26
+240	0.00	0.00	+240		0.26
+225	232,31	0.07	+225	232.31	().33
+210	213.28	0.08	+210	213.28	0.40
+195	200.51	0.18	+195	200.51	0.58
+180	186.00	0.45	+180	186.00	1.03
+165	171.98	0.22	+165	171.98	1.25
+150	157.30	0.39	+150	157.30	1.64
+135	142.62	0.47	+135	142.62	2.11
+120	126.97	0.66	+120	126.97	2.77
+105	111.96	0.99	+105	111.96	3.76
+90	96.35	1.71	+90	96.35	5.47
+75	81.24	2.72	+75	81.24	8.19
+66	70.10	2.76	+66	70.10	10.95
+57	61,49	2,93	+57	61.49	13.87
+48	52.36	3.17	+48	52.36	17.04
+39	43.65	3.21	+39	43.65	20.25
+30	34.49	2.61	+30	34.49	22.87
+21	24,71	4.94	+21	24.71	27.81
+12	15,26	15.67	+12	15.26	43,48
+4	6.85	46.48	+4	6.85	89.96
-4	3.03	10.04	-4	3.03	100.00
	Total:	100.00			

Copper Sulphides

	Size	Mass		Size	Mass
+600	0.00	0,00	+600		0.00
+540	0.00	0.00	+540	1	0.00
+480	0.00	0.00	+480	İ	0.00
+420	0.00	0.00	+420		0.00
+390	0.00	0.00	+390		0.00
+360	0.00	0.00	+360		0.00
+330	0.00	0.00	+330		0.00
+300	0.00	0.00	+300		0.00
+270	0.00	0.00	+270		0.00
+255	0.00	0.00	+255		0.00
+240	0,00	0.00	+240		0.00
+225	0.00	0.00	+225		0.00
+210	0.00	0.00	+210		0.00
+195	0.00	(),()()	+195		0.00
+180	0.00	0.00	+180		0.00
+16.	0,00	() _* ()()	+165		0.00
+150	0.00	(),()()	+150		0.00
+135	0.00	0.00	+135		0.00
+120	(),()()	(),()()	+120		0.00
+105	117.51	15,54	+105	117,51	15.54
+90	0.00	0.00	+90		15.54
+75	83.28	0.46	+75	83.28	16.00
+66	68.58	0.65	+66	68.58	16.65
+57	59,95	1.09	+57	59.95	17.74
+48	50.93	.77	+48	50.93	19.51
+39	40.16	0.56	+39	40.16	20.06
+30	36.22	1.47	+30	36.22	21.53
+21	24.53	21,97	+21	24.53	43.50
+12	15.44	11.26	+12	15.44	54.76
+4	6.37	37.56	+4	6.37	92.32
-4	3.09	7.68	-4	3.09	100.00
	Total:	100.00			