

Bergvesenet

Postboks 3021, 7002 Trondheim

Rapportarkivet

rapportarkivet								
Bergvesenet rapport nr BV 2099	Inte	rn Journal nr	Inter	nt arkiv nr	Rap	port lokalisering	Gradering Fortrolig	
Kommer fraarkiv Sulitjelma Bergverk A/S		tern rapport nr 542100020"	Overs	endt fra		Fortrolig pga	Fortrolig fra dato:	
Tittel								
Dighem survey o	f the S	Sulitjelma	area, Nor	way. He	elikopte	ermåling. EM		
Forfatter			D	ato	Bedri	ft		
KILTY S. DIGHEM			1983 Sulitjelma Gruber A/S		A/S			
Kommune	Fylke		Bergdistrikt	.2:	1: 50 000	0 kartblad	1: 250 000 kartblad	
Fagområde		Dokument typ	oe	Forekon	mster			
Råstofftype		Emneord						
Sammendrag Totalt 992 km flylinje Metodene som ble bru ('nye' og 'gamle') og a Magnetometri.	iki var .	EM. magneti	ske og VLF	muling	En rokk	a ladanda hari	conton bla - "tt	

DIGHEM^{III} SURVEY

OF THE

SULITJELMA AREA, NORWAY

FOR

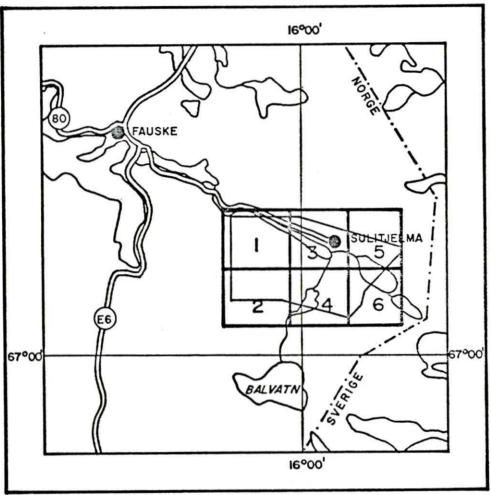
A/S SULITJELMA BERGVERT

BY

DIGHEM LIMITED

TORONTO, CANADA OCTOBER 28, 1983 S. KILTY OPERATIONS MANAGER/ GEOPHYSICIST

Z. DVORAK VICE-PRESIDENT


SUMMARY AND RECOMMENDATIONS

A total of 992 km of survey was flown in June and July, 1983, over a property held by A/S Sulitjelma Bergverk near Sulitjelma, Norway.

The survey outlined several discrete bedrock conductors associated with areas of low resistivity. Most of these anomalies appear to warrant further investigation using appropriate surface exploration techniques. Areas of interest may be assigned priorities for follow-up work on the basis of supporting geological and/or geochemical information.

The area is generally very resistive allowing ready recognition of the bedrock conductors. Conductive surficial material is generally limited to lake sediments. The survey area is also magnetically inactive.

LOCATION MAP

SCALE 1:500,000

Figure 1
The Survey Area

CONTENTS

INTRODUCTION	1
SECTION I: SURVEY RESULTS	I- 1
SECTION II: BACKGROUND INFORMATION	II- 1
Geometric interpretation Discrete conductor analysis X-type electromagnetic responses The thickness parameter. Resistivity mapping Interpretation in conductive environments. Reduction of geologic noise. EM magnetite mapping Recognition of culture	II- 1 II- 2 II- 2 II-10 II-11 II-12 II-16 II-18 II-19 II-21
MAGNETICS	II-24
VLF-EM	II-27
MAPS ACCOMPANYING THIS REPORT	
APPENDICES	
A. The Flight Record and Path Recovery	
B. EM Anomaly List	

INTRODUCTION

A DIGHEMIII survey totalling 992 line-km was flown with a 200 m line-spacing for A/S Sulitjelma Bergverk, from June 22 to July 3, 1983, in the Sulitjelma area of Norway (Figure 1).

The Lama SE HGY turbine helicopter flew at an average airspeed of 100 km/h with an EM bird height of approximately 35 m. Ancillary equipment consisted of a Geometrics G803 magnetometer with its bird at an average height of 50 m, a Sperry radio altimeter, a Geocam sequence camera, a Numec 8-channel heat pen analog recorder, a Geometrics G714 digital data acquisition system, a Kennedy 9-track 800-bpi magnetic tape recorder, and a Herz Totem-1A electromagnetometer with its sensor towed at an average height of 58 m. The VLF-EM receiver was tuned to GBR Rugby, England, which operates at 16.0 kHz. The analog equipment recorded four channels of EM data at approximately 900 Hz, two channels of EM data at approximately 7200 Hz, two ambient EM noise channels (for the coaxial and coplanar receivers), two channels of VLF data, one channel of magnetic data, and a channel of radio altitude. The digital equipment recorded the EM data with a sensitivity of 0.20 ppm at 900 Hz and 0.40 ppm at 7200 Hz, the magnetic field to one nT (i.e., one gamma), and the VLF-EM field to 0.10 percent.

Appendix A provides details on the data channels, their respective sensitivities, and the flight path recovery procedure. Noise levels of less than 2 ppm are generally maintained for wind speeds up to 35 km/h. Higher winds may cause the system to be grounded because excessive bird swinging produces difficulties in flying helicopter. The swinging results from the 5 m² of area which is presented by the bird to broadside gusts. nevertheless can system be flown under wind conditions that seriously degrade other AEM systems.

It should be noted that the anomalies shown on the electromagnetic anomaly map are based on a near-vertical, half plane model. This model best reflects "discrete" bedrock conductors. Wide bedrock conductors or flat-lying conductive units, whether from surficial or bedrock sources, may give rise to very broad anomalous responses on the EM profiles. These may not appear on the electromagnetic anomaly map if they have a regional character rather than a locally anomalous character. These broad conductors, which more closely approximate a half space model, will be maximum coupled to the horizontal (coplanar) coil-pair and are clearly evident on the resistivity map. The resistivity map, therefore, may be more valuable than the electro-

magnetic anomaly map, in areas where broad or flat-lying conductors are considered to be of importance.

In areas where magnetite causes the inphase components to become negative, the apparent conductance and depth of EM anomalies may be unreliable.

There are several areas where EM responses are evident only on the quadrature components, indicating zones of poor conductivity. Where these responses are coincident with strong magnetic anomalies, it is possible that the inphase component amplitudes have been suppressed by the effects of magnetite. Most of these poorly-conductive magnetic features give rise to resistivity anomalies which are only slightly below background. These weak features are evident on the resistivity map but may not be shown on the electromagnetic anomaly map. If it is expected that poorly-conductive sulphides may be associated with magnetite-rich units, some of these weakly anomalous features may be of interest.

SECTION I: SURVEY RESULTS

CONDUCTORS IN THE SURVEY AREA

The survey covered a single grid with 992 km of flying, the results of which are shown on six separate map sheets. Tables I-1 to I-6 summarizes the EM responses on the six sheets with respect to conductance grade and interpretation.

The electromagnetic anomaly map shows the anomaly locations with the interpreted conductor shape, dip, conductance and depth being indicated by symbols. Direct magnetic correlation is also shown if it exists. The strike direction and length of the conductors are indicated when anomalies can be correlated from line to line. When studying the map sheets for follow-up planning, consult the anomaly listings appended to this report to ensure that none of the conductors are overlooked.

Numerous cultural sources, such as powerlines, buildings and the like, occur within the survey area. These cultural sources may influence the resistivity and electromagnetic anomaly patterns but can usually be identified on the profiles due to their characteristic

TABLE I-1

708 SHEET 1 SULTTJEIMA

		NUMBER OF
CONDUCTOR GRADE	CONDUCTANCE RANGE	RESPONSES
6	> 99 MHOS	5
5	50-99 MHOS	8
4	20-49 MHOS	22
3	10-19 MHOS	16
2	5- 9 MHOS	31
1	< 5 MHOS	121
x	INDETERMINATE	39
	= 6 %	
TOTAL		242
		NUMBER OF
CONDUCTOR MODEL	MOST LIKELY SOURCE	RESPONSES
D	DISCRETE BEDROCK	39
T	DISCRETE BEDROCK	1
P	DISCRETE BEDROCK	9
В	DISCRETE BEDROCK	91
E	BEDROCK OR EDGE EFFE	CT 9
G	ROCK OR COVER	0
H	ROCK OR COVER	0
S	COVER	46
R	CULTURE	0
С	CULTURE	1
L	CULTURE	43
?	QUESTIONABLE	2
(BLANK)		1
TOTAL		242

TABLE I-2

708 SHEET 2 SULITJELMA

CONDUCTOR	GRADE	CONDUCTAN	ICE F	RANGE	NUMBER RESPONS	
6 5 4 3 2 1 X		> 99 50-99 20-49 10-19 5- 9 < 5	MHOS MHOS MHOS MHOS	; ; ;	13 16 29 16 21 72 17	
TOTAL					184	
CONDUCTOR N	MODEL	MOST LIKE	LY S	SOURCE	NUMBER RESPONS	
D		DISCRETE	BEDE	OCK	15	
T		DISCRETE			1	
P		DISCRETE	300 S 30 A 30 A		14	
В		DISCRETE			129	
E		BEDROCK O	R ED	GE EFFE	T 7	
G		ROCK OR	COVE	R	1	
H		ROCK OR	COVE	R	0	
s		COVER			11	
R		CULTURE			0	
С		CULTURE			4	
L		CULTURE			2	
3		QUESTIONA	BLE		0	
(BLANK)					0	
TOTAL					184	

TABLE I-3

708 SHEET 3 SULITJELMA

CONDUCTOR GRADE	CONDUCTANCE RANGE	NUMBER OF RESPONSES
6	> 99 MHOS	12
5	50-99 MHOS	17
4	20-49 MHOS	52
3	10-19 MHOS	48
2	5- 9 MHOS	67
1	< 5 MHOS	135
x	INDETERMINATE	26
TOTAL		357
		NUMBER OF
CONDUCTOR MODEL	MOST LIKELY SOURCE	RESPONSES
D	DISCRETE BEDROCK	57
T	DISCRETE BEDROCK	6
P	DISCRETE BEDROCK	33
В	DISCRETE BEDROCK	110
E	BEDROCK OR EDGE EFFE	CT 27
G	ROCK OR COVER	0
H	ROCK OR COVER	0
S	COVER	56
R	CULTURE	0
С	CULTURE	0
L .	CULTURE	68
. ?	QUESTIONABLE	0
(BLANK)		0
TOTAL		357

TABLE I-4

708 SHEET 4 SULITJELMA

		NUMBER OF
CONDUCTOR GRADE	CONDUCTANCE RANGE	RESPONSES
6	> 99 MHOS	9
5	50-99 MHOS	6
4	20-49 MHOS	7
3	10-19 MHOS	12
2	5- 9 MHOS	14
1	< 5 MHOS	42
X	INDETERMINATE	28
TOTAL		118
COMPRIGMOD WORDS		NUMBER OF
CONDUCTOR MODEL	MOST LIKELY SOURCE	RESPONSES
Ď	DISCREME DEDDOGK	10
T	DISCRETE BEDROCK DISCRETE BEDROCK	18
p		0
В	DISCRETE BEDROCK	4
E	DISCRETE BEDROCK	31
Ğ	BEDROCK OR EDGE EFFE	
H	ROCK OR COVER	3
n S	ROCK OR COVER	2
R R	COVER	29
	CULTURE	0
c	CULTURE	0
L	CULTURE	24
?	QUESTIONABLE	0
(BLANK)		5
TOTAL		118

TABLE I-5

708 SHEET 5 SULITJELMA

CONDUCTOR GR	RADE CONDUCT	ANCE RANGE	NUMBER OF RESPONSES
			1001011020
6	> 9	9 MHOS	3
5	50-9	9 MHOS	2
4	20-4	9 MHOS	24
3	10-1	9 MHOS	20
2	5	9 MHOS	31
1	<	5 MHOS	48
x	INDETE	RMINATE	24
TOTAL			450
TOTAL			152
			NUMBER OF
CONDUCTOR MO	DEL MOST LI	KELY SOURCE	
D	DISCRET	E BEDROCK	60
T	DISCRET	E BEDROCK	3
P	DISCRET	E BEDROCK	1
В	DISCRET	E BEDROCK	74
E	BEDROCK	OR EDGE EFF	FECT 3
G	ROCK O	R COVER	1
H	ROCK O	R COVER	1
s	COVER		7
R	CULTURE		0
С	CULTURE		0
L	CULTURE		0
?	QUESTIO	NABLE	0
(BLANK)			2
TOTAL			152

TABLE I-6

708 SHEET 6 SULITJELMA

TOTAL

				NUMBER OF
CONDUCTOR GR	ADE	CONDUCTANCE	RANGE	RESPONSES
_				
6		> 99 MH		0
5		50-99 MH		1
4		20-49 MH	os	8
3		10-19 MH	os	10
2		5- 9 MH	os	14
1		< 5 MH	os	22
х		INDETERMIN	ATE	14
TOTAL				69
TOTAL				69
				NUMBER OF
CONDUCTOR MO	DEL	MOST LIKELY	SOURCE	RESPONSES
_				
D		DISCRETE BE		10
T		DISCRETE BE		0
P		DISCRETE BE		0
В		DISCRETE BE		44
E		BEDROCK OR	EDGE EFFE	CT 3
G		ROCK OR CO	VER	0
H		ROCK OR CO	VER	8
S		COVER		3
R		CULTURE		0
С		CULTURE		0
L		CULTURE		0
?		QUESTIONABL	E	0
(BLANK)		terrore)		1

(SEE EM MAP LEGEND FOR EXPLANATIONS)

69

signatures. A separate map can be produced for the survey area, if requested. The resulting map of probable bedrock conductors would display only those anomalies which are interpreted as D, T, B and P (see EM map legend). All other anomalies attributed to horizontal layers (interpreted as S, H, and G) and cultural features (L and C) are intentionally deleted from this presentation to provide an uncluttered view of the more interesting anomalies.

Sheet 1

Sheet 1 is dominated by a strong electromagnetic response which strikes across the entire map sheet. This narrow rim-like belt appears to be associated with greenstone-graphite/sulphides horizon. This belt continues into sheets 2 and 3.

The geologic environment appears to have a resistivity varying from 0.2 ohm-m to in excess of 8,000 ohm-m. This sheet also contains several responses due to cultural sources. These responses have been categorized as L type responses on the electromagnetic map sheet.

The magnetic field on sheet 1 is characterized by very low gradient. The total magnetic field is generally increasing towards the south-west.

The VLF-EM map is barren except for a few strong north-west striking anomalies. These anomalies appear to be predominantly located near lakes and may be due to conductive surficial material.

The EM anomalies of interest are discussed below.

Group 1-1

The grade 1 to 6 anomalies of this grouping reflect bedrock conductors associated with the sulphide horizon which contains known deposits. This group extends south and east into sheets 2 and 3 as groups 2-1 and 3-2. The lineto-line correlation of conductors in this group may not be fully satisfactory because of the extreme strike changes and because of what appears to be anomaly misalignment because of possible fault zones. The resistivity map should consulted to evaluate the relative merits of individual anomalies because it is an excellent source

of information regarding the distribution of conductive material within the group.

Priorities within this group should be defined by examining anomalies of higher conductivity thickness product, thick anomalies and anomalies characterized by short strike length. Using these criteria, anomalies such as 9D, 10A, 10B, 14D-21E, 21F, 26C-31B and 35D should be examined on ground.

Anomalies 22G-25C, 23D-24I, 24J-27C, 24G-25B These grade 1 to 6 anomalies reflect a conductive horizon located beside a long formational conductive horizon. This is a very conductive zone that may be due to graphite. These conductors warrant ground investigation.

Group 1-2

This group represents a broad conductive horizon that continues into sheet 3 as group 3-1. Con-

ductivity within this group varies drastically and conductors are best defined by the resistivity contours. The criterion of isolated anomalies, dislocation due to faults and anomalies of higher conductivity-thickness and greater width should be used to define targets for ground follow-up.

Anomaly 27G

This is an isolated thin-dipping dike located near culture. The anomaly appears to be associated with a weak magnetic low. This anomaly should be investigated on the ground. The presence of nearby culture indicates that this may be the source of the conductivity.

Sheet 2

Sheet 2 is dominated by two prominent resistivity lows, one located near the western boundary of the survey area and the other striking southwards along the map boundary between sheet 2 and sheet 4. The resistivity on this map sheet varies from less than 0.2 ohm-m to in excess of 8,000 ohm-m.

Sheet 2 contains no anomalies due to known cultural sources. All anomalies on this sheet appear to be due to either bedrock anomalies or surficial material.

The magnetic field in the area of sheet 2 displays very little gradient. There is a general magnetic gradient increasing to the southeast. The VLF map is again rather featureless, with the exception of some anomalies near the sheet 2/sheet 4 border.

Group 2-1

This long conductive horizon represents an extension of group 1-1 located on sheet 1. horizon is associated with sulphide/graphite greenstone belt along which are several known deposits. Follow-up emphasis should be placed on any points along the conductor axis which are disjointed or of a different resistivity. The resistivity contours define this horizon in a manner superior to the electromagnetic sheet.

Group 2-2

These group of anomalies are best defined by the resistivity map. The electromagnetic sheet is very confusing because the flight lines appear to be parallel to the strike of this non-magnetic, conductive horizon. Ground geological, geophysical and geochemical techniques should be utilized to better define these conductors. Within this group, anomaly 45A is a particularly attractive anomaly because of its thickness and its isolation. It should be investigated on the ground.

Anomaly 32B

This grade 6 anomaly represents an excellent short strike length anomaly that is located to one side of the flight line. This anomaly should be investigated on the ground.

Anomalies 28A-29A, 31A-32A

These grade 1 and grade 2 anomalies reflect isolated bedrock conductors located in an area that has been

mapped as granites. These are all good bedrock conductors that warrant ground follow-up.

Anomaly 34A-35A

These grade 1 anomalies reflect weak bedrock conductors. The strike as indicated on the EM map may not reflect the true strike. This conductor should be investigated on the ground.

Sheet 3

This sheet is the most active of the six map sheets in the survey area. Both the EM and magnetic channels are active. This area appears to contain a varied mixture of greenstone and sedimentary horizons. In addition to the geological response, there are numerous anomalies that are due to cultural and overburden sources.

Group 3-1

This group of grade 1 to grade 6 anomalies reflect a broad, generally non-magnetic, conductive horizon. This group is best defined by the resistivity contours.

large number of responses generally make the interpretation of conductor axis very difficult. All known geology, ground geophysics and geochemistry should combined with be these survey results in order to differentiate anomalies. This group extends into sheet 1 where it continues group 1-2.

Group 3-2

This group of grade 1 to 6 bedrock anomalies continues into sheet 1 as group 1-1, into sheet 2 as group 2-1 and into sheet 4 as group 4-1. This group represents the known sulphide horizon in which the majority of known ore bodies are located.

Group 3-3

These grade 1 to 6 anomalies reflect a very conductive bedrock horizon whose strike appears to change from southeast to northeast in the vicinity of line 43. Of

particular interest in this group are anomalies 39F and anomalies 41H-43J because of their location adjacent to the main horizon. Also of interest in this group is anomaly 40J which is one of the few anomalies in the survey area which has a negative inphase response indicative of the presence of magnetite.

Anomalies 28A-30B, 29B-33C, 32B-36C These grade 2 to 6 anomalies reflect three bedrock conductors that are associated with a geological horizon known to contain sulphide mineralization. These conductors warrant ground investigation.

Anomalies 46N-47N

These grade 4 and grade 6 anomalies reflect a weak bedrock conductor at depth. The conductor appears to have some magnetic association. This conductor should be investigated.

Anomalies 49N, 50P

These two bedrock anomalies are very similar to anomalies 46N and 47N. They should be investigated on the ground.

Anomalies 480-53H, 48Q-53K, 50I-51L, 53J-54I

This group of anomalies appear to be due to similar sources of conductivity, and they have variable magnetic signatures along their strike lengths. These anomalies should be correlated with known geological information and, if warranted, be investigated on the ground.

Sheet 4

The area of sheet 4 occurs just east of the Sulitjelma granitic pluton. In the west, the sheet extends over a narrow rim-like belt consisting of greenstones, graphite and sulphides. The strike of this rim belt is north-south, i.e., about 45° to the flight line direction. The southeast corner of the sheet is underlain by a northeasterly striking belt made of a multiple sequence of greenstones(?), granite and other unidentified rocks. This belt, which extends into

sheet 6, displays strikes parallel to the flight line direction. The central part of the sheet contains volcanics.

The resistivity of the geologic environment varies from less than 0.2 ohm-m to in excess of 8,000 ohm-m correlating well with geology. While the central part of the sheet (presumably volcanics) is highly resistive, two prominent conductive zones exist, reflecting the conductive greenstone-graphite/sulphides of the rim belt, as well as the southeastern greenstone/granitic(?) belt.

Several cultural sources, such as powerlines, buildings and the like, occur within sheet 4. These cultural sources gave rise to spurious responses which, in turn, influenced the resistivity and electromagnetic patterns. For example, prominent narrow conductive trend, extending from line 55 at the north sheet boundary in a south direction toward anomaly 64C, appears to reflect a cultural source, such as a power line or a buried cable. Similarly, single-line conductive anomalies associated with the EM anomalies 65A, 67A, 68B, and 70B are indicative of cultural sources, i.e., small buildings most likely used to store metal objects or containing large metal parts.

The magnetic field in the area of sheet 4 is only slowly changing. Exceptions occur in the southeast corner over the greenstone/granitic belt and in the central portion of the sheet where a poorly defined east-northeasterly trend can be distinguished, extending from fiducial 214 on line 68 toward fiducial 1316 on line 75. It is better portrayed on the enhanced magnetic map. It is interesting to note that two other, very weak magnetic trends are indicated by enhanced magnetics. The first trend parallels the one just described, extending from fiducial 2831 on line 70 toward fiducial 1274 on line 75. The second trend appears to cross-cut the two parallel trends in a north-southerly direction. It extends from fiducial 1786 on line 73 to fiducial 175 on line 65.

The VLF-EM map is relatively featureless except for a prominent northwest striking anomaly near 59E and a couple isolated anomalies west of 56C and west of 59D. While the former anomaly may be of geologic origin, e.g., indicating a fault, the latter anomalies appear to be caused by near surface conduction.

The EM anomalies of interest are discussed below.

Group 4-1 The grade 1 to 6 anomalies of this grouping reflect bedrock conductors

which confined are to the greenstone/graphite/sulphide rim belt of the Sulitjelma granite pluton. The group extends north and west into sheets 2 and 3 as groups 2-1 and 3-2. The lineto-line correlation of the individual anomalies may not fully satisfactory because of low angles between the geologic strike and the flight line direction. Consequently, the resistivity map should be consulted while evaluating the relative merits of the individual anomalies because it provides better information regarding the distribution conductive material within this group than the EM anomaly map.

Anomalies 60B-62C, 62A, 62B, 62D, 63A, and 63B are of particular interest. Anomaly 60B is definitely of bedrock origin and reflects a conductor whose life

occurs to the side of the flight line. The adjacent anomaly, 61D, is relatively poorly defined but it is deemed reflect to bedrock source. Anomalies 62B, 62C, and 62D occur in a quick succession and it is difficult to correlate these with anomalies on the adjacent line. However, 62C joins most likely with 60B and 61D, while 62D may correlate with 632B. Caution must be exercised because of a number of cultural sources in the For example, a small shed was noted on the flight path film at 62B. Similarly, 632A and 632B gave responses which are compatible with man-made sources. No obvious culture was, however, noted on the film at the corresponding Care should be taken locations. during the follow-up work anomaly 62A. The flight path film shows a man-made object at this location (drill platform?). Should

the results indicate a bedrock conductor, its correlation with adjacent anomalies, e.g., 61B, 632A, must be established.

A string of grade 1 to 5 anomalies between 55C and 64C has a definite culture signature although no visible man-made objects can be recognized on the flight path film. A buried cable or a pipeline would give rise to such responses. Only at 59E a three-cable powerline is apparent on the film extending toward anomaly 58G.

Anomaly 68C-69C

These grade 1 anomalies may reflect weak bedrock conductors. Both anomalies are evident on the 7200 Hz channels only suggesting poorly conducting targets. The resistivity/depth analysis of the data suggests possible bedrock source.

Group 4-2

This group of grade 1 to 6 anomalies reflects a system of bedrock conductors which are confined to the greenstone/granitic

Both the magnetic and the belt. resistivity patterns support the EM analysis suggesting that conductors strike parallel to the flight line direction. This is particularly true within group 4-1. However, the group extends further northeast into sheet 6 where it continues as group 6-1. It is conceivable that at the east end of group 6-1 the strikes change from northeast to southeast, i.e., from parallel to almost perpendicular to the flight line direction.

Many EM anomalies in this grouping display characteristics of a conductive unit buried under a resistive cover. Majority of these anomalies were, however, assigned the interpretation symbol B becuase they are believed to reflect bedrock conductors which occurred parallel to the flight line. The

side-looking ability of the coplanar coil-pair could, under these circumstances, create an impression of a buried wide conductive unit.

Note that in the northeast part of the unit (group 6-1) the magnetic and resistivity patterns are arranged in an arcuate fashion suggesting complex structure of the group. It is interesting to note that the arcuate patterns are preserved and enhanced by the enhanced magnetics along the margins of the circular pattern.

Sheet 5

The dominant feature of sheet 5 is the greenstone belt which crosses the sheet in a northwest-southeast direction. From the south, it is surrounded presumably by volcanics. The rock type north of the belt is unknown.

All the geophysical maps reflect the presence of the greenstone belt. The resistivity in the area varies from less than 1 ohm-m within the greenstone belt to in excess of 8,000 ohm-m over the volcanics. The resistivity data suggests a rather complex structure of the belt. A single conductive trend at the southeast boundary of the sheet appears to terminate in the vicinity of line 71. apparent offset to the north and east occurs at location resulting in a parallel conductive trend extending from 61B toward 75E. The conductive trend is interrupted by an east-west striking resistivity high from about fiducial 308 on line 57 toward fiducial 1280 on line 62. This resistive trend separates the central part of the greenstone belt from a pair of conductive parallel trends which occur further northwest. Their strike in the area of sheet 5 northwest-southeast but becomes close to east-west on sheet 3 in general agreement with the extent of the greenstone belt.

The magnetic and enhanced magnetic maps show a generally similar activity to the resistivity map, i.e., a narrowish band of increased magnetic activity trending in a northwest-southeast direction through sheet 5 corresponds to the greenstone belt. Several features are worth mentioning: the most prominent anomalous trend is confined between 61A

and 73C; the magnetic activity in the northwest part of the greenstone belt is confined to two poorly defined parallel trends; there appears to exist an east-west break whose location corresponds to a similar high resistivity break; the enhanced magnetic map suggests that series of north-northwesterly trends may exist the most pronounced of which extends from anomaly 73C towards fiducial 2572 on line 59.

The VLF-EM map shows some activity to be confined to the south boundary of the greenstone belt between lines 55 and 70. A northwest trending anomaly extending from fiducial 2687 on line 70 toward fiducial 1990 on line 60 is believed to reflect conductive overburden along a river valley.

Individual EM anomalies of interest on sheet 5 are discussed below.

Anomalies 50A, 51B, 54E, 54F

These grade 1 and 3 single-line anomalies reflect bedrock conductors which occur outside the main conductive trend reflecting the greenstone belt. Note that the location of 54F is questionable because it lies beyond the last

recovered fiducial on the line.

Apart from EM and resistivity,

these conductors do not appear

geophysically anomalous.

Anomalies 68K-74D, 68L

A weak conductive trend paralleling the greenstone belt from the north is indicated by the grade 1 and 2 anomalies 68K to 74D. The quality and definition of this trend varies from line to line. For example, anomaly 70D is defined by the 7200 Hz field only suggesting either a very weak bedrock source or a poorly conductive overburden.

Anomaly 68L is also defined mainly by the 7200 Hz field, although a slight indication of a conductor is evident on the 900 Hz channels.

Both conductors appear weak. They may reflect bedrock sources.

Anomaly 81F

A weak bedrock conductor is indicated by this grade 1 anomaly.

This is a single-line anomaly which occurs on the flank of a magnetic anomaly and at the tip of a VLF-EM trend.

Anomalies 50xA-60B, 53A, 58A-59A, 58B, 59D-60C

These grade 1 to 4 anomalies reflect a set of three or four parallel bedrock conductors which have produced the north conductive trend in the northwest part They are confined to sheet 5. intermittent magnetic and VLF-EM trends. Anomaly 53A, which appears satellitic to the main conductor 50xA-60B, could occur along the same horizon as 58A-59A and/or 58B. Conductor 58xA-60B extends further west into sheet 3. The most interesting anomalies in this grouping are 53A, 57B, 58A-59A, 58B, and 59D-60C because they are satellitic to the main trend or display characteristics of a thick conductor (e.g., 57B).

Anomalies 54A, 54B-57A

These anomalies have produced the southern conductive trend in the northwest part of sheet 5, extending into sheet 3. They occur along the flank of a magnetic anomaly; they also correlate with a weak VLF-EM trend. The grade 4 and 6 anomalies of 54B-57A reflect an excellent bedrock conductor of a northeasterly dip. They should be investigated on the ground.

Group 5-1

The grade 1 to 5 anomalies of this grouping reflect a suite of parallel conductors which are confined to the central part of the greenstone belt portrayed on sheet 5. Although the EM data suggests good line-to-line correlation of individual anomalies across almost the entire length of group 5-1, the resistivity, magnetic and VLF-EM data suggest that the west part of the group is quite distinct from its southeastern part, being

conductive and associated with magnetic and limited VLF-EM activity. Consequently, western part of the group appears more attractive. A number of satellitic, thick, and high conductance anomalies occur here, which should be investigated on the ground. They include 61C, 61D, 62C-63A, possibly 66D, 67D, 68G-69C, and 70B. However, some anomalies in the southeast part of the group also appear to warrant follow-up work, e.g., 71C-75E, 772xA, and 792xA.

Anomalies 64B-67xB, 65xA-84A, 73D, 75C-83B, 782D-822D, 79xA, 80B-81B, 81D-84B

These grade 1 to 4 anomalies and x-type responses are associated with the southeastern conductive zone which appears to occur along the south boundary of the greenstone belt. They reflect bedrock conductors of variable quality which sporadically correlate with magnetic anomalies but display only

very limited correlation with
VLF-EM anomalies.

The data suggest that conductors 64B-67xB and 65xA-70xB may occur at great depth, particularly on lines 66, 68, 69, and 70. The southeast part of 65xA-84A south of line 70 appears to occur close to the surface, probably not exceeding 35 m on lines 71 to 77, and between 0 and 15 m on lines 78 to 84. The other conductors appear to occur at greater depth. Conductor 75C-83B may be as deep as 45 to 90 m on lines 75 to 822, becoming shallower on lines 82 and 83. Similarly, conductor 81D-84B appears to occur at depth ranging from 35 m to as much as 100 m. Note that this conductor continue further southeast beyond the survey boundary.

A number of anomalies appear to warrant ground follow-up, e.g., 75C-83B, 81D-84B.

Anomaly 84C

This grade 3 anomaly reflects a deep bedrock conductor. It is associated with weak magnetic and VLF-EM anomalies and may extend beyond the survey boundary.

Anomaly 62A, Responses 61xA, 64xA, 72xA, 73xA These x-type responses, and a single grade 1 anomaly are indicative of weak conductors which may occur in the bedrock. They are generally of questionable quality and appear to constitute low priority exploration targets.

Anomaly 82A-83A

A possible bedrock conductor is indicated by these grade 1 anomalies. Its location in the lake, however, downgrades the significance of this conductor.

Sheet 6

Sheet 6 covers a small portion of the survey area in its southeast part. It is mostly covered by volcanics(?) which appear to be highly resistive and uniformly magnetic.

The southwest part of the sheet (lines 81 to 90) extends over the greenstone/granitic(?) belt which is characterized by low resistivities (100 ohm-m values are common with the lows of 1-2 ohm-m) and moderately active magnetics.

There is very little VLF-EM activity on the sheet. Only two anomalies occur here, one within the greenstone/granitic belt, the other vaguely associated with conductor 75A-76A.

Anomaly 75A-76A

A weak conductor of possible bedrock origin is indicated by these grade 1 anomalies. It is vaguely associated with a very weak VLF anomaly and constitutes a low priority target.

Anomaly 802A

This single-line, poorly defined grade 1 anomaly may reflect a weak bedrock conductor. There is a vague suggestion from resistivity and enhanced magnetics that this anomaly may occur on strike with 75A-76A. It appears to be a low priority target.

Group 6-1

This group was described previously as group 4-2 which constitutes the southwest extension of this group.

I SK-184

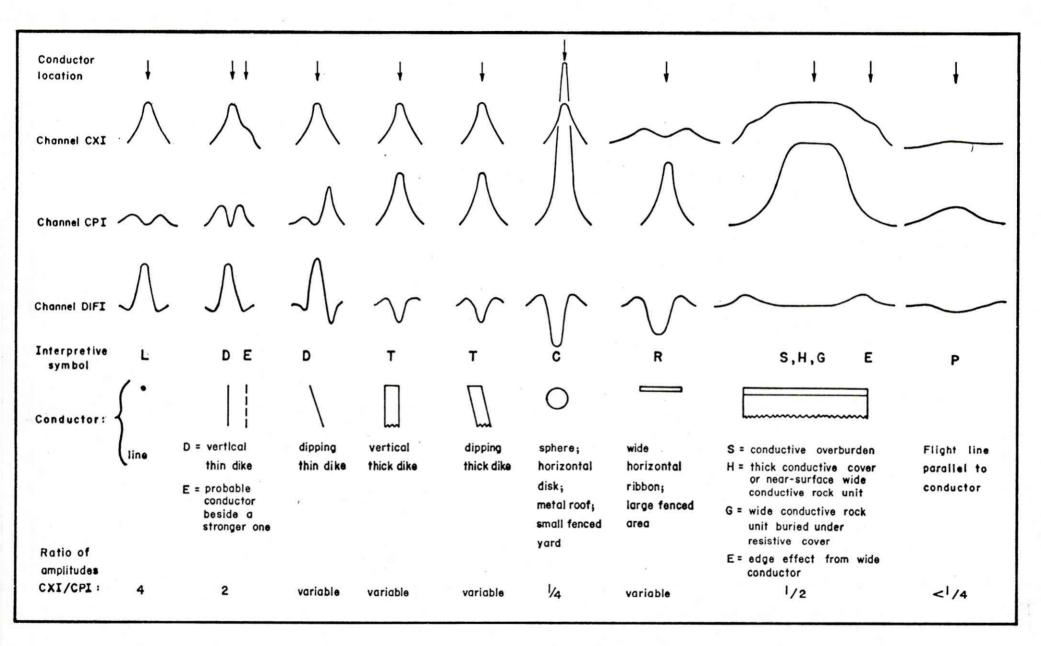
SECTION II: BACKGROUND INFORMATION

ELECTROMAGNETICS

DIGHEM electromagnetic responses fall into two general classes, discrete and broad. The discrete class consists of sharp, well-defined anomalies from discrete conductors such as sulfide lenses and steeply dipping sheets of graphite and sulfides. The broad class consists of wide anomalies from conductors having a large horizontal surface such as flatly dipping graphite or sulfide sheets, saline water-saturated sedimentary formations, conductive overburden and rock, and geothermal zones. A vertical conductive slab with a width of 200 m would straddle these two classes.

The vertical sheet (half plane) is the most common model used for the analysis of discrete conductors. All anomalies plotted on the electromagnetic map are analyzed according to this model. The following section entitled Discrete conductor analysis describes this model in detail, including the effect of using it on anomalies caused by broad conductors such as conductive overburden.

The conductive earth (half space) model is suitable for broad conductors. Resistivity contour maps result from the


mapping describes the method further, including the effect of using it on anomalies caused by discrete conductors such as sulfide bodies.

Geometric interpretation

The geophysical interpreter attempts to determine the geometric shape and dip of the conductor. This qualitative interpretation of anomalies is indicated on the map by means of interpretive symbols (see EM map legend). Figure II-1 shows typical DIGHEM anomaly shapes and the interpretive symbols for a variety of conductors. These classic curve shapes are used to guide the geometric interpretation.

Discrete conductor analysis

The EM anomalies appearing on the electromagnetic map are analyzed by computer to give the conductance (i.e., conductivity-thickness product) in mhos of a vertical sheet model. This is done regardless of the interpreted geometric shape of the conductor. This is not an unreasonable procedure, because the computed conductance increases as the electrical quality of the conductor increases, regardless of its true shape. DIGHEM anomalies are divided into six

Typical DIGHEM anomaly shapes

grades of conductance, as shown in Table II-1. The conductance in mhos is the reciprocal of resistance in ohms.

Table II-1. EM Anomaly Grades

Anomaly Grade	Mho Range
6	> 99
5	50 - 99
4	20 - 49
3	10 - 19
2	5 - 9
1	< 5

The conductance value is a geological parameter because it is a characteristic of the conductor alone; it generally is independent of frequency, and of flying height or depth of burial apart from the averaging over a greater portion of the conductor as height increases. 1 Small anomalies from deeply buried strong conductors are not confused with small anomalies from shallow weak conductors because the former will have larger conductance values.

Conductive overburden generally produces broad EM responses which are not plotted on the EM maps. However, patchy conductive overburden in otherwise resistive areas

This statement is an approximation. DIGHEM, with its short coil separation, tends to yield larger and more accurate conductance values than airborne systems having a larger coil separation.

can yield discrete anomalies with a conductance grade (cf. Table II-1) of 1, or even of 2 for conducting clays which have resistivities as low as 50 ohm-m. In areas where ground resistivities can be below 10 ohm-m, anomalies caused by weathering variations and similar causes can have any conductance grade. The anomaly shapes from the multiple coils often allow such conductors to be recognized, and these are indicated by the letters S, H, G and sometimes E on the map (see EM legend).

For bedrock conductors, the higher anomaly grades indicate increasingly higher conductances. Examples: DIGHEM's New Insco copper discovery (Noranda, Canada) yielded a grade 4 anomaly, as did the neighbouring copper-zinc Magusi River ore body; Mattabi (copper-zinc, Sturgeon Lake, Canada) and Whistle (nickel, Sudbury, Canada) gave grade 5; and DIGHEM's Montcalm nickel-copper discovery (Timmins, Canada) yielded a grade 6 anomaly. Graphite and sulfides can span all grades but, in any particular survey area, field work may show that the different grades indicate different types of conductors.

Strong conductors (i.e., grades 5 and 6) are characteristic of massive sulfides or graphite. Moderate conductors (grades 3 and 4) typically reflect sulfides of a less massive character or graphite, while weak bedrock conductors

(grades 1 and 2) can signify poorly connected graphite or heavily disseminated sulfides. Grade 1 conductors may not respond to ground EM equipment using frequencies less than 2000 Hz.

The presence of sphalerite or gangue can result in ore deposits having weak to moderate conductances. As an example, the three million ton lead-zinc deposit of Restigouche Mining Corporation near Bathurst, Canada, yielded a well defined grade 1 conductor. The 10 percent by volume of sphalerite occurs as a coating around the fine grained massive pyrite, thereby inhibiting electrical conduction.

Faults, fractures and shear zones may produce anomalies which typically have low conductances (e.g., grades 1 and 2). Conductive rock formations can yield anomalies of any conductance grade. The conductive materials in such rock formations can be salt water, weathered products such as clays, original depositional clays, and carbonaceous material.

On the electromagnetic map, a letter identifier and an interpretive symbol are plotted beside the EM grade symbol. The horizontal rows of dots, under the interpretive symbol, indicate the anomaly amplitude on the flight record. The

vertical column of dots, under the anomaly letter, gives the estimated depth. In areas where anomalies are crowded, the letter identifiers, interpretive symbols and dots may be obliterated. The EM grade symbols, however, will always be discernible, and the obliterated information can be obtained from the anomaly listing appended to this report.

The purpose of indicating the anomaly amplitude by dots is to provide an estimate of the reliability of the conductance calculation. Thus, a conductance value obtained from a large ppm anomaly (3 or 4 dots) will tend to be accurate whereas one obtained from a small ppm anomaly (no dots) could be quite inaccurate. The absence of amplitude dots indicates that the anomaly from the coaxial coil-pair is 5 ppm or less on both the inphase and quadrature channels. Such small anomalies could reflect a weak conductor at the surface or a stronger conductor at depth. The conductance grade and depth estimate illustrates which of these possibilities fits the recorded data best.

Flight line deviations occasionally yield cases where two anomalies, having similar conductance values but dramatically different depth estimates, occur close together on the same conductor. Such examples illustrate the reliability of the conductance measurement while showing that the depth estimate can be unreliable. There are a

number of factors which can produce an error in the depth estimate, including the averaging of topographic variations by the altimeter, overlying conductive overburden, and the location and attitude of the conductor relative to the flight line. Conductor location and attitude can provide an erroneous depth estimate because the stronger part of the conductor may be deeper or to one side of the flight line, or because it has a shallow dip. A heavy tree cover can also produce errors in depth estimates. This is because the depth estimate is computed as the distance of bird from conductor, minus the altimeter reading. The altimeter can lock onto the top of a dense forest canopy. This situation yields an erroneously large depth estimate but does not affect the conductance estimate.

Dip symbols are used to indicate the direction of dip of conductors. These symbols are used only when the anomaly shapes are unambiguous, which usually requires a fairly resistive environment.

A further interpretation is presented on the EM map by means of the line-to-line correlation of anomalies, which is based on a comparison of anomaly shapes on adjacent lines. This provides conductor axes which may define the geological structure over portions of the survey area. The absence of

conductor axes in an area implies that anomalies could not be correlated from line to line with reasonable confidence.

DIGHEM electromagnetic maps are designed to provide a correct impression of conductor quality by means of the conductance grade symbols. The symbols can stand alone with geology when planning a follow-up program. The actual conductance values are printed in the attached anomaly list for those who wish quantitative data. The anomaly ppm and depth are indicated by inconspicuous dots which should not distract from the conductor patterns, while being helpful to those who wish this information. The map provides an interpretation of conductors in terms of length, strike and dip, geometric shape, conductance, depth, and thickness (see The accuracy is comparable to an interpretation from a high quality ground EM survey having the same line spacing.

The attached EM anomaly list provides a tabulation of anomalies in ppm, conductance, and depth for the vertical sheet model. The EM anomaly list also shows the conductance and depth for a thin horizontal sheet (whole plane) model, but only the vertical sheet parameters appear on the EM map. The horizontal sheet model is suitable for a flatly dipping thin bedrock conductor such as a sulfide sheet having a thickness less than 10 m. The list also shows the

resistivity and depth for a conductive earth (half space) model, which is suitable for thicker slabs such as thick conductive overburden. In the EM anomaly list, a depth value of zero for the conductive earth model, in an area of thick cover, warns that the anomaly may be caused by conductive overburden.

Since discrete bodies normally are the targets of EM surveys, local base (or zero) levels are used to compute local anomaly amplitudes. This contrasts with the use of true zero levels which are used to compute true EM amplitudes. Local anomaly amplitudes are shown in the EM anomaly list and these are used to compute the vertical sheet parameters of conductance and depth. Not shown in the EM anomaly list are the true amplitudes which are used to compute the horizontal sheet and conductive earth parameters.

X-type electromagnetic responses

DIGHEM maps contain x-type EM responses in addition to EM anomalies. An x-type response is below the noise threshold of 3 ppm, and reflects one of the following: a weak conductor near the surface, a strong conductor at depth (e.g., 100 to 120 m below surface) or to one side of the flight line, or aerodynamic noise. Those responses that

have the appearance of valid bedrock anomalies on the flight profiles are indicated by appropriate interpretive symbols (see EM map legend). The others probably do not warrant further investigation unless their locations are of considerable geological interest.

The thickness parameter

DIGHEM can provide an indication of the thickness of a steeply dipping conductor. The amplitude of the coplanar anomaly (e.g., CPI) increases relative to the coaxial anomaly (e.g., CXI) as the apparent thickness increases, i.e., the thickness in the horizontal plane. (The thickness is equal to the conductor width if the conductor dips at 90 degrees and strikes at right angles to the flight line.) This report refers to a conductor as thin when the thickness is likely to be less than 3 m, and thick when in excess of Thin conductors are indicated on the EM map by the 10 m. interpretive symbol "D", and thick conductors by "T". base metal exploration in steeply dipping geology, thick conductors can be high priority targets because many massive sulfide ore bodies are thick, whereas non-economic bedrock conductors are often thin. The system cannot sense the thickness when the strike of the conductor is subparallel to the flight line, when the conductor has a shallow dip, when

the anomaly amplitudes are small, or when the resistivity of the environment is below 100 ohm-m.

Resistivity mapping

widespread conductivity are commonly Areas of encountered during surveys. In such areas, anomalies can be generated by decreases of only 5 m in survey altitude as well as by increases in conductivity. The typical flight record in conductive areas is characterized by inphase and quadrature channels which are continuously active. Local EM peaks reflect either increases in conductivity of the earth or decreases in survey altitude. For such conductive areas, apparent resistivity profiles and contour maps are necessary for the correct interpretation of the airborne The advantage of the resistivity parameter is that anomalies caused by altitude changes are virtually eliminated, so the resistivity data reflect only those anomalies caused by conductivity changes. The resistivity analysis also helps the interpreter to differentiate between conductive trends in the bedrock and those patterns typical of conductive overburden. For example, discrete conductors will generally appear as narrow lows on the contour map and broad conductors (e.g., overburden) will appear wide lows.

The resistivity profile (see table in Appendix A) and the resistivity contour map present the apparent resistivity using the so-called pseudo-layer (or buried) half space model defined in Fraser (1978)². This model consists of a resistive layer overlying a conductive half space. depth channel (see Appendix A) gives the apparent depth below surface of the conductive material. The apparent depth is simply the apparent thickness of the overlying apparent depth (or thickness) resistive layer. The parameter will be positive when the upper layer is more resistive than the underlying material, in which case the apparent depth may be quite close to the true depth.

The apparent depth will be negative when the upper layer is more conductive than the underlying material, and will be zero when a homogeneous half space exists. The apparent depth parameter must be interpreted cautiously because it will contain any errors which may exist in the measured altitude of the EM bird (e.g., as caused by a dense tree cover). The inputs to the resistivity algorithm are the inphase and quadrature components of the coplanar coil-pair. The outputs are the apparent resistivity of the

Resistivity mapping with an airborne multicoil electromagnetic system: Geophysics, v. 43, p. 144-172.

conductive half space (the source) and the sensor-source distance. The flying height is not an input variable, and the output resistivity and sensor-source distance are independent of the flying height. The apparent depth, discussed above, is simply the sensor-source distance minus the measured altitude or flying height. Consequently, errors in the measured altitude will affect the apparent depth parameter but not the apparent resistivity parameter.

The apparent depth parameter is a useful indicator of simple layering in areas lacking a heavy tree cover. The DIGHEM system has been flown for purposes of permafrost mapping, where positive apparent depths were used as a measure of permafrost thickness. However, little quantitative use has been made of negative apparent depths because the absolute value of the negative depth is not a measure of the thickness of the conductive upper layer and, therefore, is not meaningful physically. Qualitatively, a negative apparent depth estimate usually shows that the EM anomaly is caused by conductive overburden. Consequently, the apparent depth channel can be of significant help in distinguishing between overburden and bedrock conductors.

The resistivity map often yields more useful information on conductivity distributions than the EM map. In

comparing the EM and resistivity maps, keep in mind the following:

- (a) The resistivity map portrays the absolute value
 of the earth's resistivity.
 (Resistivity = 1/conductivity.)
- (b) The EM map portrays anomalies in the earth's resistivity. An anomaly by definition is a change from the norm and so the EM map displays anomalies, (i) over narrow, conductive bodies and (ii) over the boundary zone between two wide formations of differing conductivity.

The resistivity map might be likened to a total field map and the EM map to a horizontal gradient in the direction of flight³. Because gradient maps are usually more sensitive than total field maps, the EM map therefore is to be preferred in resistive areas. However, in conductive areas, the absolute character of the resistivity map usually causes it to be more useful than the EM map.

³ The gradient analogy is only valid with regard to the identification of anomalous locations.

Interpretation in conductive environments

Environments having background resistivities below 30 ohm-m cause all airborne EM systems to yield very large responses from the conductive ground. This usually prohibits the recognition of discrete bedrock conductors. The processing of DIGHEM data, however, produces six channels which contribute significantly to the recognition of bedrock conductors. These are the inphase and quadrature difference channels (DIFI and DIFQ), and the resistivity and depth channels (RES and DP) for each coplanar frequency; see table in Appendix A.

The EM difference channels (DIFI and DIFQ) eliminate up to 99% of the response of conductive ground, leaving responses from bedrock conductors, cultural features (e.g., telephone lines, fences, etc.) and edge effects. An edge effect arises when the conductivity of the ground suddenly changes, and this is a source of geologic noise. While edge effects yield anomalies on the EM difference channels, they do not produce resistivity anomalies. Consequently, the resistivity channel aids in eliminating anomalies due to edge effects. On the other hand, resistivity anomalies will coincide with the most highly conductive sections of conductive ground, and this is another source of geologic

noise. The recognition of a bedrock conductor in a conductive environment therefore is based on the anomalous responses of the two difference channels (DIFI and DIFQ) and the two resistivity channels (RES). The most favourable situation is where anomalies coincide on all four channels.

The DP channels, which give the apparent depth to the conductive material, also help to determine whether a conductive response arises from surficial material or from a conductive zone in the bedrock. When these channels ride above the zero level on the electrostatic chart paper (i.e., depth is negative), it implies that the EM and resistivity profiles are responding primarily to a conductive upper layer, i.e., conductive overburden. If both DP channels are below the zero level, it indicates that a resistive upper layer exists, and this usually implies the existence of a bedrock conductor. If the low frequency DP channel is below the zero level and the high frequency DP is above, this suggests that a bedrock conductor occurs beneath conductive cover.

Channels REC1, REC2, REC3 and REC4 are the anomaly recognition functions. They are used to trigger the conductance channel CDT which identifies discrete conductors. In highly conductive environments, channel REC2

is deactivated because it is subject to corruption by highly conductive earth signals. Similarly, in moderately conductive environments, REC4 is deactivated. Some of the automatically selected anomalies (channel CDT) are discarded by the geophysicist. The automatic selection algorithm is intentionally oversensitive to assure that no meaningful responses are missed. The interpreter then classifies the anomalies according to their source and eliminates those that are not substantiated by the data, such as those arising from geologic or aerodynamic noise.

Reduction of geologic noise

Geologic noise refers to unwanted geophysical responses. For purposes of airborne EM surveying, geologic noise refers to EM responses caused by conductive overburden and magnetic permeability. It was mentioned above that the EM difference channels (i.e., channel DIFI for inphase and DIFQ for quadrature) tend to eliminate the response of conductive overburden. This marked a unique development in airborne EM technology, as DIGHEM is the only EM system which yields channels having an exceptionally high degree of immunity to conductive overburden.

Magnetite produces a form of geological noise on the inphase channels of all EM systems. Rocks containing less than 1% magnetite can yield negative inphase anomalies caused by magnetic permeability. When magnetite is widely distributed throughout a survey area, the inphase EM channels may continuously rise and fall reflecting variations in the magnetite percentage, flying height, and overburden thickness. This can lead to difficulties in recognizing deeply buried bedrock conductors, particularly if conductive overburden also exists. However, the response of broadly distributed magnetite generally vanishes on the inphase difference channel DIFI. This feature can be a significant aid in the recognition of conductors which occur in rocks containing accessory magnetite.

EM magnetite mapping

The information content of DIGHEM data consists of a combination of conductive eddy current response and magnetic permeability response. The secondary field resulting from conductive eddy current flow is frequency-dependent and consists of both inphase and quadrature components, which are positive in sign. On the other hand, the secondary field resulting from magnetic permeability is independent of frequency and consists of only an inphase component which

is negative in sign. When magnetic permeability manifests itself by decreasing the measured amount of positive inphase, its presence may be difficult to recognize. However, when it manifests itself by yielding a negative inphase anomaly (e.g., in the absence of eddy current flow), its presence is assured. In this latter case, the negative component can be used to estimate the percent magnetite content.

A magnetite mapping technique was developed for the coplanar coil-pair of DIGHEM. The technique yields channel "FEO" (see Appendix A) which displays apparent weight percent magnetite according to a homogeneous half space model.⁴ The method can be complementary to magnetometer mapping in certain cases. Compared to magnetometry, it is far less sensitive but is more able to resolve closely spaced magnetite zones, as well as providing an estimate of the amount of magnetite in the rock. The method is sensitive to 1/4% magnetite by weight when the EM sensor is at a height of 30 m above a magnetitic half space. It can individually resolve steeply dipping narrow magnetite-rich bands which are separated by 60 m. Unlike magnetometry, the EM magnetite method is unaffected by remanent magnetism or magnetic latitude.

Refer to Fraser, 1981, Magnetite mapping with a multicoil airborne electromagnetic system: Geophysics, v. 46, p. 1579-1594.

The EM magnetite mapping technique provides estimates of magnetite content which are usually correct within a factor of 2 when the magnetite is fairly uniformly distributed. EM magnetite maps can be generated when magnetic permeability is evident as indicated by anomalies in the magnetite channel FEO.

Like magnetometry, the EM magnetite method maps only bedrock features, provided that the overburden is characterized by a general lack of magnetite. This contrasts with resistivity mapping which portrays the combined effect of bedrock and overburden.

Recognition of culture

Cultural responses include all EM anomalies caused by man-made metallic objects. Such anomalies may be caused by inductive coupling or current gathering. The concern of the interpreter is to recognize when an EM response is due to culture. Points of consideration used by the interpreter, when coaxial and coplanar coil-pairs are operated at a common frequency, are as follows:

Channels CXS and CPS (see Appendix A) measure 50 and
 Hz radiation. An anomaly on these channels shows

that the conductor is radiating cultural power. Such an indication is normally a guarantee that the conductor is cultural. However, care must be taken to ensure that the conductor is not a geologic body which strikes across a power line, carrying leakage currents.

- 2. A flight which crosses a line (e.g., fence, telephone line, etc.) yields a center-peaked coaxial anomaly and an m-shaped coplanar anomaly.⁵ When the flight crosses the cultural line at a high angle of intersection, the amplitude ratio of coaxial/coplanar (e.g., CXI/CPI) is 4. Such an EM anomaly can only be caused by a line. The geologic body which yields anomalies most closely resembling a line is the vertically dipping thin dike. Such a body, however, yields an amplitude ratio of 2 rather than 4. Consequently, an m-shaped coplanar anomaly with a CXI/CPI amplitude ratio of 4 is virtually a guarantee that the source is a cultural line.
- 3. A flight which crosses a sphere or horizontal disk yields center-peaked coaxial and coplanar anomalies with a CXI/CPI amplitude ratio (i.e., coaxial/coplanar) of 1/4. In the absence of geologic bodies of this geometry, the most likely conductor is a metal roof or

⁵ See Figure II-1 presented earlier.

small fenced yard.⁴ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.

- 4. A flight which crosses a horizontal rectangular body or wide ribbon yields an m-shaped coaxial anomaly and a center-peaked coplanar anomaly. In the absence of geologic bodies of this geometry, the most likely conductor is a large fenced area.⁴ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.
- 5. EM anomalies which coincide with culture, as seen on the camera film, are usually caused by culture. However, care is taken with such coincidences because a geologic conductor could occur beneath a fence, for example. In this example, the fence would be expected to yield an m-shaped coplanar anomaly as in case #2 above. If, instead, a center-peaked coplanar anomaly occurred, there would be concern that a thick geologic conductor coincided with the cultural line.

⁴ It is a characteristic of EM that geometrically identical anomalies are obtained from: (1) a planar conductor, and (2) a wire which forms a loop having dimensions identical to the perimeter of the equivalent planar conductor.

6. The above description of anomaly shapes is valid when the culture is not conductively coupled to the environment. In this case, the anomalies arise from inductive coupling to the EM transmitter. However, when the environment is quite conductive (e.g., less than 100 ohm-m at 900 Hz), the cultural conductor may be conductively coupled to the environment. In this latter case, the anomaly shapes tend to be governed by current gathering. Current gathering can completely distort the anomaly shapes, thereby complicating the identification of cultural anomalies. In such circumstances, the interpreter can only rely on the radiation channels CXS and CPS, and on the camera film.

MAGNETICS

The existence of a magnetic correlation with an EM anomaly is indicated directly on the EM map. An EM anomaly with magnetic correlation has a greater likelihood of being produced by sulfides than one that is non-magnetic. However, sulfide ore bodies may be non-magnetic (e.g., the Kidd Creek deposit near Timmins, Canada) as well as magnetic (e.g., the Mattabi deposit near Sturgeon Lake, Canada).

The magnetometer data are digitally recorded the aircraft to an accuracy of one nT (i.e., one gamma). The digital tape is processed by computer to yield a total field magnetic contour map. When warranted, the magnetic data also may be treated mathematically to enhance the magnetic response of the near-surface geology, and an enhanced magnetic contour map is then produced. The response of the enhancement operator in the frequency domain is illustrated in Figure II-2. This figure shows that the passband components of the airborne data are amplified 20 times by the enhancement operator. This means, for example, that a 100 nT anomaly on the enhanced map reflects a 5 nT anomaly for the passband components of the airborne data.

The enhanced map, which bears a resemblance to a downward continuation map, is produced by the digital bandpass filtering of the total field data. The enhancement is equivalent to continuing the field downward to a level (above the source) which is 1/20th of the actual sensor-source distance.

Because the enhanced magnetic map bears a resemblance to a ground magnetic map, it simplifies the recognition of trends in the rock strata and the interpretation of

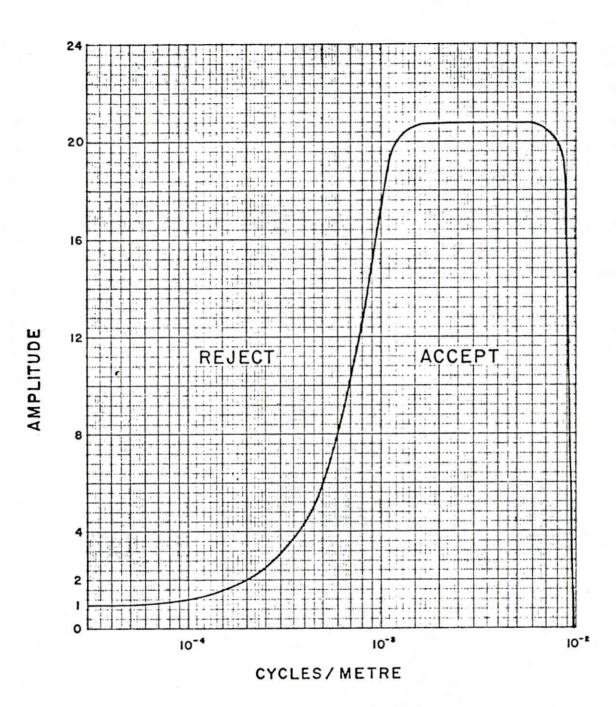


Figure Π -2 Frequency response of magnetic enhancement operator.

geological structure. It defines the near-surface local geology while de-emphasizing deep-seated regional features. It primarily has application when the magnetic rock units are steeply dipping and the earth's field dips in excess of 60 degrees.

VLF-EM

VLF-EM anomalies are not EM anomalies in the conventional sense. EM anomalies primarily reflect eddy currents flowing in conductors which have been energized inductively by the primary field. In contrast, VLF-EM anomalies primarily reflect current gathering, which is a non-inductive phenomenon. The primary field sets up currents which flow weakly in rock and overburden, and these tend to collect in low resistivity zones. Such zones may be due to massive sulfides, shears, river valleys and even unconformities.

The Herz Industries Ltd Totem VLF-electromagnetometer measures the total field and vertical quadrature components. Both these components are digitally recorded in the aircraft with a sensitivity of 0.1 percent. The total field yields peaks over VLF-EM current concentrations

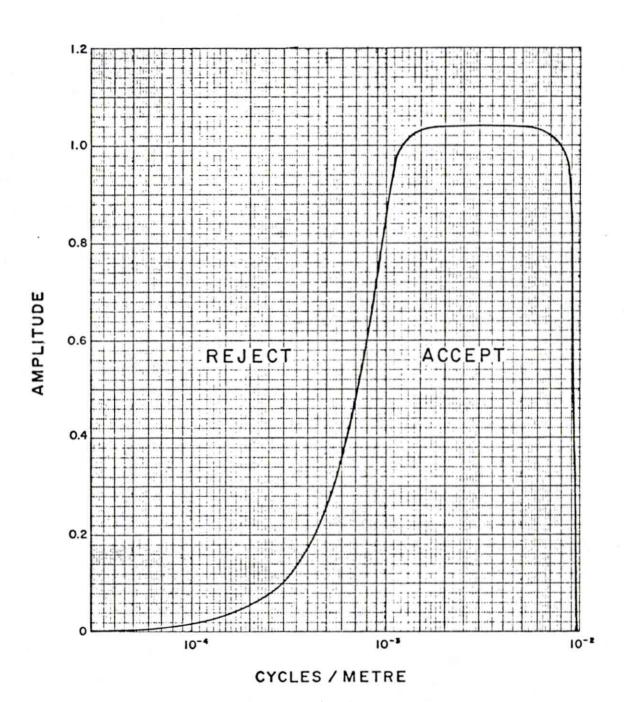


Figure $\underline{\mathbb{I}}$ -3 Frequency response of VLF-EM operator.

whereas the quadrature component tends to yield crossovers. Both appear as traces on the profile records. The total field data also are filtered digitally and displayed on a contour map, to facilitate the recognition of trends in the rock strata and the interpretation of geologic structure.

The response of the VLF-EM total field filter operator in the frequency domain (Figure II-3) is basically similar to that used to produce the enhanced magnetic (Figure II-2). The two filters are identical along the abscissa but different along the ordinant. The VLF-EM filter removes long wavelengths such as those which reflect regional and wave transmission variations. sharpens short wavelength responses such as those which reflect local geological variations. The filtered total field VLF-EM contour map is produced with a contour interval of one percent.

MAPS ACCOMPANYING THIS REPORT

30 map sheets accompany this report:

Electromagnetic Anomalies	6	map	sheets
Resistivity	6	map	sheets
Magnetics	6	map	sheets
Enhanced Magnetics	6	map	sheets
Filtered VLF Total Field	6	map	sheets

Respectfully submitted, DIGHEM LIMITED

S. Kilty

Operations Manager

Z. Dvorak

Vice-President

APPENDIX A

THE FLIGHT RECORD AND PATH RECOVERY

Both analog and digital flight records were produced. The analog profiles were recorded on chart paper in the aircraft during the survey. The digital profiles were generated later by computer and plotted on electrostatic chart paper at a scale of 1:10,000. The digital profiles are listed in Table A-1.

In Table A-1, the log resistivity scale of 0.03 decade/mm means that the resistivity changes by an order of magnitude in 33 mm. The resistivities at 0, 33, 67, 100 and 133 mm up from the bottom of the digital flight record are respectively 1, 10, 100, 1,000 and 10,000 ohm-m.

The fiducial marks on the flight records represent points on the ground which were recovered from camera film. Continuous photographic coverage allowed accurate photo-path recovery locations for the fiducials, which were then plotted on the geophysical maps to provide the track of the aircraft.

The fiducial locations on both the flight records and flight path maps were examined by a computer for unusual helicopter speed changes. Such speed changes may denote

an error in flight path recovery. The resulting flight path locations therefore reflect a more stringent checking than is provided by standard flight path recovery techniques.

Table A-1. The Digital Profiles

Cha	nnel		Scale
Name	(Freq)	Observed parameters	units/mm
MAG		magnetics	10 nT
ALT		bird height	3 m
CXI	(900 Hz)	vertical coaxial coil-pair inphase	1 ppm
CXQ	(900 Hz)	vertical coaxial coil-pair quadrature	1 ppm
CXS	(900 Hz)	ambient noise monitor (coaxial receiver)	1 ppm
CPI	(900 Hz)	horizontal coplanar coil-pair inphase	1 ppm
CPQ	(900 Hz)	10 NAV VO NA 1871 AND 477 NAV 1871 NA	1 ppm
CPS	(900 Hz)		1 ppm
CPI	(7200 Hz)	horizontal coplanar coil-pair inphase	1 ppm
CPQ	(7200 Hz)	horizontal coplanar coil-pair quadrature	1 ppm
CPS	(7200 Hz)	ambient noise monitor (coplanar receiver)	1 ppm
VLFT	25.0	VLF-EM total field	1 %
VLFQ		VLF-EM vertical quadrature	1 %
		Computed Parameters	
DIFI	(900 Hz)	difference function inphase from CXI and CPI	1 ppm
		difference function quadrature from CXQ and CPQ	1 ppm
REC1	and parameter of	first anomaly recognition function	1 ppm
REC2		second anomaly recognition function	1 ppm
REC3		third anomaly recognition function	1 ppm
REC4		fourth anomaly recognition function	1 ppm
CDT		conductance	1 grade
RES	(900 Hz)	log resistivity	.03 decade
RES	(7200 Hz)	log resistivity	.03 decade
DP	(900 Hz)	apparent depth	3 m
DP	(7200 Hz)	apparent depth	3 m
FEO%	/ 000 Hal	apparent weight percent magnetite	0.25%

APPENDIX B

EM ANOMALY LIST

		KIAL HZ		ANAR 0 HZ				VERT	CICAL .			CONDUC	
ANOMALY/ F FID/INTERP	REAL C	QUAD :	REAL PPM	QUAD	REAL PPM	QUAD PPM	:	COND MHOS	м.	COND MHOS		RESIS OHM-M	DEPTH M
LINE 2	(FI	JIGHT	3)				:		:				
A 386 B	1	1	0	3	4	22	•	1	2.	1	32	1783	0
LINE 3	/PT	JIGHT	21				٠		•				
A 467 B	,	3		6	9	52	•	1	ο.	1	15	1401	0
			(37)	2.50	-	-		•	• •			1401	Ŭ
LINE 4	•	IGHT	3)				•						
A 637 L?		0		5	3			6	36 .	1	10555		0
B 578 S?	U	1	0	0	3	3	•	1	51 .	1	165	8280	0
LINE 5	(FL	JIGHT	3)				:		:				
A 838 B	1	2	0	5	13	36		1	0.	1	35	773	4
T. T.VIII	/mr	TOUR	21				٠		•				
LINE 6 A 1116 B?		IGHT.	3) 0	1	,		•		٠.		4.40		
B 1081 S?	- 7	1	1.70	1	4	8 5		1	25 . 0 .	1		7947 8280	21 0
C 1053 D				53	180	66	-	28	5.		72	8	52
F 973 C	7	6	26	31	0	10		9	10 .	1		453	77
	(===	T 011m					•		•				
LINE 7 A 1425 L		IGHT 5	3) 21	48		10	•	-			-		4.0
A 1425 B	5	3	21	40	11	19	•	7	0.	-1	63	287	12
LINE 8	(FL	IGHT	3)										
A 1566 B		5	4		21	76		3	20 .	1	92	169	43
B 1493 L	2	8	10	27	0	12	•	2	0.	1	112	1035	0
LINE 9	/PT	IGHT	21				•		•				
C 1846 S?		1	3) 0	2	7	11	•	1	21 .	1	62	1006	22
D 1899 D			46		72	1.8		79	8.		79	1	67
E 1962 L	0	8	0	16	0	46	•	4	0.	1	5	962	0
	(==	T 0m					•		•				
LINE 10 A 367 D	(FL	IGHT 14		10	7-		•	4.5					
B 371 B	17	2	23 1	18 17	75 12	44		15 19	13 . 38 .	2	95 118	41 5	61
C 416 L	2	2	7	20	10	6		3	0.	6	131	5	110 106
D 421 L	2	3	0	20	10	6	9	2	11 .	1	125	18	109
E 443 S	1	3	0	5	7	37		1	0 .	1	24	748	0
F 470 L	1	0	0	1	11	8	٠	2	32 .	1	113	118	86
LINE 11	/RT	IGHT	4)				٠		•				
B 625 D	29	17	61	46	148	96	•	24	5.	4	60	12	40
C 586 L	6	2	8	10	0	7		14	11 .	4	164	12	132

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL OO HZ		LANAR 00 HZ		LANAR 00 HZ			TICAL .		ZONTAL EET	CONDUC	
	NOMAL!				REAL PPM					COND MHOS	DEPTH*.	COND		RESIS OHM-M	DEPTH M
L	INE	12	(E	LIGHT	4)				•						
	1076		ò	1	0	1	4	2	:	2	65 .	1	204	8280	0
В	1133	В	1	2	0	2	4	21		1	0.		27	2679	0
	1172		2	2	5	10	0	4		4	3.		167	16	134
D	1197	S	1	3	0	5	4	50	•	1	0.	1	4	3010	0
т.	INE	13	/1	LIGHT	4)				•		•				
	1750		4	11	4	25	80	134	•	2	4 .	1	35	277	0
	1755		1	2	1	8	36	78		1	0.		25	229	3
F	1760	В	1	5	1	5	17	37		1	1.		63	307	33
G	1819	S	1	4	1	7	13	69	•	1	0.	1	16	822	0
-									•		•				
	INE 2071	14	(E	LIGHT 0	4)		7		•	2	٠.		100		154
	2052		0	1	0	0	7 8	4 13		1	52 . 10 .		180 143	51 107	15 4 116
	2024		3	7	5	18	65	65		2	0.	2	25	90	7
	2017	-	6	28	21	76	303	179		3	ŏ.		16	77	ó
F	1992	L	0	3	0	5	4	19		1	0.		208	1455	123
G	1965	S	0	3	0	7	12	10		1	24 .	1	15	1048	0
H	1960	S	1	3	0	7	12	10	•	1	25 .	1	18	983	0
-			/*						٠						
	1NE 2323	15	1	LIGHT 0	4)	0	6	4	•	1	41 .	1	84	637	42
	2328		1	0	1	1	8			i	36 .		89	478	50
	2361		0	0	0	1	3	4		1	41 .	119	133	8280	0
	2378		0	0	0	1	7	5		1	33 .		58	982	18
E	2400	S?	0	0	0	2	11	10	•	1	30 .	1	131	95	106
	2428		0	0	0	1	5	6		1	33 .	1	179	85	149
	2461		1	5	4	11	26	38		1	0.		55	116	34
	2470		6	13	35	35	132	78		8	8.		58	50	26
	2477 2510		16 0	10	35 0	21	83	46 54		23	22 .		131	147	75
	2517		0	2	0	6 5	7	12		1	0.	1	15 14	1187 1202	0
	2522		0	4	0	7	1	55		1	0.	1	13	1379	0
-									•						
	INE	16		LIGHT					•						
В			0	3	2	3	11	24		1	8.	1	49	647	17
C D			1	2	3	2	13 17	24 9		1	0 . 7 .	8	53 51	191	27
E			5	6	14	18	37	10		8	7. 15.	2	51 59	153 28	28 45
F			6	14	13	9	20	7		6	11 .		56	49	24
G			20	22	33	35	102	35		12	13 .		78	36	47

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
AN	OMAL	Y/ I	REAL	QUAD	REAL	QUAD	REAL	QUAD	•	COND	DEPTH*.	COND	DEPTH	RESIS	DEPTH
				PPM	PPM		PPM			MHOS		MHOS		онм-м	М
		16							•						
H	354	16 T.	3	LIGHT	' 5) 1	7	7	6	•	4	5.	1	103	1035	0
ı	357		1	1	1	4	12	11		1	0.		78	44	56
J	378		1	4	1	10	20	28		1	1.		19	543	0
K	383	S	0	4	0	10	21	28		1	8.	1	14	620	0
L	445	B?	0	1	0	1	0	8	•	1	4.	1	91	8280	0
		17	/*	T T CUM					٠		•				
C	633	17	2	LIGHT 7	5) 5	17	62	50	•	2	5.	1	45	100	
D	613		25	33	68	73	222	85		12	0.		45 37	180 28	6 12
E	586		2	1	6	19	15	6		3	0.	1.2	107	54	67
F	568		1	4	0	6	19	27		1	9.	1	15	679	0
G	522	D	6	8	5	8	39	22	•	5	3.	1	91	151	38
H	519	D	10	10	21	26	53	22	•	9	0.	2	49	28	21
		10	/*	3T T.CTIM					•		•				
A L	986	18	0	LIGHT 1	5) 0	1	5	8	•	1	32 .	1	66	7939	0
	1063		1	8	7	15	50	68		1	0.		26	148	0 4
	1070		7	7	ģ	12	34	18		7	11 .		82	75	40
	1074		5	7	7	12	50	25		5	21 .		85	640	8
E	1099	L	8	7	17	23	13	7		9	5.		58	39	27
	1110		1	3	0	6	10	58		1	0.	1	11	1092	0
G	1158	D	42	22	97	39	166	62	•	44	0.	5	57	7	39
	 INE	19	/1	LIGHT	. 51	e e			•						
	1399		4	22	5) 8	40	128	169	•	2	0.	1	62	82	25
	1394		23	10	56	5	116	47		96	9.	200	61	1	50
	1390		23	10	56	14	51	26		4	ó.		42	74	24
D	1384	В	2	2	1	3	7	22		1	1.	1	37	972	3
	1366		0	0	3	19	4			1	0.	1	198	1035	0
	1360		2	9	8	29	10	5		5	0.	1	35	607	0
	1346		1	4	1	8	15	57		1	0.	1	13	693	0
	1328 1311		0	0 2	1	1 7	8 20	19 12		1 2	o.	1	42 64	769 143	7 39
				-	3	,	20	12	•	2	٠.		04	143	39
L	INE	20	(I	LIGHT	5)	í			:						
	1809		20	9	47	18	71	35		40	10 .	4	66	13	45
	1816		2	6	1	8	27	49		1	0.	1	41	326	14
	1841		0	13	4	18	25	33		3	0.	1	168	152	105
	1854		1	3	0	8	14	73		1	0.	1	14	886	0
	1866 1886		1	0 6	1	2	8	10		1	27 .	1	86	567	46
1	1000	ь	4	ь	3	3	38	16	•	4	8.	1	76	172	24

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			CICAL .		ZONTAL EET	CONDUC	
	NOMAL				REAL PPM				•	COND MHOS		COND MHOS		RESIS OHM-M	DEPTH M
L	INE	20	(F	LIGHT	5)	ľ			•		•				
	1899		6	15	9	4	64	17		5	12 .	1	93	130	45
K	1908	D	20	29	23	24	115	50		9	10 .	2	51	39	23
	INE	21	/ 5	LIGHT	61				•		•				
A.	314		7	11	6) 28	21	69	83	•	2	0.	1	22	103	3
В	321		230	112	413	223	769	187		65	0.	7	22	3	12
c	337		23	27	19	23	6	6		1	7.	í	75	740	29
D	339		23	27	19	23	7	11		10	0.	1	82	67	41
E	349	S	1	3	0	6	15	24		1	9.	1	15	837	0
F	373	D	5	15	15	31	91	36		4	0.	1	50	99	13
H	387		9	17	17	16	31	16		6	5.	1	80	117	35
I	391		16	19	17	16	86	31		10	13 .	2	63	37	33
J	397		5	6	12	12	37	32		2	17.	1	70	79	51
K	401	В	4	6	12	11	37	32	•	6	12 .	1	139	127	82
Τ.	INE	22	/ F	LIGHT	6)				•		•				
c	788		2	1	1	4	14	16	•	1	0.	1	80	53	60
D	781		1	8	7	16	49	56		2	0.	1	35	110	16
E	775		6	10	30	18	52	80		11	27.	i	69	95	32
F	770		30	37	77	45	168	94		18	3.	3	52	17	30
G	751	P	1	1	5	2	10	3		12	67 .	4	187	15	154
H	740	L	16	13	21	40	17	12		9	0.	1	135	498	37
I	719	S	1	7	0	11	19	99		1	0.	1	18	682	0
J	708		0	0	0	0	7	17		1	13 .	1	66	975	27
K	699		5	14	8	27	86	47		3	0.	1	40	144	3
L	690		2	2	2	3	15	14		1	8.	1	78	109	53
M	683		6	4	10	9	25	32		12	29 .	1	107	68	65
N O	681 678		6	5 5	10	9	24	25		10	27 .	2	104	37	71
P	672		2	2	10	4	24 17	25 12		1 2	5 . 22 .	1	48 68	125	27 44
_			2	_		4	17	12	•	2	22 .	'	60	168	44
L	INE	23	(F	LIGHT	6)				•		•				
	1130		o ,	1			5	6		1	35 .	1	25	5359	0
В	1254	В	2	9	2	15	42	53		1	6.	1	38	155	17
C	1274	T	104	23	196	45	293	23		161	0 .	29	28	1	22
	1276		37	9	196	45	293	11		131	0.	9	51	2	36
	1283		0	8	1	76	7	4		1	0.	1	162	1035	0
	1301		1	2	0	1	15	6	77.1	4	19 .	1	90	118	64
	1305		2	3	0	1	14	9		3	61 .	1	213	1035	0
	1315		1	1	0	3	9	6		2	34 .	1	119	31	99
Г	1324	D	8	8	13	12	43	22	٠	9	19 .	2	110	41	76

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL OO HZ		LANAR 00 HZ		LANAR 00 HZ			FICAL IKE		ZONTAL EET	CONDUC	
FI	NOMAL D/INT	Y/	REAL PPM	QUAD PPM	REAL PPM		REAL PPM			COND MHOS	DEPTH*	COND MHOS		RESIS OHM-M	DEPTH M
L	INE	23	(F	LIGHT	: 6)	Ÿ.			•		119				
	1348		9	9	3		13	12	•	1	18 .	7	92	1	89
N	1353	B?	9	9	5	5	21	18		8	34 .		124	107	74
									•						
	INE	24		LIGHT					•						
E	332		4	5	9	11	28	37		6	16.		84	47	48
F G	334 342		4	4 2	9	10	33	24		2	7.		47	143	25
Н	345		65	22	177	7 35	30 256	67 64		1 1 2 0	0.		27	410	4
I	348		48	48	136	94	248	116		120 23	2.		50 40	1 5	40
J	349		42	48	136	94	281	116		22	, . 0 .		57	9	26 38
K	355		4	1	2	1	6	4		23	29 .		166	565	33
L	365		3	3	0	6	12	53		1	0.		17	752	0
M	391	B?	2	4	1	7	18	24		1	0 .	1	60	148	37
	INE	25	0.00	LIGHT					•						
В	561		3	3	2	4	19	31	•	1	0.		33	528	3
C	558		42	23	116	47	218		•	45	4.	8	53	3	40
D	554		126	54	212	91	340		٠	67	0.	6	34	4	21
E G	546		4	2	4	3	7	4	•	15	19 .		166	23	130
	526	P.	1	1	2	3	6	22	•	1	0.	1	5	1710	0
L	INE	26	(F	LIGHT	11)				•		•				
A	357		37	21	70	57	218	202	•	25	6.	5	52	8	25
В	360		49	21	48	57	218	202		25	9.	8	60	2	35 48
C	364	В	45	17	39	25	44	80		41	0.	4	65	10	44
D	374	D	10	1	30	8	44	3		94	0.	9	102	3	84
\mathbf{E}	379		4	5	6	13	6	29		4	0.	2	104	46	67
F	381		1	5	6	13	7	29		1	0.	1	45	1162	6
G	393		1	4	1	7	10	61		1	0.	1	14	1188	0
H	403		3	8	1	5	13	39		2	3.		133	1035	0
1	419	Е	3	6	2	5	19	34	•	3	17 .	1	140	1035	0
T.1	NE	27	/F	LIGHT	11)				•						
A	630		20	17	28	32	100	108	•	2			24		• •
В	626		20	17	30	23	126	37		16	0.		24	55	10
c	611		38	7	59	16	89	9		110	10 .		53 94	30 4	25 76
D	601		3	4	2	3	5	34		5	12 .		177	1035	0
E	595		5	5	1	1	2	35		8	34 .		184	1035	0
F	584		1	6	0	10	18	97		1	0.	i	15	690	0
G	576	D	26	2	17	2	22	18		357	17 .		187	992	32
			147												,
	NE			LIGHT			721110110		٠						
A	1134	В	61	41	101	88	297	147	٠	25	0.	4	30	12	12

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT . LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS. .

		AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .			CONDUC	
ANOMALY/	REAL	QUAD	REAL	QUAD	REAL	QUAD	:	COND	DEPTH*.	COND	DEPTH	RESIS	DEPTH
FID/INTERP					PPM			MHOS		MHOS		ОНМ-М	М
							•		•				
LINE 28		LIGHT					•						
В 1137 В	88	39	158	98	329	90		45	0.	6	44	4	30
C 1153 L E 1165 S	2	2	1 0	3	7	9		1	0.		33	780	0
F 1174 L	9		74	7 27	16 128	66 1		1 38	0. 14.	1	19	503	120
	,	,	/4	21	120	•	•	30		,	183	140	120
LINE 29	(E	LIGHT	11)				·		•				
A 1395 B	4	17	5	21	82	79		2	0.	1	38	229	0
в 1393 в	6	17	5	21	82	48		2	0.	1	61		1
C 1386 D	4	26	5	42	154	160	•	1	0.	1	24	291	0
D 1372 L	3	10	3	7	20	12		2	0.	1	121	149	62
E 1355 S	1	4	0	9	22	77	٠	1	0.	1	16	57 6	0
T TNT 20							٠		•				
LINE 30 A 1933 E	7	LIGHT		89	263	79	•	9	٥.		25	126	•
B 1936 D	49	47	104	89	263	79		20	0.	1	35 39	136 11	0
C 1940 L	4	8	7	17	53	54		3	0.	1	64	151	21 18
D 1964 S	ō	4	ó	9	24	21		2	13 .	1	21	540	0
				1.50	17.0	1331		·=·				3.0	•
LINE 31	(F	LIGHT	22)										
A 2000 P	1	2	1	1	9	6	•	2	0.	1	50	83	27
в 1996 Р	0	2	0	3	9			1	0.	1	55	501	16
C 1986 L	0	1	0	1	8	4		2	0.	1	92	30	70
D 1975 S	0	4	0	7	18	47	•	1	0.	1	20	506	0
LINE 32	/1	LIGHT	22)				•		•				
B 1758 B	9	12	4	15	58	39	•	5	ο.	1	32	159	0
C 1786 L	Ó	1	0	0	6	4		1	0.	i	81	152	49
						•		•	٠.	•	0.	132	43
LINE 33	(F	LIGHT	22)										
A 1394 P?	4	1	6	9	35	18		9	25 .	4	155	13	126
B 1391 P?	7	6	6	9	35	20	•	7	0.	1	58	128	7
							•						
LINE 34		LIGHT					•	_	. •				
A 966 P? B 970 P?		4 6	2	11	33	19		5	0.	1	105	70	60
C 987 L	5	2	9	11	33 15	19 3		3 31	0.	1	71 143	88	26
D 993 L	1	1	1	1	9	4		3	0.	1	96	17 25	110 76
		1081	•	1.0%		•	:	,	٠.		30	25	76
LINE 35	(F	LIGHT	22)						:				
A 612 D		4	17	6	29	6		39	9.	6	94	6	73
							•					-	
LINE 36		LIGHT					٠						
B 329 D	11	3	8	3	14	2	•	53	0.	3	90	18	59

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

	COAXIAL 900 HZ	COPLANA 900		LANAR 00 HZ			CICAL .			CONDUC	
ANOMALY/ I	REAL QUAD	REAL QUA	AD REAL	QUAD PPM	:	COND MHOS		COND		RESIS OHM-M	DEPTH M
LINE 36	(FLIGHT	r 22)			:		:				
C 336 B	1 3		4 9	6		2	14 .	1	93	17	77
D 341 B	1 4	0	3 16	11	٠	2	0.	1	75	85	52
LINE 37	(FLIGHT	21)			:		:				
B 936 D	24 7		6 24	7		55	0.	4	82	10	58
C 942 B	2 4		10 24		•	3	16 .	1	69	37	53
D 945 B	2 5	5	8 3	28	•	3	0.	1	91	163	35
LINE 382	(FLIGHT	21)			•		•				
B 587 D	6 2		3 13	5	•	36	0.	7	102	4	80
	7 7			-	:	50	٠.	•	102	4	00
LINE 39	(FLIGHT										
A 274 D	25 7		7 31		7.	57	0.	4	80	12	55
В 278 В	1 6	4	2 6	31	٠	1	0.	1	87	74	65
LINE 40	(FLIGHT	20)					:				
A 2121 D			7 24	39		14	0.	2	90	28	59
C 2126 D	2 12	5	5 56	57		2	0.	2	87	48	51
					•						
LINE 41	(FLIGHT				٠	_	•	_			929100000
A 1797 B	3 3	1	2 14	11	•	6	12 .	3	139	16	108
LINE 42	(FLIGHT	20)			•		•				
A 1477 D	44 27		2 151	30	:	21	0.	5	43	8	24
B 1481 D	33 39	47	2 151	66		12	0.	3	38	21	14
					•						
LINE 43	(FLIGHT				٠		•			54.	
A 1185 D B 1181 D	24 10 6 11		6 70 4 241	15 81		41 9	8.	6	72	4	56
	0 11	03 (94 241	01	•	9	υ.	3	75	23	49
LINE 44	(FLIGHT	20)			:		•				
A 846 B	17 29	9 2	5 88	52		5	0 .	1	48	61	14
	410000000000000000000000000000000000000	2 220			•		•				
LINE 45	(FLIGHT				•		•				
A 573 D	16 22	12 2	0 59	31	•	7	0.	2	73	35	42
LINE 46	(FLIGHT	20)			:						
A 224 B	3 11		3 108	112		1	0.	1	70	85	29
		V 195200			•						
LINE 48	(FLIGHT				•						
A 2891 E	/ 16	26 1	9 98	15	•	28	0.	2	28	6	19

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ	COPI	ANAR 00 HZ	720	CANAR 00 HZ	•	VER	CICAL .		ZONTAL EET	CONDUC	
FII	NOMAL	Y/ I ERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	•	COND MHOS	DEPTH*.	COND		RESIS OHM-M	DEPTH M
L	INE	28	(F	LIGHT	11)				:		•				
A	956	С	1	1	5	3	14	5	•	7	49 .	2	150	52	109
т.:	INE	29	/19	LIGHT	11)				•		•				
	1590		1	1	2	3	13	8	•	2	24 .	1	103	157	74
										-		•	103	137	/4
	INE	31	- 3	LIGHT					•						
	2122		0	1	2	3	15	5		4	28 .	1	100	134	73
	2118		3	7	12	19	58	48	•	4	17.	1	71	95	32
	INE		(F	LIGHT	22)				•		•				
	1629		o o	1	1	2	8	8	•	1	33 .	1	154	129	125
В	1639	С	3	1	16	2	22	2		131	38 .	24	117	1 1	109
											•				7.50
	INE		175-175	LIGHT	22)				•						
A	822	в	1	3	1	7	25	45	٠	1	0.	1	46	302	18
L	NE	35	(F	LIGHT	22)				•		•				
	745		3	7	12	28	84	72	•	3	7.	1	61	73	25
В	738	В	1	1	4	2	5	3		1	42 .	1	119	1543	59
											•8				
	NE 170	36		LIGHT	22)			(54/6)	•		•				
A C	1000		4	7	14	19	50	68		5	13 .	2	79	38	46
D			0	1 0	0 10	1 4	6 20	12 5		1	20 .	1	65	1151	24
E			4	10	11	18	60	40		27 4	51 . 10 .	6 1	139 78	7 126	114
F	205		2	2	8	7	24	12		7	30 .	2	117	38	34 83
												-	5.5.5	30	03
	NE	37		LIGHT	21)						•				
A	762		1	5	3	11	37	27		2	0.	1	32	77	12
0.00	765 768		0	2	2	5	22	15		2	0.	1	31	97	11
C D	778		0	7 3	0 4	15 8	52 16	62 16		1 2	0.	1	24	177	1
E	786		1	2	0	3	1	5		1	20.	1	149 81	89 7026	98
F	789		5	5	19	14	41	12		12	19 .	4	94	11	0 71
G	792	В	26	30	92	58	196	78		20	4.	7	72	4	56
H	796		0	3	0	10	23	33		1	8.	1	59	267	30
I	805		9	11	29	31	102	65		10	9.	3	68	21	43
J	811		7	4	17	10	38	17		18	28 .	4	105	10	82
K	817 818		3 5	6 6	15	5	46	21		5	12.	1	59	73	41
M	823		88	33	15 195	5 63	22 305	21 51	•	1 83	8 . 0 .	1 14	40	75	23
		-50		n=0=0		33	555	٥.	•	05	υ.	14	35	1	25

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		ANAR 00 HZ		JANAR 00 HZ			CICAL KE		ZONTAL EET	CONDUC	
											DEPTH*		DEPTH	RESIS	DEPTH
FII	O/INTE	ERP	PPM	PPM	PPM	PPM	PPM	PPM	-•	MHOS	М	. MHOS	М	OHM-M	М
		27	/=	ar roum	211				•			•			
	NE 832	37 D	6	FLIGHT	21) 24	13	42	16	•	19	17	• • 5	102	8	80
			٠	-	24	13	42	10	•	13	. ,		102	0	80
L	INE 3	382	(E	LIGHT	21)										
A	737	В	3	7	9	16	40	30		3	1	. 1	50	98	12
В	733	В	2	11	4	19	59	119		1	0	. 1	28	193	7
C	728		4	7	7	11	39	23		5	23		85	202	36
D	722		25	15	82	49	176	82		28	4		60		40
E	719		8	11	47	64	183	71		9	. 1		45	22	20
F G	711 704		3	3	12	14	46	24		7	23		84	43	49
Н	702		1	0 2	5	2 4	13 10	2 11		11	31 15		106 78	32 211	86 51
I	700		1	2	5	5	19	8		4	17		98	45	77
Ĵ	688		6	4.		3	30	3		34	13		80	1	77
_					(55)(5)	-	-		:	٠.			00	•	
L	INE	39	(F	LIGHT	21)										
A	119	В	1	3	3	6	24	22		2	0	. 1	53	199	27
В	121	В	2	3	1	5	16	21		1	2	. 1	57	346	25
С	126		1	4	6	5	12	58		1	0	. 1	18	828	0
E	130		17	26	66	84	251	118		10		. 2	30	21	8
F	133		17	17	40	38	111	42		13	6		66	16	44
G	141		24	11	94	40	158	26		44	0		39	2	27
I	147		2	2	10	8	33	12		6	11	. 1	65	40	49
J	150		24	15	94	50	171	53		32		. 7	41	3	28
K	154 158		1 4	1 6	8	3	12	10		1	26		71	112	49
М	171		2	9	14 14	14 22	41 75	21 116		7 1	17 0	. 2	90 23	37 126	57 4
N	172		2	9	14	22	75	116		4	1		69	36	38
ō	182		0	1	0	3	14	19		1	13		61	446	27
P	185		1	1	0	1	8	16		1	11	. 1	66	773	26
														1000000	
L	INE	40	(I	LIGHT	20)										
	1959		2	5	5	9	32	41		3	14	. 1	86	111	39
	1963		1	3	2	4	12	23		1	11		54	579	21
	1970		3	3	9	7	28	10		8		. 2	111	36	77
	1974		14	13	40	44	152	57		12		. 3	53	17	31
	1977		20	5	63	44	152	19		32		. 7	52	3	37
	1981 1982		25 44	23 23	144 144	53 53	249 249	131 131		40 54		. 7	47 46	4	34
	1984		44	15	17	16	53	54		2	0	. 9	53	2 31	34
	1990		181	103	394	273	816	191		47	0	. 9	20	2	39 11
	1994		65	45	167	118	362	176		31	Ö	. 44	23	1	19
															(0.00)

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
A	IOMAT.	7/1	REAL.	OLIAD	REAL.	מעוזס	DEAT.	OTTAD	•	COND	DEPTH*.	COND	DE DALT	DECTO	DEDWA
				PPM						MHOS		MHOS		OHM-M	M
L	INE	40	(F	LIGHT					•						
	1996		106	45	269		362	196		67	0.			2	15
	2002		76	41	163	125	454	106		34	0.		32	3	20
	2006		1	4	8	18	57	34		3	7.		202	938	42
	2016 2018		3	6 6	8	17 17	28	70		3	11 .		111	45	76
	2010	Б	3	0	0	17	71	72	•	2	3.	1	42	96	24
L	INE	41	(F	LIGHT	20)	1			•		•				
	1923		1	1	2	2	11	3	:	7	47 .	1	97	342	63
В	1918	В	8	8	17	14	49	33		11	19 .		87	25	60
C	1913	В	19	13	41	31	97	82		19	10 .		65	7	47
D	1903	В	102	23	257	101	251	88		102	0.	9	31	2	20
	1902		102	23	257	53	251	88	•	180	0.		29	1	19
	1899		54	35	20	99	278	83		11	0.		33	2	22
	1898		54	35	126	99	278	83		27	0.		26	4	12
	1892	1000	2	2	4	11	36	26		2	10 .		60	119	39
J.	1882	В	1	2	1	8	29	27	•	2	12 .	1	67	156	43
	INE	42	/15	TTCHE	201				•		•				
	1339		2	LIGHT	10	14	44	66	•	1	0.	1	35	169	13
	1345		12	9	38	19	84	74		22	13 .		95	56	56
	1355		10	5	2	13	49	74		8	28 .		54	764	0
	1358		0	4	2	8	30	58		1	0.		35	248	11
E	1377	В	1	2	1	4	19	31		1	0.		44	374	14
	INE	43		LIGHT			(2)		•						
	1305		0	1	1	2	6			1	9.		64	1030	23
	1299		2	5	2		55	76		1	0.		32	150	11
	1286 1278		2	1	5 1	1	7	2		41	69 .		187	12	156
	1276		U	1	- 1	3	15	17		1	19 .	1	79	325	46
	INE	44	(F	LIGHT	20)				•		•				
A	713		1	3	1	6	14	25	:	1	0.	1	56	442	22
В	716		0	5	0	8	24	37		1	8.	1	39	342	13
С	718	В	1	4	0	8	35	78		1	0 .	1	91	1035	0
D	722	В	1	6	3	17	69	84		1	0.	1	50	266	6
E	725		6	9	15	9	37	15		5	20 .	7.	68	60	49
F	727		7	9	15	18	63	63		7	12 .		82	31	52
G	739		1	2	5	4	13	5		6	46 .		158	39	118
H	751	В	1	8	2	18	65	68	•	1	0.	1	54	621	0
T.1	INE	45	/=	LIGHT	201	í			٠		•				
	681		25	19	20) 65	47	151	42	•	21	٠,			4.0	25
n	001	-	23	13	03	4/	151	43	•	21	2.	4	55	13	35

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

		XIAL 0 HZ		ANAR 0 HZ		CANAR 00 HZ					ZONTAL EET	CONDUC	
ANOMALY/ FID/INTERP												RESIS OHM-M	DEPTH M
LINE 45	(F	LIGHT	20)				:						
B 669 P	3	4	28	18		14						13	
C 662 B	1	1	0	2	7	16	•	1	6.	1	59	1029	19
LINE 46	(F	LIGHT	20)				:		:				
A 100 B	ò	11	0	16	50	118		1	0.	1	18	257	0
В 104 В	3	10	8	28	117	160		2	0.	1	30	151	0
C 107 B	2	10	0	14	50	129		1	0.		31	135	11
D 110 B	1	5	4	12	46	69			0.		29	150	8
E 117 B F 121 P	2	5 4	4 8	13 14	45 46				6. 16.		50 59	73 90	32 22
G 127 B	7	9		25	87				8.			29	49
J 136 B	16	27	0	2	7				2.		201	1035	0
L 211 L?	0	7	1	1	2				0.		210	1035	0
							•						
LINE 47		LIGHT				22	•		•				
A 3002 P C 3010 D		6 17	9 33	13 43	44 130	27 53		4 8	11 . 7 .		87 60	140	38
	- 11	17	33	43	130	55	•	0	<i>'</i> •		60	55	27
LINE 49	(F	LIGHT	19)				:		:				
B 2511 B		10	25	9	63	22		23	1.	6	71	5	52
C 2517 B	40	14	381	14	106	69	•	639	0.	19	49	1	41
T.T.W. 50	(17)	T T C 11 M	101				•		•				
LINE 50 A 2317 E		LIGHT 5	19) 29	3	31	17	•	68	ο.	8	79	2	61
B 2312 B	33	21	62	24	102	44		33	7.		79 57	3 1	61 51
		75.00	-					-			5,		3.
LINE 51	(F	LIGHT	19)				•						
в 1898 в	17	5	37		72	28		55	11 .		68	1	54
D 1903 B	100	40	187	89	350	71	٠	62	0.	11	31	1	21
LINE 52	(F	T.TGHT	19)				•		•				
A 1748 B			33	32	139	81	•	13	3.	4	59	9	39
В 1747 В		9	14	11	51	39		2	0.		29	19	17
							•						
LINE 53		LIGHT			27272		٠						
A 1340 B B 1345 B		29 66		66	228	62		21	0.		53	3	40
В 1345 В	1/3	00	253	151	510	171	•	64	0.	9	18	2	8
LINE 54	(F	LIGHT	19)				:		•				
A 1138 E		26	(*)	83	325	71		24	ο.	6	31	1	27
С 1133 В	152	80		159		196		44	0.		20	1	12

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

			9700	XIAL 00 HZ		ANAR 00 HZ		LANAR 00 HZ			CICAL .		ZONTAL EET	CONDUC	
FI		ERP									DEPTH*.	MHOS		RESIS OHM-M	
L	INE	54	(F	LIGHT	19)				:		•				
			163	72	344	203	753	196	•	59	0.	11	18	1	9
	INE		(F	LIGHT	19)				•						
				109			486	345		46	0.	5	19	5	7
			,_		401				•		•				
	INE 587			LIGHT	19) 69		56	43	•	06	4.	25	16		20
				23				85		96 4 8	0.		46 27		39 25
				54		100		85		54	0.			6	15
											•				
	INE		(F	LIGHT			-	200	•						
	125		9				32	13		97	20 .		1.51.51		71
				0				1		49	17.		52	8	42
	134		121	24	213	43	298	72	•	195	0.		28	1	23
L	INE	58	(F	LIGHT	18)				•		•				
	2900		41	7	148		190	10	:	185	0.	5	43	1	38
В	2904	В	120	43	211	70	362	60		89	0.	10	34	2	23
									•						
	INE			LIGHT	- 12				•	_	1.			(1)	12010
7	2784				2		172	68		2		55.5		75	33
	2781			27 45	92 92	56 38	172 138	68 26		25 42	0.			4	43
				43	92	30	130	20	•	42		2	78	27	50
L	INE	60	(F	LIGHT	18)						1.5				
A	1811	D	38	4			56	8		344	0 .	30	77	1	70
В	1821	В	5	4	16	6	14	3		10	39 .	2	97	10	85
	1829		16	8	41	27	83	76	•	25	16.	3	63	16	42
	INE	61	/15	ar rerim	101				•		•				
	1643		7	LIGHT 7	18) 15	18	53	26	•	0	4.	۰	90	2	63
	1642		7	7	15	18	53	26 32		8	0.		80 38	3 11	63 27
	1641		13	7	130	46	203	31		55	0.		65	34	34
	1639		61	31	130	46	203	31		54	0.		46	4	31
									•		•				
	INE			LIGHT			20.0000	Sec. Vr	•		II				
	1037		77	16	64	21	88	34		113	0.	100	62	3	47
	1050 1053		2 7	8	33 31	25 26	80	41		12	11 .		52	107	15
_			,	0	31	20	16	40	•	12	14.		56	49	24
L	INE	632	(F	LIGHT	18)				:						
	909		8	4	22	6	27	8		40	7.	6	103	6	81

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

			-	AXIAL 00 HZ		SANAR 00 HZ		LANAR 00 HZ			rical ike	. HORI	ZONTAL EET		
			3.	00 112	30	00 112	120	00 112	•	υ.	LKE	• 5n	CEI	EAR	. n
											DEPTH*				DEPTH
FI	D/INT	ERP	PPM	PPM	PPM	PPM	PPM	PPM	•	MHOS	М	. MHOS	М	OHM-M	М
-	TNE	622	/1	ar roum	1 101				•			•			
William .		632		rLIGHT			70	•	٠	457		•			
B C			49 3	3 11	61 11	8 23	78 71	8 57		457 3	4		77	1	64
E			4	11	11	19	69	52		3	11 9		67 37	4 9 6 2	35 22
_			•	• • •		.,	0,5	32	•	3	,	• •	37	02	22
L	INE	64	(F	LIGHT	18)	ì			:			•			
В	162		68	58	93	88	310	208		21	0	. 4	35	-11	17
C	167	В	127	18	137	17	178	11		330	0		62	2	47
D	173	В	8	8	33	24	63	27		14	19		67	11	47
G	181	В	2	11	6	21	92	82		2	2	. 1	43	183	5
-									•						
	INE	65		LIGHT					٠			•			
Α			55	13	65	20	87	21		98	0		61	6	43
В			8	29	15	46	156	122		3	0		32	77	4
С	119	В	4	3	7	5	19	24	٠	1	18	. 1	54	105	35
-	TNE		/=		161				•			•			
В	INE 907	66	28	LIGHT 2	16) 63	3	75	32	٠	-		٠.,		40	42
c			60	2	80	20	96	16		6 324	4		59 46	42	43
D			68	15	120	24	164	30		153	5		62	1	43 50
E			9	22	22	46	145	61		4	0		47	61	15
F			7	34	22	66	294	269		3	0	. 1	26	70	0
_			2		.555.550									,,	·
L	INE	67	(F	LIGHT	16)										
A	758	В	38	11	71	16	89	18		94	0	. 39	50	1	45
В			53	11	71	16	89	10		130	0	. 4	94	9	73
C			3	9	4	15	36	94		1	0	. 1	23	235	2
E	741	В	6	19	15	27	107	181	•	1	0	. 1	25	66	10
-								700	•			•			
	INE	68		LIGHT					•						
A			19	12	32	23	91	41		20	9		59	18	36
	162		0	6		13	45	94		1	0		21	196	1
С	167	5	0	5	0	13	37	76	٠	1	0	. 1	17	328	0
_	INE		/15	T T CUM	15				•			•			
	2911		0	LIGHT	15)	8	26	44	•	1	2	. 1	18	470	0
			U	•	U	O	20	**	٠	11.	2	• '	18	470	U
	INE		(F	LIGHT	15)				•			•			
	2879			13	5		51	116	:	1	0	. 1	36	929	0

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
FII	NOMAL!	Y/ I ERP	REAL PPM	QUAD PPM	REAL PPM					COND MHOS		COND MHOS		RESIS OHM-M	DEPTH M
L	INE	23	(F	LIGHT	6)	1			:		•				
A	1358		7		7		21	24		1	12 .	1	74	71	54
В	1364	В	3	3	7	5	17	24	•	1	8.	1	75	73	54
T.	INE	24	(F	LIGHT	23)				•		•				
A	20200		2	9	5	13	52	50	•	2	8.	1	86	87	45
В	413		3		4	3	6	9		7	37 .	3	150	24	116
									•						
-	INE	25		LIGHT				12127	•	_		=			
A B	505 497		3	15 4	4	23	85	81		2	0.	1	59	202	15
C	489		2	3	5 5	6 3	23 6	15 10		5 1	23 . 1 .	2 1	104 83	56 609	64
			-	3	3	3	·	10	:	'		1	63	609	39
L	NE	26	(F	LIGHT	11)				:						
A	423	В	3	2	2	8	46	47		. 2	7.	1	47	115	27
В	429	D	49	45	104	98	315	168	٠	19	0.	3	30	18	9
C	440	В	8	21	19	45	147	110		4	0.	1	44	58	14
D			2	7	5	12	45	1		2	13 .	1	78	242	29
E	458	P	3	1	2	3	7	12	•	9	37 .	1	122	440	32
T.1	IND	27	/=	T T CITM	441				•		•				
A	INE 561	27 B	(F 2	LIGHT 7	11) 3	10	34	24	•	2	•		2.7	100	•
В	555		47	26	63	49	143	24 48		28	0.	1	27 46	190 1 3	2
c	550		10	8	60	7	32	58		66	16.	2	88	39	26 54
D	545		1	5	4	16	73	91		2	0.	1	31	74	15
E	537		2	8	4	11	39	44		1	0.	i	42	172	18
F	526	P	1	3	2	7	18	12		2	13 .	1	78	393	42
G	523	В	5	3	7	5	15	12	•	13	25 .	2	111	48	74
т.т	NE	28	/ F	LIGHT	11)				•		•				
	1180		135	45	162	69	283	34	•	81	0.	11	39	1	29
	1193		5	18	32	30	112	87		7	3.	4	101	10	77
	1197		12	2	16	30	112	87		12	13 .	2	69	47	35
D	1200	В	12	2	16	3	17	143		1	0.	2	83	9	72
E	1208	В	38	66	58	116	393	245		8	0.	2	33	34	11
	1216		5	4	8	6	13	31		10	34 .	1	87	98	43
	1223		3	11	6	19	76	76		2	0.	1	45	104	11
	1229		5	13	13	36	124	66		3	0.	1	40	79	10
I	1244	В	6	5	12	10	27	15	•	10	32 .	2	99	28	71
	NE	20	,	T TOTTO					•		•				
	NE 1341	29 B		LIGHT	11)		100		•	40	•	_		-	
M	1341	Б	64	40	45	60	190	64	•	19	0.	8	36	3	23

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

ANOMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPTH*. COND DEPTH RESIS DEFID/INTERP PPM PPM PPM PPM PPM . MHOS M . MHOS M OHM-M LINE 29 (FLIGHT 11) B 1339 B 17 0 30 0 73 20 48 16 40 53 1	M 49 61 27 36 5
LINE 29 (FLIGHT 11)	61 27 36 5
	61 27 36 5
	61 27 36 5
C 1330 B 8 7 14 5 22 7 . 16 11 . 2 91 30	27 36 5
D 1320 B 28 13 55 34 66 56 . 31 3 . 4 44 9	5
E 1318 B 15 16 55 34 60 56 . 18 6 . 3 58 17	
F 1311 B 5 8 10 8 32 47 . 1 0 . 1 24 111	20
G 1307 B 9 13 26 38 107 87 . 7 5 . 2 50 47	20
H 1302 D 35 19 71 34 116 27 . 35 0 . 4 46 11	26
LINE 30 (FLIGHT 11)	
A 1981 L 8 16 6 2 44 40 . 5 15 . 1 97 299	41
B 1989 B 109 55 147 91 248 181 . 44 0 . 3 46 13	26
C 1991 B 109 55 147 91 248 181 . 44 3 . 12 41 1	32
D 1996 B 139 31 233 74 366 52 . 135 0 . 18 29 1	21
E 2005 B 10 9 38 17 62 36 . 21 18 . 3 100 22	72
F 2012 D 73 55 108 88 285 118 . 25 1 . 4 35 11	18
G 2016 B 33 32 66 63 214 111 . 16 0 . 4 49 10 H 2020 B 10 18 40 25 69 147 . 11 9 . 2 79 37	31
H 2020 B 10 18 40 25 69 147 . 11 9 . 2 79 37 I 2029 B 35 8 3 10 36 107 . 1 0 . 1 26 136	47
J 2033 B 35 22 67 49 165 48 . 25 0 . 2 53 35	6 24
K 2037 B 16 5 53 49 165 15 20 10 9 82 2	67
L 2050 B 27 24 46 45 120 50 . 15 0 . 3 52 20	27
	1,550,000
LINE 303 (FLIGHT 11)	
A 2134 D 36 23 56 43 151 69 . 24 3 . 3 52 15	31
B 2128 B 26 20 47 29 98 82 . 21 5 . 2 51 31	24
C 2126 B 26 25 28 44 116 200 . 11 10 . 3 47 14 D 2122 B 21 17 23 32 116 111 . 2 0 . 1 21 44	27
	8
F 2116 B 5 3 8 8 18 12 . 2 15 . 1 43 93 G 2107 B 1 5 2 5 21 41 . 1 0 . 1 29 135	25 8
H 2104 D 40 17 86 43 137 41 . 42 0 . 5 57 7	39
J 2099 B 8 12 21 15 53 46. 9 17. 1 52 137	15
K 2094 B 7 19 24 44 156 136 . 5 0 . 2 41 45	13
LINE 31 (FLIGHT 22)	
A 1960 D 59 18 82 29 116 37. 74 0. 5 35 8 B 1951 D 7 6 13 7 22 20. 13 13. 2 92 36	16
B 1951 D 7 6 13 7 22 20 . 13 13 . 2 92 36 C 1944 D 25 23 49 31 103 66 . 19 0 . 2 41 24	59 16
D 1939 B 7 5 40 9 32 46 43 20 2 72 49	37
E 1934 B 2 9 5 18 79 81 . 2 0 . 1 30 63	15
F 1927 E 2 6 4 8 26 25 . 1 0 . 1 56 81	36
G 1918 P 1 3 3 1 6 4. 1 0. 2 81 15	67

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

ANOMALY/ REAL QUAD REAL QUAD REAL QUAD REAL QUAD . COND DEPTH*. COND DEPTH RESIS DEPTH FID/INTERP PPM PPM PPM PPM PPM PPM MMOS M . MMOS M . OMMOM M . MMOS . M . OMMOM M . MMOS . M . MMOS . M . OMMOM M . MMOS . M . MMOS . M . OMMOM M . MMOS . M . MMOS . M . OMMOM M . MMOS . M . MMOS . M . OMMOM M . MMOS . M . MMOS . M . OMMOM M . OMMOM M . MMOS . M . OMMOM M . MMOS					AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			FICAL IKE			ZONTAL EET	CONDUC	
FID_INTERPR PPM PPM PPM PPM PPM PPM MHOS M MHOS M OHM—M M N																	
LINE 32 (FLIGHT 22) A 1802 S 1 3 1 5 16 40 1 0 1 21 673 0 B 1818 D 70 39 153 97 307 82 37 0 5 32 5 18 C 1822 B 31 14 153 24 155 38 118 0 10 61 2 48 D 1827 B 7 9 26 21 74 13 11 0 2 88 37 56 E 1837 D 11 18 18 25 74 33 6 12 2 79 49 44 F 1846 B 1 3 7 8 30 21 2 5 1 55 60 37 G 1849 D 45 32 70 51 159 58 24 1 2 4 7 27 21 I 1854 B 9 3 26 18 39 37 22 22 3 81 17 56 J 1861 B 1 5 2 14 61 122 1 0 1 2 20 3 81 K 1867 B 3 10 11 25 121 60 3 0 1 1 47 149 8 L 1871 B 1 8 7 7 10 26 13 3 16 1 47 149 8 L 1871 B 1 8 7 7 10 26 13 3 16 1 1 47 149 8 L 1871 B 1 8 7 7 10 26 13 3 16 1 1 7 7 14 0 D 1338 D 13 6 10 6 14 8 26 11 3 104 15 76 E 1330 D 20 26 19 22 55 36 9 0 2 2 72 45 F 1322 B 14 15 13 26 70 32 77 5 1 8 8 6 3 60 19 36 H 1319 B 8 7 24 23 44 7 19 8 8 1 6 3 60 19 36 H 1319 B 8 7 24 23 44 7 19 8 8 1 6 3 60 19 36 H 1310 B 8 7 24 23 44 7 19 8 8 1 6 3 60 19 36 H 1310 B 8 7 24 23 44 7 19 8 8 1 6 3 5 60 19 36 H 1310 B 8 7 24 23 44 7 19 8 8 1 6 3 5 60 19 36 H 1310 B 8 7 24 23 44 7 19 8 8 1 6 3 60 19 36 H 1310 B 8 7 24 23 44 7 19 8 8 1 6 3 5 60 19 36 H 1310 B 8 7 24 23 44 7 19 8 8 1 6 3 5 60 19 36 H 1310 B 8 7 24 23 44 7 19 8 8 1 63 35 48 I 1312 S7 0 2 1 4 12 18 1 1 4 1 22 884 J 1309 B 10 22 28 79 260 175 5 0 1 27 65 1 K 1303 B 2 5 4 9 31 46 27 5 5 3 49 17 27 F 1077 B 12 18 20 31 46 27 8 8 0 4 55 1 38 9 76 D 1068 E 2 5 15 14 46 37 6 6 26 1 78 17 16 4 98 9 76 D 1068 E 2 5 15 14 46 37 6 6 26 1 78 17 18 17 33 E 1075 B 12 18 20 31 46 22 8 7 5 3 3 49 17 27 F 1077 B 12 18 26 31 46 27 8 8 0 4 55 10 35 10 35 G 1084 B 2 0 11 5 20 20 1 1 0 1 15 158 28 LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 0 1 1 22 674 0 D 569 D 14 7 7 4 16 14 1 22 0 0 1 1 121 98 68 E 560 D 14 7 7 4 16 14 1 22 0 0 1 1 59 157 10								REAL				DEPTH*	•	COND	DEPTH	RESIS	DEPTH
LINE 32 (FLIGHT 22) A 1802 S	FI	D/INTI	ERP	PPM	PPM	PPM	PPM	PPM	PPM	•	MHOS	M	•	MHOS	М	OHM-M	M
A 1802 S	-	TNE		/*	ar roum	221				٠			•				
B 1818 D 70 39 153 97 307 82 . 37 0 . 5 32 5 18 C 1822 B 31 14 153 24 155 38 . 118 0 . 10 61 2 48 D 1827 B 7 9 26 21 74 13 . 11 0 . 2 88 37 56 E 1837 D 11 18 18 25 74 33 . 6 12 . 2 79 49 44 F 1846 B 1 3 7 8 30 21 . 2 5 . 1 55 60 37 G 1849 D 45 32 70 51 159 58 . 24 1 . 2 47 27 21 I 1854 B 9 3 26 18 39 37 . 22 22 . 3 81 17 56 J 1861 B 1 5 2 14 61 122 . 1 0 . 1 25 203 5 K 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22 LINE 33 (FLIGHT 22) A 1363 S 0 5 0 10 22 83 1 0 . 1 47 192 22 LINE 33 (FLIGHT 22) A 1363 S 0 5 6 62 173 64 . 14 0 . 3 16 17 0 D 1338 D 13 6 10 6 14 8 . 26 1 . 3 104 15 76 E 1330 D 20 26 19 22 55 36 . 9 0 . 2 72 27 45 F 1322 B 14 15 13 26 70 32 . 7 5 . 2 57 25 31 G 1321 B 14 15 15 26 28 11 . 8 6 . 3 60 19 36 H 1319 B 8 7 24 23 44 7 . 19 8 . 1 63 35 48 I 1312 S? 0 2 1 4 12 18 . 1 4 . 1 22 844 I 1319 S 0 10 22 28 79 260 175 . 5 0 . 1 27 65 1 K 1303 B 2 5 4 9 31 38 . 1 0 . 1 22 884 I 1319 S 0 13 7 13 11 32 9 . 17 16 . 4 98 9 76 D 1068 E 2 5 15 15 14 46 37 . 6 26 . 1 78 0 . 1 27 65 1 K 1303 B 2 5 4 9 31 38 . 1 0 . 1 17 7 33 C 1076 B 12 18 26 31 46 28 . 7 5 . 3 49 177 33 C 1077 B 12 18 26 31 46 28 . 7 5 . 3 49 177 33 C 1084 B 2 0 11 5 20 20 . 1 1 0 . 1 51 158 28 LINE 35 (FLIGHT 22) LINE 35 (FLIGHT 22) A 1068 E 2 5 15 14 46 37 . 6 26 . 1 78 17 33 C 1077 B 12 18 26 31 46 28 . 7 5 . 3 49 177 33 C 1077 B 12 18 26 31 46 27 . 8 0 . 4 55 10 35 C 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28 LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 . 1 0 0 . 1 180 8280 0 D 569 D 14 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 7 7 4 16 14 . 22 0 . 1 15 5 15 17								16	40	•		•	•		21	672	•
C 1822 B 31 14 153 24 155 38 . 118 0 . 10 61 2 48 D 1827 B 7 9 26 21 74 13 . 11 0 . 2 88 37 56 E 1837 D 11 18 18 25 74 33 . 6 12 . 2 79 49 44 F 1846 B 1 3 7 8 30 21 . 2 5 . 1 55 60 37 G 1849 D 45 32 70 51 159 58 . 24 1 . 2 47 27 21 I 1854 B 9 3 26 18 39 37 . 22 22 . 3 81 17 56 J 1861 B 1 5 2 14 61 122 . 1 0 . 1 25 203 5 K 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22 LINE 33 (FLIGHT 22) A 1363 S 0 5 0 10 22 83 . 1 0 . 1 16 628 0 B 1348 D 40 45 56 62 173 64 . 14 0 . 3 16 17 0 D 1338 D 13 6 10 6 14 8 . 26 1 . 3 104 15 76 E 1330 D 20 26 19 22 55 36 . 9 0 . 2 72 27 45 E 1322 B 14 15 13 26 70 32 . 7 5 . 2 57 25 31 G 1321 B 14 15 15 26 28 11 . 8 6 . 3 60 19 36 H 1319 B 8 7 24 23 44 7 . 19 8 . 1 63 35 48 H 1319 B 8 7 24 23 44 7 . 19 8 . 1 63 35 H 1310 S 2 5 4 9 31 38 . 1 0 . 1 22 884 0 J 1309 B 10 22 28 79 260 175 . 5 0 . 1 27 65 1 K 1303 B 2 5 4 9 31 38 . 1 0 . 1 17 714 0 B 1023 D 27 23 46 41 121 40 . 17 0 . 2 49 31 21 C 1036 D 13 7 13 11 32 9 . 17 58 . 1 0 . 1 17 714 0 B 1023 D 27 23 46 41 121 40 . 17 0 . 2 49 31 21 C 1036 D 13 7 13 11 32 9 . 17 16 . 4 98 9 76 D 1068 E 2 5 15 14 46 37 . 6 26 . 1 78 177 35 G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28 LINE 35 (FLIGHT 22) LINE 35 (FLIGHT 22) LINE 36 (FLIGHT 22) LINE 37 (FLIGHT 22) LINE 38 (FLIGHT 22) LINE 39 (FLIGHT 22) LINE 30 (FLIGHT 22) LINE 34 (FLIGHT 22) LINE 35 (FLIGHT 22) LINE 36 (FLIGHT 22) LINE 37 (FLIGHT 22) A 1068 B 2 0 11 5 20 20 . 1 0 . 1 17 714 0 B 1023 D 27 23 46 41 121 40 . 17 0 . 2 49 31 21 C 1036 D 13 7 13 11 32 9 . 17 16 . 4 98 9 76 D 1068 E 2 5 15 14 46 37 . 6 26 . 1 78 177 33 E 1075 B 12 18 26 31 46 27 . 8 0 . 4 55 10 35 G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28 LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 0 1 122 674 0 D 569 D 14 7 7 4 16 14 22 0 . 1 121 98 68 E 560 D 14 7 7 4 16 14 22 0 . 1 121 98 68 E 560 D 14 7 7 4 16 14 22 0 . 1 121 98 68 E 560 D 14 7 7 4 16 14 22 0 . 1 121 98 68 E 560 D 14 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 7 5 4 16 17 5 0 .																	
D 1827 B 7 9 26 21 74 13 . 11 0 . 2 88 37 56 E 1837 D 11 18 18 25 74 33 . 6 12 . 2 79 49 44 17 1846 B 1 3 7 8 30 21 . 2 5 . 1 55 60 37 G 1849 D 45 32 70 51 159 58 . 24 1 . 2 47 27 21 I 1854 B 9 3 26 18 39 37 . 22 22 . 3 81 17 56 J 1861 B 1 5 2 14 61 122 . 1 0 . 1 25 203 5 K 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22 LINE 33 (FLIGHT 22) A 1363 S 0 5 0 10 22 83 . 1 0 . 1 16 628 0 B 1348 D 40 45 56 62 173 64 . 14 0 . 3 16 17 0 D 1338 D 40 45 56 62 173 64 . 14 0 . 3 16 17 0 D 1338 D 13 6 10 6 14 8 . 26 1 . 3 104 15 76 E 1330 D 20 26 19 22 55 36 . 9 0 . 2 72 27 45 F 1322 B 14 15 13 26 70 32 . 7 5 . 2 57 25 31 G 1321 B 14 15 15 26 28 11 . 8 6 . 3 60 19 36 H 1319 B 8 7 24 23 44 7 . 19 8 . 1 63 35 48 I 1312 S? 0 2 1 4 12 18 . 1 8 . 1 63 35 48 I 1312 S? 0 2 1 4 12 18 . 1 8 . 1 63 35 48 I 1312 S? 0 2 1 4 12 18 . 1 8 . 1 63 35 48 I 1312 S? 0 2 1 4 12 18 . 1 4 . 1 22 884 0 J 1309 B 10 22 28 79 260 175 . 5 0 . 1 27 65 1 LINE 34 (FLIGHT 22) LINE 35 (FLIGHT 22) LINE 36 (FLIGHT 22) LINE 37 (FLIGHT 22) LINE 38 (FLIGHT 22) LINE 39 (FLIGHT 22) LINE 39 (FLIGHT 22) LINE 30 (FLIGHT 22) LINE 3																	
E 1837 D 11 18 18 25 74 33 . 6 12 . 2 79 49 44 F 1846 B 1 3 7 8 30 21 . 2 5 . 1 55 60 37 G 1849 D 45 32 70 51 159 58 . 24 1 . 2 47 27 27 I 1854 B 9 3 26 18 39 37 . 22 22 . 3 81 17 56 J 1861 B 1 5 2 14 61 122 . 1 0 . 1 25 203 5 K 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22 LINE 33 (FLIGHT 22) LINE 33 (FLIGHT 22) L 1 333 D 13 6 10 6 14 8 . 26 1 . 3 104 15 76 E 1330 D 20 26 19 22 55 36 . 9 0 . 2 72 27 45 F 1322 B 14 15 13 26 70 32 . 7 5 . 2 57 25 31 G 1321 B 14 15 15 26 28 11 . 8 6 . 3 60 19 36 H 1319 B 8 7 24 23 44 7 . 19 8 . 1 63 35 48 I 1312 S? 0 2 1 4 12 18 . 1 4 . 1 22 884 I 1312 S? 0 2 1 4 12 18 . 1 4 . 1 22 884 I 1313 B 2 5 5 4 9 31 38 . 1 0 . 1 27 65 1 K 1303 B 2 5 5 1 3 14 6 27 . 5 0 . 1 27 65 1 LINE 34 (FLIGHT 22) LINE 35 (FLIGHT 22) LINE 36 (FLIGHT 22) LINE 37 (FLIGHT 22) LINE 37 (FLIGHT 22) LINE 38 (FLIGHT 22) LINE 39 (FLIGHT 22) LINE 38 (FLIGHT 22) LINE 39 (FLIGHT 22) LINE 3																	
F 1846 B 1 3 7 8 30 21 . 2 5 . 1 55 60 37 G 1849 D 45 32 70 51 159 58 . 24 1 . 2 47 27 21 1 1854 B 9 3 36 18 39 37 . 22 22 . 3 81 17 56 J 1861 B 1 5 2 14 61 122 . 1 0 . 1 25 203 5 K 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22																	
G 1849 D 45 32 70 51 159 58 . 24 1 . 2 47 27 21 I 1854 B 9 3 26 18 39 37 . 22 22 . 3 81 177 56 X 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22 LINE 33 (FLIGHT 22)																	
I 1854 B 9 3 26 18 39 37 . 22 22 . 3 81 17 56 J 1861 B 1 5 2 14 61 122 . 1 0 . 1 25 203 5 K 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22	G	1849	D	45	32	70	51	159	58		24	1		2			
K 1867 B 3 10 11 25 121 60 . 3 0 . 1 47 149 8 L 1871 B 1 8 7 10 26 13 . 3 16 . 1 47 192 22				9	3		18	39	37		22	22			81	17	
L 1871 B								61			1	0		1	25	203	5
LINE 33 (FLIGHT 22) A 1363 S														1		149	8
LINE 33 (FLIGHT 22) A 1363 S 0 5 0 10 22 83 1 1 0 1 1 16 628 0 B 1348 D 40 45 56 62 173 64 14 0 3 16 17 0 D 1338 D 13 6 10 6 14 8 26 1 3 104 15 76 E 1330 D 20 26 19 22 55 36 9 0 2 72 27 45 F 1322 B 14 15 13 26 70 32 7 5 2 57 25 31 G 1321 B 14 15 15 26 28 11 8 6 3 60 19 36 H 1319 B 8 7 24 23 44 7 19 8 1 163 35 48 I 1312 S? 0 2 1 4 12 18 1 1 4 1 122 8 1 0 1 17 714 0 B 1023 D 27 23 46 41 121 40 17 0 1 17 714 0 B 1023 D 27 23 46 41 121 40 17 0 2 49 31 21 C 1036 D 13 7 13 11 32 9 17 16 4 98 9 76 D 1068 E 2 5 15 14 46 37 6 26 1 7 8 0 4 98 9 76 D 1068 E 2 5 15 14 46 37 6 26 6 1 7 8 177 33 E 1075 B 12 18 26 31 46 28 7 5 3 3 49 17 27 F 1077 B 12 18 26 31 46 27 8 0 4 55 10 35 G 1084 B 2 0 11 5 20 20 1 0 1 0 1 18 8280 D 1569 D 14 7 7 4 16 14 22 0 1 1 13 10 13 10 13 C 583 S 1 3 0 5 16 41 1 0 1 22 674 0 D 569 D 14 7 7 4 16 14 22 0 1 1 21 98 68 E 560 D 14 7 7 7 4 16 14 22 0 1 1 53 157 10	L	1871	В	1	8	7	10	26	13	٠	3	16	•	1	47	192	22
A 1363 S 0 5 0 10 22 83 . 1 0 . 1 16 628 0 B 1348 D 40 45 56 62 173 64 . 14 0 . 3 16 17 0 D 1338 D 13 6 10 6 14 8 . 26 1 . 3 104 15 76 E 1330 D 20 26 19 22 55 36 . 9 0 . 2 72 27 45 F 1322 B 14 15 13 26 70 32 . 7 5 . 2 57 25 31 G 1321 B 14 15 15 26 28 11 . 8 6 . 3 60 19 36 H 1319 B 8 7 24 23 44 7 . 19 8 . 1 63 35 48 I 1312 S? 0 2 1 4 12 18 . 1 4 . 1 22 884 0 J 1309 B 10 22 28 79 260 175 . 5 0 . 1 27 65 1 K 1303 B 2 5 4 9 31 38 . 1 0 . 1 22 884 0 J 1309 B 10 22 28 79 260 175 . 5 0 . 1 27 65 1 K 1303 B 2 5 4 9 31 38 . 1 0 . 1 30 268 4	-									•			•				
B 1348 D 40 45 56 62 173 64 14 0 3 16 17 0 D 1338 D 13 6 10 6 14 8 26 1 3 104 15 76 E 1330 D 20 26 19 22 55 36 9 0 2 72 27 45 F 1322 B 14 15 13 26 70 32 7 5 2 57 25 31 G 1321 B 14 15 15 26 28 11 8 6 3 60 19 36 H 1319 B 8 7 24 23 44 7 19 8 1 63 35 48 I 1312 S? 0 2 1 4 12 18 1 4 1 1 22 884 0 J 1309 B 10 22 28 79 260 175 5 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 2 1 30 268 4									00	•			•				
D 1338 D 13 6 10 6 14 8 26 1 3 104 15 76 E 1330 D 20 26 19 22 55 36 9 0 2 72 27 45 F 1322 B 14 15 13 26 70 32 7 5 2 57 25 31 G 1321 B 14 15 15 26 28 11 8 6 3 60 19 36 H 1319 B 8 7 24 23 44 7 19 8 1 63 35 48 I 1312 S? 0 2 1 4 12 18 1 4 1 22 884 0 J 1309 B 10 22 28 79 260 175 5 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 0 1 30 268 4 LINE 34 (FLIGHT 22) A 1006 S 1 4 1 17 7 17 58 1 0 0 1 17 714 0 B 1023 D 27 23 46 41 121 40 17 0 2 49 31 21 C 1036 D 13 7 13 11 32 9 17 16 4 98 9 76 D 1068 E 2 5 15 14 46 37 6 26 1 78 177 33 E 1075 B 12 18 26 31 46 28 7 5 3 49 17 27 F 1077 B 12 18 26 31 46 27 8 0 4 4 55 10 35 G 1084 B 2 0 11 5 20 20 1 0 1 51 158 28 LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 1 1 1 180 8280 0 B 591 L 2 4 12 8 1 9 7 19 4 174 11 143 C 583 S 1 3 0 5 16 41 1 1 0 1 22 674 D 569 D 14 7 7 7 4 16 14 22 0 1 1 22 674 D 569 D 14 7 7 7 4 16 14 22 0 1 1 22 19 8 68 E 560 D 14 7 7 7 4 16 14 22 0 1 1 21 98 68 E 560 D 14 7 7 7 4 16 14 22 0 1 1 21 98 68 E 560 D 14 7 7 7 4 16 14 22 0 1 1 21 19 8 68 E 560 D 14 7 7 7 4 16 14 22 0 1 1 53 157 10																	
E 1330 D 20 26 19 22 55 36 9 0 2 72 27 45 F 1322 B 14 15 13 26 70 32 7 5 2 57 25 31 G 1321 B 14 15 15 26 28 11 8 6 3 60 19 36 H 1319 B 8 7 24 23 44 7 19 8 1 63 35 48 I 1312 S? 0 2 1 4 12 18 1 4 1 22 884 0 J 1309 B 10 22 28 79 260 175 5 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 30 268 4 LINE 34 (FLIGHT 22) A 1006 S 1 4 1 7 17 58 1 0 1 17 0 2 49 31 21 C 1036 D 13 7 13 11 32 9 17 16 4 98 9 76 D 1068 E 2 5 15 14 46 37 6 26 1 78 17 33 E 1075 B 12 18 20 31 46 27 8 0 4 9 1 7 27 F 1077 B 12 18 26 31 46 27 8 0 4 55 10 35 G 1084 B 2 0 11 5 20 20 1 0 1 51 158 28 LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 1 1 180 8280 0 B 591 L 2 4 12 8 1 9 7 19 4 174 11 143 C 583 S 1 3 0 5 16 41 1 1 0 1 22 674 0 D 569 D 14 7 7 4 16 14 22 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	
F 1322 B 14 15 13 26 70 32 . 7 5 . 2 57 25 31 G 1321 B 14 15 15 26 28 11 . 8 6 . 3 60 19 36 H 1319 B 8 7 24 23 44 7 . 19 8 . 1 63 35 48 I 1312 S7 0 2 1 4 12 18 . 1 4 . 1 22 884 0 J 1309 B 10 22 28 79 260 175 . 5 0 . 1 27 65 1 K 1303 B 2 5 4 9 31 38 . 1 0 . 1 30 268 4																	
G 1321 B 14 15 15 26 28 11 8 6 3 60 19 36 H 1319 B 8 7 24 23 44 7 19 8 1 6 3 35 48 I 1312 S? 0 2 1 4 12 18 1 4 1 1 22 884 0 J 1309 B 10 22 28 79 260 175 5 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 30 268 4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	
H 1319 B																	
I 1312 S? 0 2 1 4 12 18 1 4 1 22 884 0 J 1309 B 10 22 28 79 260 175 5 0 1 27 65 1 K 1303 B 2 5 4 9 31 38 1 0 1 0 1 30 268 4 LINE 34 (FLIGHT 22) A 1006 S 1 4 1 7 17 58 1 0 1 17 714 0 B 1023 D 27 23 46 41 121 40 17 0 2 49 31 21 C 1036 D 13 7 13 11 32 9 17 16 4 98 9 76 D 1068 E 2 5 15 14 46 37 6 26 1 78 177 33 E 1075 B 12 18 20 31 46 28 7 5 3 49 17 27 F 1077 B 12 18 26 31 46 27 8 0 4 55 10 35 G 1084 B 2 0 11 5 20 20 1 0 1 51 158 28 LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 1 0 1 180 8280 0 B 591 L 2 4 12 8 1 9 7 19 4 174 11 143 C 583 S 1 3 0 5 16 41 1 0 1 0 1 22 674 0 D 569 D 14 7 7 4 16 14 22 0 1 1 21 98 68 E 560 D 14 7 17 7 4 16 14 22 0 1 1 53 157 10																	
J 1309 B 10 22 28 79 260 175 . 5 0 . 1 27 65 1 K 1303 B 2 5 4 9 31 38 . 1 0 . 1 30 268 4 LINE 34 (FLIGHT 22) A 1006 S 1 4 1 7 17 58 . 1 0 . 1 17 714 0 B 1023 D 27 23 46 41 121 40 . 17 0 . 2 49 31 21 C 1036 D 13 7 13 11 32 9 . 17 16 . 4 98 9 76 D 1068 E 2 5 15 14 46 37 . 6 26 . 1 78 177 33 E 1075 B 12 18 20 31 46 28 . 7 5 . 3 49 17 27 F 1077 B 12 18 26 31 46 27 . 8 0 . 4 55 10 35 G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28																	
K 1303 B 2 5 4 9 31 38 . 1 0 . 1 30 268 4	J	1309	В	10		28	79										
LINE 34 (FLIGHT 22) A 1006 S	K	1303	В	2	5	4											
A 1006 S																	
B 1023 D 27 23 46 41 121 40 . 17 0 . 2 49 31 21 C 1036 D 13 7 13 11 32 9 . 17 16 . 4 98 9 76 D 1068 E 2 5 15 14 46 37 . 6 26 . 1 78 177 33 E 1075 B 12 18 20 31 46 28 . 7 5 . 3 49 17 27 F 1077 B 12 18 26 31 46 27 . 8 0 . 4 55 10 35 G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28						22)				•							
C 1036 D 13 7 13 11 32 9 17 16 4 98 9 76 D 1068 E 2 5 15 14 46 37 6 26 1 78 177 33 E 1075 B 12 18 20 31 46 28 7 5 3 49 17 27 F 1077 B 12 18 26 31 46 27 8 0 4 55 10 35 G 1084 B 2 0 11 5 20 20 1 0 1 51 158 28 LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 1 1 180 8280 0 B 591 L 2 4 12 8 1 9 7 19 4 174 11 143 C 583 S 1 3 0 5 16 41 1 0 1 22 674 0 D 569 D 14 7 7 4 16 14 22 0 1 1 22 674 F 547 D 5 11 13 14 50 41 5 0 . 1 53 157 10																	0
D 1068 E 2 5 15 14 46 37 . 6 26 . 1 78 177 33 E 1075 B 12 18 20 31 46 28 . 7 5 . 3 49 17 27 F 1077 B 12 18 26 31 46 27 . 8 0 . 4 55 10 35 G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28										•							
E 1075 B 12 18 20 31 46 28 . 7 5 . 3 49 17 27 F 1077 B 12 18 26 31 46 27 . 8 0 . 4 55 10 35 G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28																	
F 1077 B 12 18 26 31 46 27 . 8 0 . 4 55 10 35 G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28																	
G 1084 B 2 0 11 5 20 20 . 1 0 . 1 51 158 28 LINE 35 (FLIGHT 22)																	
LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 1 180 8280 0 B 591 L 2 4 12 8 1 9 7 19 4 174 11 143 C 583 S 1 3 0 5 16 41 1 0 1 22 674 0 D 569 D 14 7 7 4 16 14 22 0 1 121 98 68 E 560 D 14 7 12 7 23 7 24 8 3 106 18 76 F 547 D 5 11 13 14 50 41 5 0 . 1 53 157 10																	
LINE 35 (FLIGHT 22) A 593 L 2 3 0 8 2 9 1 0 1 180 8280 0 B 591 L 2 4 12 8 1 9 7 19 4 174 11 143 C 583 S 1 3 0 5 16 41 1 0 1 22 674 0 D 569 D 14 7 7 4 16 14 22 0 1 121 98 68 E 560 D 14 7 12 7 23 7 24 8 3 106 18 76 F 547 D 5 11 13 14 50 41 5 0 . 1 53 157 10				2	U	!!	5	20	20	•		U			51	158	28
A 593 L 2 3 0 8 2 9 . 1 0 . 1 180 8280 0 B 591 L 2 4 12 8 1 9 . 7 19 . 4 174 11 143 C 583 S 1 3 0 5 16 41 . 1 0 . 1 22 674 0 D 569 D 14 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 12 7 23 7 . 24 8 . 3 106 18 76 F 547 D 5 11 13 14 50 41 . 5 0 . 1 53 157 10				/F	T.TGHT	221				٠							
B 591 L 2 4 12 8 1 9 7 19 4 174 11 143 C 583 S 1 3 0 5 16 41 1 0 1 22 674 0 D 569 D 14 7 7 4 16 14 22 0 1 1 121 98 68 E 560 D 14 7 12 7 23 7 24 8 3 106 18 76 F 547 D 5 11 13 14 50 41 5 0 1 53 157 10								2	9	•	1			1	180	8280	0
C 583 S 1 3 0 5 16 41 . 1 0 . 1 22 674 0 D 569 D 14 7 7 4 16 14 . 22 0 . 1 121 98 68 E 560 D 14 7 12 7 23 7 . 24 8 . 3 106 18 76 F 547 D 5 11 13 14 50 41 . 5 0 . 1 53 157 10																	
D 569 D 14 7 7 4 16 14 22 0 1 1 121 98 68 E 560 D 14 7 12 7 23 7 24 8 3 106 18 76 F 547 D 5 11 13 14 50 41 5 0 1 53 157 10																	
E 560 D 14 7 12 7 23 7 24 8 3 106 18 76 F 547 D 5 11 13 14 50 41 5 0 1 53 157 10																	
F 547 D 5 11 13 14 50 41. 5 0. 1 53 157 10	E	560	D	14	7	12	7										
				5	11	13	14	50	41		5	0		1	53	157	
	H	540	D	7	6	11	12	45	32	•	9	7	•	2	56	51	21

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
FII	O/INTI	ERP			REAL PPM	QUAD PPM				COND MHOS	DEPTH*.	COND		RESIS OHM-M	DEPTH M
	INE	35	/1	LIGHT	22)				•		•				
I	531		0	2	6	15	42	37	•	2	ο.	1	34	79	17
J	527		14	12	34	31	83	11		14	0.	3	45	15	24
	INE	36	(1	LIGHT	22)				٠		•				
A.	371		1	5	0	9	21	11	•	3	20 .	1	24	569	0
В	374		0	4	0	9	16	58		1	0.	i	23	625	0
C	388		4	3	6	7	26	11		8	12 .	1	86	74	41
D	405	D	9	12	10	17	50	31		6	12 .	1	67	220	21
E	439		24	28	79	85	246	94		14	0.	3	40	14	20
F	444		17	13	85	137	462	171	٠	10	0.	5	39	7	24
G	447		164	103	322	198	613	171		46	0.	10	16	1	8
H	453		5	5	18	18	6	20		10	0.	2	67	29	38
I	455	Е	6	3	17	8	4	12	•	24	0.	8	60	3	40
T.:	INE	37	/15	LIGHT	21)				•		•				
B	971		0	0	5	14	0	5	•	2	ο.	4	157	11	126
c	978		0	21	0	14	10	66		1	0.	1	129	1035	0
D	979		ō	21	0	9	17	66		i	0.	i	96	1035	0
	1010		5	10	4	9	37	38		2	0.	1	53	105	32
H	1014	В	4	8	7	10	11	29		4	10 .	2	99	42	65
I	1053	D	35	25	74	39	155	55		28	5.	5	60	6	43
K	1058	E	10	5	19	4	40	7		37	0.	8	54	3	36
									•						
	INE	38		LIGHT					•		•				92
A	517		1	3	2	6	10	13		1	18 .	1	19	557	0
B E	504 484		3 41	2 37	2	1	10	0		766	5.	1	83	107	57
F	448		1	9	46 5	39 11	101 32	34 52		17 1	0.	3	74 99	17 555	49
G	446		34	30	46	37	139	57		18	1.	1	50	58	15 18
н	443		173	90	233	105	486	113		60	0.		41	2	31
J	437		26	26	75	48	129	27		20	0.	6	50	5	34
K	434	В	24	27	75	48	129	27		19	0.	4	42	12	22
									•						
	INE :			LIGHT					•						
A			0	3	3	21	2	4		4	0.	1	159	1035	0
В			0	1	12	21	2	2		4	0.	16	102	1	91
C D			0	1 6	5	19	8	58		1	0.	4	152	11	121
	557		U	0	0	15	20	46	•	1	0.	1	17	653	0
L	NE	39	(F	LIGHT	21)				•		•				
	301		0		4	35	0	2		2	ο.	1	0	851	0
			677		()		-		-	_	٠.			331	

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		ANAR 00 HZ		SANAR 00 HZ			CICAL .		ZONTAL EET	CONDUC	
								-			DEPTH*.				
FII	O/INTI	SRP	PPM	PPM	PPM	PPM	PPM	PPM	٠	MHOS	м.	MHOS	М	OHM-M	М
L	INE	39	(E	LIGHT	21)				:		•				
В	304		ò	9	9	30	0	1		1	0.	2	126	28	93
C	312	S	0	6	0	11	18	94		1	0.	1	58	983	0
E	318		0	7	0	13	14	38		1	3.	1	18	625	0
F	337		0	1	0	2	7	6		1	30 .	1	164	72	136
G	347		10	19	25	38	108	62		6	0.	1	54	114	16
H	384 386		17 17	13	43	28	91	25		20	0.	2	69	42	35
J	387		52	13 44	43 75	28 69	91 215	25 73		20 20	7 . 0 .	5 5	63		44
K	390		35	23	75	37	215	55		32	0.	5	39 55	6 8	24 37
			55	23	,,	3,	213	33	•	32	٠.	,	33	0	37
L	NE	40	(I	LIGHT	20)										
A	2135	D	136	59	109	55	188	51		58	0.	4	55	8	37
	2152		0	3 .	3	17	7	13	•	3	0.	1	153	1035	0
	2155		0	3	10	20	7	5		6	0.	1	165	1035	0
	2171		0	3	0	5	29	8		7	25 .	1	23	406	0
	2174		1	11	4	4	14	82		1	0.	1	28	277	5
	2175		1	11	4	4	14	82		1	0.	1	46	822	0
	2179		4	2	4	12	9	36		5	0.	1	70	231	10
	2200 2242		0	1	0	1	5	13		1	8.	1	186	103	155
	2242		65 30	51 33	77 72	48 68	156 225	41 69		26 15	0 . 0 .	3 4	48	19	25
	2248		19	18	23	22	75	53		3	0.	1	42 42	11 12	24 30
			13	.0	25	22	13	33	•	3	٠.	•	42	12	30
L	INE	41	(I	LIGHT	20)				•						
A	1786	D	57	14	99	28	146	11		103	0.	14	48	1	36
В	1771	L	0	1	10	14	11	6		4	0.	6	101	6	77
	1768		0	1	10	13	11	5		8	0.	1	154	1035	0
	1767		0	1	10	15	2	5		3	0.	11	106	2	90
	1761		0	0	3	6	2	1		2	38 .	2	197	44	152
	1754		1	2	1	4	12	26		1	0.	1	37	455	3
	1751		1	2	1	2	6	21		1	0.		49	213	21
	1722 1720		39 39	13 13	5 24	6 6	23	28		1	7.		61	152	38
	1682		15	11	28	27	37 93	28 44		62 14	1.	4	94 82	9 26	72 55
	1673		22	12	14	10	44	34		22	10 .	3	96	16	69
							**	34	:	LL		3	30	10	09
L	INE	42	(I	LIGHT	20)				:		:				
	1489		26	21	350	83	529	40		101	0.	19	63	1	54
	1494		350	90	405	212	738	244		116	0.		18	1	9
	1498		62	69	125	134	455	174	•	17	0.	3	29	14	11
E	1519	L	3	6	7	8	11	12	•	4	0.	7	111	5	87

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			CICAL .		ZONTAL EET	CONDUC	
Al FI	NOMAL:	Y/ I ERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM			COND MHOS	DEPTH*.	COND MHOS		RESIS OHM-M	DEPTH M
т.	INE	42	(1	LIGHT	20)				•		•				
	1522		3	6	7	8	11	12	•	4	0.	1	75	1035	0
	1545		8	15	4	11	16	1		4	13 .	1	46	525	0
H	1553	L	3	4	6	4	18	16		1	0.	1	67	28	49
I	1568	В	6	4	2	6	20	19	•	1	7.	1	64	89	43
	1571		6	5	6	12	37	19		7	18 .	1	127	86	79
	1587		1	2	1	3	16	23		1	8.	1	65	160	42
	1628		33	31	69	62	199	91		17	4.	3	54	21	30
M	1630	E	15	4	67	19	75	48	•	68	4.	7	67	4	51
L	INE	43	(F	LIGHT	20)				•		•				
	1179		20	31	63	84	241	81	•	10	0.	3	43	18	20
	1172		9	9	84	11	56	7	:	28	2.	10	49	1	47
С	1169	В	73	45	144	96	388	145		34	0.	7	23	3	10
D	1165	D	29	26	65	57	168	49		17	3.	2	74	30	45
	1148		2	9	2	3	4	2		2	0.	2	145	56	98
	1144		5	2	3	1	5	1	٠	20	21 .	1	170	1035	0
	1124		22	27	5	8	20	6		8	7.	1	43	950	0
	1116		4	3	4	10	20	23		4	0.	6	126	7	98
	1101		1	17	6	26	122	106		1	0.	1	57	613	0
	1098 1094		52 4	30 4	102	46	180	16		40	0.	6	39	5	23
	1087		0	1	66 2	33 4	118 13	8 46		26 1	8.	2	92	51	55
	1080		6	13	20	28	92	53		6	0. 4.	1	25 63	628	0
	1052		3	3	0	0	1	4		7	52.	1	201	76 1035	26 0
								-			•		201	1033	U
L	INE	44	(F	LIGHT	20)										
A	851		4	9	9	21	82	84		2	1.	1	42	55	27
С	861		238	123	392	236	820	186		59	0.	9	17	2	8
D	863		238	123	392	236	130	186		2	0.	2	24	10	16
E	865		53	40	138	74	130	186		33	0.	5	52	8	34
H	889 909		0	3	7	10	3	9		2	0.	2	169	52	123
K L	913		2 16	6 18	1	14 22	44	94		1	0.	1	28	245	6
М	916		16	18	8 8	22	4 3 50	25 25		7 4	10 . 7 .	1	30	416	0
N	917		4	14	8	22	50	77		2	0.	1	33 31	103	14
0	927		3	1	6	3	5	10		36	29 .	1	146	302 6	0 119
P	933		3	4	2	7	14	22		1	3.	1	65	178	40
R	937		3	5	4	6	23	7		4	22 .	1	119	86	71
S	951		4	7	4	14	52	43		3	11 .	1	66	207	20
T	955		2	6	4	14	47	28		2	6.	1	94	643	11
U	966	P	2	5	4	6	23	72	•	1	0.	1	78	126	55

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 Hz		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
	OMAL:					QUAD PPM				COND	DEPTH*.	COND		RESIS	DEPTH M
				1. T.Q.	200				•						
A P1	NE 969	44 P	(F	FLIGHT 5	20)	12	41	73	•	1	0.	1	30	190	8
w	972		7		6	12	50	80		1	0.		36	115	16
X	975		7	12	21	30	95	80		6	17.		62	76	28
T.T	NE	45	/1	LIGHT	20)	í			•						
A	566		14	3	42	9	64	0	•	94	23 .	45	92	1	87
В	563		16	8	194	10	321	62		362	9.		75	1	66
C	560	D	153	65	194	125	387	121		55	0.		25	3	13
D	557	В	17	65	154	125	381	121		12	0.		96	5	76
E	542		2	8	9	20	55	52		3	8.	1	116	113	66
F	528		5	4	8	9	2	13		7	0.	7	121	4	99
G	523		4	3	2	9	0	13		7	0.	1	169	1035	0
H	511		2	1	1	0	3	6		1	31 .	1.	163	1475	98
I	503		8	17	2	18	47	98		3	0.	1	42	763	0
J K	490 486		7 4	1	4	1	6	13		92	22 .	4	163	15	130
L	478		2	7 2	5 1	6	23	15		4	6.		132	37	95
М	476		2	1	1	4 4	8 7	32		1	0.		35	1148	0
N	467		0	1	1	2	10	32 14		1 1	0 . 15 .	1	60 67	1207	21
o	453		6	5	8	6	22	22		9	24 .		133	581 90	29 83
P	430		1	2	0	4	10	20		1	1.		46	774	10
Q	427		1	2	2	5	20	22		1	10 .	1	80	173	55
								(2)(3)		5.				.,,	33
LI	NE	46	(F	LIGHT	20)										
A	227		5	25	14	43	136	131		2	0.	2	55	52	25
В	236		190	17	229	24	289	19		656	0.	50	32	1	28
D	249		29	16	1	6	1	34		21	17 .	1	116	1035	0
G	258		2	0	1	4	4	13		1	0.	1	143	700	94
H	271		0	10	18	27	0	12		5	0.	1	188	1035	0
I	273		0	10	12	27	0	3		3	0.	1	200	1035	0
J K	275 291		0	0	8	17	0	3		3	9.	2	116	36	82
L	295		7	10 6	2	13 8	38 7	81		4	16.	1	48	791	0
М	306		11	7	5	5	21	19 12		1 13	1.	1 2	23	359	126
N	319		4	1	4	2	7	3		22	66 .	4	168 190	39 12	126 159
s	355		12	1	5	3	6	7		117	37 .	3	186	21	152
T	367		21	12	33	16	50	16		27	. 6.	5	78	7	58
U	381		5	11	7	7	28	16		5	9.	1	114	98	65
								5.5		-		•		,,	03
LI		47	(F	LIGHT	19)										
A	3108	D	85	54	149	75	279	106	•	40	0.	4	35	9	19

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

		AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical . ike .		ZONTAL EET	CONDUC	
ANOMALY/	REAL	OUAD	REAL	OUAD	REAL	OUAD	•	COND	DEPTH*	COND	DEPTH	RESTS	рертн
FID/INTERP			PPM					MHOS		MHOS		OHM-M	M
LINE 47		FLIGHT					•						
B 3115 E	28	5	242	19	315	30		86	0.		53	4	45
C 3118 D	200	31	312	54	407	55		316	0.		27	1	20
D 3120 B G 3164 L	200	30 3	41	12 8	76	31		6	7.		59	8	49
I 3184 S	11	15	9 4	7	0 27	8 26		6 6	0.		109	14	81
J 3190 S	2	13	1	25	145	83		1	19 . 0 .	1	65 20	642 282	2
K 3195 S	0	15	2	35	79	196		1	0.		11		0
L 3198 E	19	6	20	34	69	192		15	3.	3	104	20	75
M 3200 L	11	6	20	11	30	43		22	4 .	13	122	1	108
N 3214 D	10	2	9	2	14	5		102	40 .	3	201	23	165
О 3283 Т	92	38	247	96	435	79		72	0.		33	1	24
			212				•						
LINE 48		LIGHT					•						
A 2888 B	7	17	26	27	176	53		6	0.	6	47	5	30
B 2884 B D 2873 D	35 181	17 32	96	56	209	63		35	0.		44	5	29
E 2864 S		32	258 1	49	358	42		250	0.		28	1	21
G 2826 L	1	7	2	5 8	22 10	34 9		1 1	2.	1	41 107	375 19	12
I 2810 S	12	14	4	1	23	15		8	21 .	1	69	290	91
J 2808 S	12	14	4	20	23	67		1	0.		27	234	19 5
K 2804 S	3	18	6	32	115	169		i	0.		19	156	0
L 2800 S	2	44	11	59	225	358		1	ŏ.	2	6	203	0
M 2798 S	8	6	11	41	94	175		5	1.	1	35	94	3
N 2796 S	8	4	9	23	65	44		7	0.	1	62	71	22
O 2780 B	11	9	28	22	61	38		14	13 .	4	73	11	52
Q 2775 B	11	22	24	37	125	63	•	6	0.	3	65	14	44
							•						
LINE 49 A 2538 S		LIGHT			24	20	•						
B 2576 L	3	5 4	6 15	9 13	34 8	38 10		1 7	9. 2.	1	56	106	37
D 2594 S	8	9	5	16	67						122	1035	0
E 2600 S	4	17	7	32	93	37 10		5 2	15 . 0 .	17.0	42	329	0
F 2606 E	5	3	ģ	13	26	29		7	0.	1	27 61	105 23	0 31
G 2619 S	1	1	2	2	5	15		1	5.	1	146	439	106
H 2628 L	0	4	2	8	27	41		1	0.	1	42	284	15
I 2639 D	92	39	137	59	225	62		59	ŏ.	6	57	4	42
J 2642 E	16	6	137	59	225	62		50	10 .	5	76	6	58
L 2649 B	4	2	13	5	23	5		21	47 .	6	132	6	109
M 2663 P	2	0	5	1	6	4		48	72 .	4	184	12	153
N 2685 P	3	2	13	2	15	10	•	38	42 .	16	131	1	119
	gges		2 Um				•						
LINE 50		LIGHT					•	1	•	1			
B 2288 D	14	34	28	60	195	100	٠	5	0.	1	25	86	0

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL		LANAR		LANAR				HORIZ	ZONTAL	CONDUC	CTIVE
			90	00 HZ	90	00 HZ	720	00 HZ	•	DI	KE .	SHE	EET	EAR	TH
AN	OMATS	7/	DEAT.	OUAD	DEAT	OIIXD	DEXT	OLIVD	•	COND	DEPTH*.	COND	DEDOMI	DEGTA	DD DMII
	/INTI				PPM	PPM	PPM			MHOS		MHOS		OHM-M	DE PTH M
							1111	1111		MIOD	м.	MIOS	М	Onn-M	М
LI	NE	50	(I	LIGHT	19))									
	2245		1	2	7	13	5	4		3	14 .	1	195	1035	0
	2241		1	3	2	3	7	0		54	0.	1	86	19	70
	2228		8	13	7	3	6	10		7	22 .	1	23	320	0
	2224		2	16	2	28	114	152		2	0.	1	20	46	8
	2220		5	5	8	21	66	50		4	0.	2	33	40	0
	2190		23	24	29	36	92	47		11	0.	2	52	34	22
	2186 2178		3 16	9	14	5	59	42		8	19 .	4	78	12	55
	2175		15	20 20	62	92	297	137		9	0.	3	31	19	9
	2173		17	16	86 86	113	341	113		11	0.	4	29	9	12
	2171		17	16	33	113 26	341 86	113 12		12	0 . 5 .	4	89	12	65
	2160		15	15	43	35	108	39		15 14	7.	4	64	11	43
				.5	43	33	100	33	•	1.4	, .	3	81	17	57
LI	NE	51	(E	LIGHT	19)				•						
	1962		1	1	1	0	8	3		4	32 .	1	138	22	120
	1968		3	4	4	6	10	2		7	0.	3	82	6	72
C	1971	L	3	4	1	3	7	6		1	30 .	1	140	18	125
D	1984	S	4	15	6	25	89	69		2	0.	1	41	158	5
\mathbf{E}	1989	S	2	12	2	29	129	147		2	0.	1	18	47	5
	1994		6	5	5	15	53	44		5	0.	2	79	57	38
	1997		2	3	5	4	19	13	•	2	0.	1	64	83	41
	2038		48	43	227	153	460	273		29	0.	3	48	15	28
	2040		96	108	227	153	460	273		26	0.	7	19	3	8
	2042		96	108	80	49	185	273		2	0.	2	28	8	19
	2048		32	38	27	53	176	100		9	0.	3	44	13	24
	2053		1	2	28	13	45	15		7	17 .	1	53	30	39
	2057 2060		5	6	25	24	75	43		9	18 .	2	98	51	61
0	2000	ь	26	26	42	42	141	81	•	14	5.	3	57	17	35
T.T	NE	52	/F	LIGHT	19)				•		•				
	1677		0	2	55	30	5	4	•	21	12 .	1	44	965	0
	1661		0	9	6	18	38	119		2	0.	1	44 154	1035	0
	1658		0	9	3	18	39	119		1	0.	1	21	344	0
	1650		6	2	6	10	29	35		9	ŏ.	1	85	71	40
H	1609	T	114	60	260	161	474	170		46	0.	12	29	1	20
I	1598	T	46	43	89	90	281	111		17	0.	5	29	8	14
J	1597	В	40	36	69	57	184	71		18	0.	5	43	6	27
									•						N=75
	NE	53	(F	LIGHT	19)				•						
	1426		0	1	5	7	1	3	•	3	0.	4	143	12	112
В	1430	L	0	1	4	9	4	6	•	5	0.	1	143	1035	0

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL		LANAR		LANAR		VER	rical .	HORI	ZONTAL	CONDUC	CTIVE
			90	00 HZ	90	00 HZ	720	00 HZ	٠	D:	IKE .	SH	EET	EAR	гн
	TOMAT	v / 1	7555	OHAD	DELL	01110			٠						
FI	D/INT	700	DDM	PPM	PPM						DEPTH*.				
			FFM	PPM	PPM	PPM	PPM	PPM	•	MHOS	м.	MHOS	М	OHM-M	М
τ.	INE	53	/ F	LIGHT	19)	Ý			•		•				
	1434		3	5	8	4	6	9	•	7	ο.	3	97	18	66
	1437		3	5	8	3	17	22		8	2.		144	1035	0
	1439		3	5	1	2	17	22		1	ō.		52	213	24
F	1449	S	0	1	0	1	6	11		1	18 .		110	506	68
H	1487	T	31	23	61	47	146	78		21	3 .		48	8	31
I	1490	В	11	23	43	47	146	78		8	0 .		69	7	49
J	1492	В	14	4	43	12	56	31		63	7.		58	5	41
K	1499	В	27	27	30	48	167	120		11	0.	2	45	23	20
	INE	54	(F	LIGHT	19)				•						
	1040		0	2	12	10	7	5		6	9.	15	115	1	104
	1038		0	4	14	24	7	5	•	6	0.		176	1035	0
	1036		0	4	14	24	7	5	٠	. 3	0.	7	136	5	113
	1023		2	2	2	6	9	24		1	0.	1	72	65	51
	1020		1	1	1	1	15	17	•	1	0.	1	58	123	32
	1012		0	0	1	0	7	9	•	1	24 .	1	141	220	106
I	978	D	5	6	9	5	23	10	•	10	2.	3	166	23	130
L	NE	55	(F	LIGHT	19)				•		•				
A	762		1	1	0	0	7	9	•	1	31 .	1	86	846	42
В	786		4	5	8	8	12	7		8	0.	1	66	149	14
D	797	L	3	4	13	12	44	33		8	18 .	1	197	1035	0
													137	1033	U
LI	NE	56	(F	LIGHT	19)										
A	508	L	2	1	0	0	6	8		1	31 .	1	83	1087	39
В	490	L	2	1	2	3	3	6		1	37 .	1	99	8280	0
													,		·*
L	NE	57	(F	LIGHT	19)										
Α	207		5	1	2	5	0	4		12	44 .	1	128	135	72
В	275	L?	1	1	0	0	6	1	•	10	45 .	1	91	694	44

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ	0.90.000.00	ANAR 00 HZ		ANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
FII	OMALY O/INTE	ERP	PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	•	COND MHOS	DEPTH*	MHOS		RESIS OHM-M	DEPTH M
LI	NE	49	(F	LIGHT	19)										
	2520				405			205		95	0.				12
	2526		141	54	274	112	476	95		80	ο.	11	30	1	20
	NE	50	(F	LIGHT	19)				:						
A	2310	D	35	21	64		111	44		36	0 .	22	34	1	26
	2305				359	82	515	65		213	0.	21	32	1	25
	2295		5	7	9	9	18	28	٠	6	21 .	2	111	32	79
	NE		/ F	LIGHT	19)				٠		•	4			
	1907		89		143	41	207	52	:	123	ο.	20	39	1	30
	1922		8		21	28	86	52		6	0 .		50	64	16
									•						
	NE	52		LIGHT			2 2 2	5.02	•						
	1741 1725		97	32	174		309	97		75	0.		34	3	21
	1/25		23	18	54	45	138	62		18	4.	2	47	28	21
LI	NE	53	(F	LIGHT	19)				:						
A	1361	B?	1		1	2	18	18		1	23 .	1	60	156	36
В	1366	S	1	6	1	9	15	75	•	1	0.	1	29	284	4
	NIE		/5	T T CHIM	101				•						
	NE 1125	54 B2	(F 5	LIGHT	19) 17		17	30	•	1	0.	1	44	150	21
	1113		2	8	2	16	19	86		1	0.		38	159 215	21 13
	1111		2	8	2	16	59	86		i	0.		23	179	2
															_
	NE	55		LIGHT			225/	20	•						
	713 750		16 5	24 1	40	62 1	185	51		8	0.		37	26	13
	750		5	,	3		2	4	٠	90	38 .	2	180	32	139
LI	NE	56	(F	LIGHT	19)				:						
Α	565		5	3	18	7	25	20		24	24 .	4	89	13	64
	561		1		2	5	27	44		1	13 .	1	99	1035	0
	517		4	1	1	1	5	2	•	44	44 .	2	182	37	139
	NE		/10	T TCUM	10)				٠						
	150			LIGHT	4		73	112	•	2	ο.	1	51	293	7
	165			1	ō		0	6		1	0.		84	8280	ó
	190		4	1	3	1	3	8		24	41 .		189	62	139
									•						e 7550
	NE			LIGHT				_	•						
A	2918	BY	1	1	2	4	12	8	•	2	29 .	1	80	67	59

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			CICAL KE	•		ZONTAL EET	CONDUC	
Δ1	TAMOI	v / 1	PRAT.	מעווס	DEAL	מעוזס	DEAL	OUAD	•	COND	DEPTH*	•	CONTO	DEDOM	DEGTA	DDDMII
	D/INT					PPM		PPM					MHOS		OHM-M	
						1111	1111	LLM	:	MIOS	M	•	MIOS	М	OHM-M	М
L	INE	58	(F	LIGHT	18)											
	2924		3	18	10	35	151	90		2	0		1	34	123	0
	2928		1	4	1		18			5	34		1	44	506	14
	2963		6	1			2						1		136	61
G	2976	ь	0	1	13	14	1	7	٠	8	17	٠	1	193	1035	0
L	INE	59	(F	LIGHT	18)				•			•				
	2765		1	3	0	8	37	48	•	1	0	•	1	39	121	19
	2760		3	3		18	72			5	23		1	47	386	2
D	2718	S	1	0	1	2	2	25		1	0		1	0	4660	0
	2715		5	1	5	2	6	25		62	36		5	165	9	136
					400				•			٠				
	INE 1842	60	(F 5	LIGHT				20	•	40		•			2.9	
	1844		5	4 2	27 2	21 4	66 16	26 7		13 4	23 36		3 1	86	14	63
	1884		2	4	7	3	6	17		8	28		4	101 150	159 1 0	74 121
										Ü	20	:	•	150		121
L	NE	61	(F	LIGHT	18)											
	1628		6	3	17	11	61	57		18	22		1	83	141	35
	1626		1	5	3	11	61	58		2	0		1	41	53	25
	1617		3	1	1	2	3	12		24	74		1		1035	0
	1574		2	5	3	3	8	17	٠	2	12	•	1	135	171	73
	NE	62	(F	LIGHT	18)				٠			•				
	1061		5	2	4	5	8	34	•	14	35	•	2	176	65	129
	1071		11	0	10	0	12			1311	40		3	197	19	162
С	1074	D	12	0	14	0	15	4		2000	43		21	134	1	125
D	1075	D	12	0	14	0	15	0		2000	35		4	191	15	158
	1105		2	5	8	6	31	17	•	5	14		2	115	31	81
	INE 4		/17	T TOUM	101				•			٠				
	NE 6		12	LIGHT			2	25	٠	222	2.7	٠				
В			12	0	3 5	1	3 5			223 2000	37 37		1 1	201 200	1035	0
D			4	4	5	5	27	11		7	21		1	117	93 173	147 58
					-		77.3	10.0	:	,		:			173	50
LI	NE	64	(F	LIGHT	18)											
	193				0	0	1	4		12	94		1	200	1035	0
	215			1	0	1	4	6		1	40		1	91	1282	43
	248		8	11	8	16	27	25	•	6	20	٠	1	80	113	38
	NE		/E	LIGHT	171				٠			•				
			2	1 1 T	17) 8	1	12	2	•	42	69	٠	7	168	-	144
			-	•	U			-	•	42	09	•	,	100	5	144

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

			XIAL 00 HZ		ANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
ANOMA FID/IN	LY/ TERP	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	REAL PPM	QUAD PPM	•	COND MHOS				RESIS OHM-M	DEPTH M
LINE	65	(F	LIGHT	17)				:		:				
В 19		1	2	2	3	8	4	•	2	47 .	1	150	139	119
LINE		(F	LIGHT	16)				٠		•				
A 94		0	1	0	3	11	7	:	2	37 .	1	119	189	89
В 97		0	1	0	0	0	8		1	0.	1	46	7637	0
LINE		/ F	LIGHT	16)				•		•				
A 66		,-		4	0	5	5	:	181	75 .	3	195	22	160
									15.1150.53				-	
LINE B 21		,-	LIGHT			•	•	•						
C 29		2	1 1	4 2	1	8			12	66 . 35 .	3 1		18 274	161 102
			·	_			•	:			•	130	2/1	102
LINE			LIGHT					•						
C 305		2	1	2	1	5	6	•	1	35 .	1	132	694	83
LINE		(F	LIGHT	15)				:		:				
A 284		1	2	0	3	9	42		1	0.	1	18	1170	0
B 281		6	1	17	8	26	4	•	31	42 .	6	122	5	101
LINE		(F	LIGHT	15)				•		•				
A 234		ò	2	0	2	8	11	:	1	23 .	1	25	639	0
								•						
LINE A 184		(F	LIGHT	14) 2	2	12	5	•	3	35.		0.7	142	7.0
		•	•	-	-	12	,	:	3	35 .	1	97	143	70
LINE			LIGHT					•						
A 22		5	4	7	7	22	14	•	10	33 .	2	101	48	64
LINE		(F	LIGHT	14)				:		:				
A 136		0	2	4	4	19	19		3	45 .	1	125	107	73
C 137		36	52	103	141	451	181		12	0.	3	29	12	11
D 137		8 79	6 32	24 189	17 63	56 191	8 74		15 75	21 .	2	80	59	43
F 139		19	1	105	23	127	68		168	13 .	29 3	90 90	1 21	26 64
G 139	8 B?	0	12	1	13	29	68		1	0.	1	40	293	13
LINE	85	/13	TTCUM	141				•						
B 131		0	LIGHT 5	14)	11	41	75	•	1	ο.	1	41	950	0
C 131		4	5	o	10	25	74		i	0.	i	14	564	0
D 129	8 B	0	3	3	7	22	13		1	6.	1	86	298	31

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
									•						
											DEPTH*.			RESIS	DEPTH
	D/INT		PPM	PPM	PPM	PPM	PPM	PPM	•	MHOS	м.	MHOS	M	OHM-M	M
									٠						
	INE	86		LIGHT					•						
	1032			2	1	2	8			1	1.		86	406	48
	1036		2	2	1	3	7			1	15 .		60	692	22
	1053		1	5	2	9	35			2	5.		54	149	31
	1063		3	3	5	11	20	17		2	0.		54	118	32
E	1071	D	4	5	14	18	69	20	٠	6	12 .	2	53	4 5	21
									•						
	INE	87		LIGHT					٠					v.	
A			4	4	6	9	32	20		3	0.		49	67	29
В	996		5	4	13	9	34	5		11	12 .	3	89	24	59
С	990		0	1	0	2	12	11		1	16 .	1	64	438	28
D	985		0	1	0	4	23	28		1	4.	1	39	333	10
E	981	E?	5	14	16	34	135	117		3	0.	1	29	38	16
F	979	В	10	13	16	47	162	117		5	7.	1	38	85	8
H	975	P	7	6	39	24	72	23		17	8.	3	51	17	29
I	974	B?	7	6	39	24	49	23	•	5	0.	1	29	47	14
L	NE	88	(F	LIGHT	14)										
A			0	3	6	6	24	19	•	2	25 .	1	107	89	60
C	782	D	4	10	5	4	22	20	•	4	20 .	2	139	66	96
L	INE	89	(F	LIGHT	14)										
A	728	G	0	7	7	19	39	12		2	0.	1	37	145	0
В	726	G	1	5	7	18	39	12		7	14 .	1	48	29	34
									•						
L	NE	90	(F	LIGHT	14)				•						
A			2	4	1	5	21	31		1	0.	1	42	275	12
В	558	S?	4	9	0	1	23	35	•	3	9.	1	47	985	0

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
A	NOMAL	Y/ I	REAL	QUAD	REAL	OUAD	REAL	OUAD	:	COND	DEPTH*.	COND	DEPTH	RESIS	DEPTH
	D/INT					PPM				MHOS		MHOS		OHM-M	М
-									•						
	INE			LIGHT					•						
	2140		1548	2	0	5	6	33	•	1	0.	1	27	1546	0
	INE		/1	T TCUM	101				•						
	2081		29	LIGHT 18	19) 49		92	31	•	28	18 .	1	101	02	F0
	2093		4		2	5	30	25		3	13 .		156	83 757	59 33
					0.7	•	-		:	•		•	150	151	33
L	INE	52	(F	LIGHT	19)										
A	1578	D	9	12	11	12	46	31	•	7	18 .	2	102	34	71
									•						
	INE	53		LIGHT					•						
	1520		31	20	90	37	148	72		37	0.	10	42	2	30
	1521		19	20	90	37	148	72		28	7.	4	67	11	46
	INE	54	(F	LIGHT	19)				•		•				
A			12	4	15	7	23	10	•	4	8.	1	66	16	52
В	969	D	12	4	14		23	10		32	5.			11	65
D	949	D	13	24	24	49	157	90		5	0.	1	46	67	14
\mathbf{E}	2000		1		6	11	34	27		3	23 .	1	87	96	43
F	929	В	3	3	8	5	21	11	•	10	7.	2	98	43	62
			,-		400				•		•				
	INE 870	55	54	LIGHT 9			00		•	105		••		_	
В			38	25	62 77	10 44	89 164	8 55		195 29	11 . 2 .	12 8	97 55	1 2	84 42
			50	23			104	33	•	23	۷.	0	55	2	42
L	INE	56	(F	LIGHT	19)				:		•				
Α			2	1	8		23	13		3	12 .	1	78	68	58
В	402	D	37	6	39	5	56	5		186	6.	8	103	3	84
C	382	В	58	37	148	79	281	78	•	37	0.	7	34	4	21
-									•						
	INE	57		LIGHT	19)		-	• •	•			_			
	312 329		34 47	8 26	42 122	56	63 222	10 50		115 42	15 . 0 .		132 36	8	108
				20	122	30	222	30		42	1	0	30	2	24
L	INE	58	(F	LIGHT	18)				:		:				
A	3106	B?	0	3	14		23	33		1	3.	1	50	304	21
	3110			12	22	28	89	23	•	7	0.	2	44	33	15
	3112		22	28	34	42	145	72	٠	10	0.	1	37	59	7
			,-						•		•				
	INE			LIGHT	200		145		٠						
	2587 2583			10 6	9 12	27	115 73	81 28		3 7	0.	1	49	158	10
•	2505			U	14	22	13	20	•	,	0.	1	32	30	19

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL OO HZ		LANAR 00 HZ		LANAR 00 HZ			CICAL .		ZONTAL EET	CONDUC	
Al	NOMAL	/	REAL	QUAD	REAL	QUAD	REAL	QUAD		COND	DEPTH*.	COND	DEPTH	RESIS	DEPTH
FI	D/INTH		PPM	PPM	PPM	PPM	PPM	PPM	•	MHOS	м.	MHOS	M	OHM-M	М
			/1	ar roum	101				٠		•				
	1NE 2580	59 B	17	LIGHT 38	18) 29	78	256	138	•	5	0.	2	28	34	4
_				30	2,	70	230	130	:	,	٠.		20	34	•
L	INE	60	(E	LIGHT	18)										
A	2010	В	0	2	0	2	11	14		1	17 .	1	104	244	74
	2028		4	8	22	14	56	9	•	9	17 .		112	31	80
C	2033	D	22	31	40	42	139	63	•	10	2.	2	56	26	29
T :			/=	ar roum	101				•						
	1448	61	1	FLIGHT 2	18)		•	12	•		٠.		0.5	426	
	1445		1	2	1	3	9	13 13		1	21 . 53 .		95 120	43 6 65 7	57 22
	1441		21	40	9		84	119		1	0.		38	27	25
	1437		21	40	31	75	251	119		6	0.		36	31	11
								1.15	•			-			
	INE	62	(F	LIGHT	18)										
	1201		0	1	0	1	8	17		1	14.		76	676	37
	1251		4	6	4	4	18	9		6	15 .		131	126	75
	1256		0	5	4	10	36	31		1	13.		123	359	56
	1262 1266		21 30	17 37	57 29	34 48	122	22		21	0.		55	10	35
	1200		30	37	29	40	161	100	•	9	۷.	1	43	64	14
L	INE	63	(F	LIGHT	18)				•						
A			3	3	1	3	9	4		4	14 .	1	174	453	49
В	584	B?	0	0	1	1	8	7		2	66 .	1	198	1035	0
С	573		35	22	39	27	90	41	•	6	0.	2	50	8	40
D	572		35	22	39	27	90	41	•	24	1.	7	71	4	55
-									٠		•				
B.	INE 391	64	0	LIGHT			10	17	•				-	465	2.2
C	412		5	6	1 21	3 13	10 51	17 17		1 12	12 . 14 .		69 96	465 19	33 68
D			23	28	42	46	140	47		11	0.		53	13	33
					-		,	• •	:		٠.	•	33	13	33
L	INE	65	(F	LIGHT	17)										
	340				34		86	26		13			49	10	28
	343		21	21	34	32	97	46	•	13	0.	1	54	62	20
					10				٠		•				
	INE 1147		1	LIGHT			13	3	٠	8	25.	2	110		100
	1150			2	2	3	13	3		3	25 . 30 .		119 186	9 1035	108
	1166			22	36		91	28		18	5.		64	133	43
	1168			16	36	15	64	50		20	20 .		100	10	78
								1.00				-		. •	
				LIGHT											
В	517	D	75	37	93	50	202	70	•	43	0.	4	48	10	31

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			rical .		ZONTAL EET	CONDUC	
ŤΙΙ		ERP		QUAD PPM		QUAD PPM				COND MHOS		COND MHOS		RESIS OHM-M	DEPTH M
	INE		(E	LIGHT	16)				:		:				
	514		15		93		64	28		68	0.	6	85	5	66
	499		2	3	2	5	17	17	•	1	0.	1	69	214	41
	INE	68	/ F	LIGHT	16)				•		•				
D			3		2	2	18	5	:	7	37 .	1	193	351	77
G			0	3	0	3	18	26		1	13 .	1	60	393	28
H	396	D	26	20	37	37	117	42		15	2.	2	50	29	23
1			21	14	41	25	80	18	•	22	1.	4	64	11	42
J				1	1		5	21		1	0.	1			19
K	7.00				7	9	30	18	•		17 .	1		179	60
	423		2	0	1	0	5	1	•	4	68 .	1	193	126	160
	INE		(19	LIGHT	15)				•		•				
	3139		5	9	3		24	14	•	4	11 .	1	150	1035	0
	3149		21	25	31		95	38		11	5.	1	78	72	39
	3156		10	5	33	16	57	19		27	3.	4		10	44
E	3158	D	38	28	62	47	147	38		22	2.	4		8	33
	3173		1	3	1	3	10	16	•	1	9.	1	76	466	39
	INE	70	/5	T TCUM	151				•		•				
	2650		32	LIGHT 1	15) 69		148	44	٠	58	11 .	6			40
	2647		45		49		159	61		17	0.	2		4 24	40 25
	2638		1	1	0	1	4	14		1	0.	1	45	1536	3
	INE			LIGHT	15)										
	2550		11	16	4		20	6		6	13 .	1	192	280	93
	2566		27	29	36		109	97		13	2.	2		43	22
	2568		68	42	105	73	218	46		31	2.	5		6	38
	2575		1	1	5	2	9	13		1	11 .	1	75	448	38
		72	(F	LIGHT	15)				•		•				
	2070		6	6	4	4	16	7	•	7	8.	2	174	48	129
	2055		42	33	64	56	184	67		20	0.	2	50	31	22
\mathbf{E}	2045	В	1	2	0	4	12	13		1	12 .	1	63	325	31
									•						
	INE			LIGHT			-		•			5			
	1963		20	27	12	20	65	30		8	2.	1	109	162	55
	1968 1982		5 14	4	12	20	61	24		6	25 .	1	150	129	93
	1982		14	13 10	17 16	15 15	68 68	63 63		11	14 .	1	64	88	26
	1990		1	3	3	4	11	18		14	17 . 0 .	2	79 73	26 393	52
_		_		•	-	-			•		٠.		13	393	37

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				AXIAL 00 HZ		CANAR 00 HZ		LANAR 00 HZ			TICAL .		ZONTAL EET	CONDUC	
A	NOMAL	Y/ 1	REAL	QUAD	REAL	QUAD	REAL	QUAD	:	COND	DEPTH*.	COND	DEPTH	RESIS	DEPTH
FI	D/INT	ERP	PPM	PPM	PPM	PPM	PPM	PPM	•	MHOS		MHOS		OHM-M	М
т.:	INE	74	/1	LIGHT	15)	i i			•						
	1570		14	20	7	9	32	20	•	7	٥.	1	111	108	60
	1552		8	12	9	14	48	27		3	8.	1	50	77	33
С	1550	В	8	6	8	14	48	27		8	25 .	2	103	51	66
D	1544	B?	1	6	1	10	32	36		1	0 .	1	76	368	21
									•						
	INE 1457	75		LIGHT					٠						
	1461		22 8	38 3	11	19	49	64		6	0.	1	48	475	0
	1471		8	9	12 16	18 20	52 61	23 20		10	19 .	2	140	65	97
	1476		2	4	1	3	15	14		7 1	10 .	1	93 72	97 116	47 47
				-	0 7 1	•	,,,		:		٠.	•	12	110	4/
	INE		(F	LIGHT	18)										
	2392		20	35	8	8	41	50	•	7	2.	1	56	552	0
	2398		28	17	12	7	29	5		23	20 .	1	125	100	75
С	2410	В	3	3	2	2	5	4	•	5	27 .	1	182	1035	0
T.1	NE	77	/10	T TCUM	151				٠		•				
	932		18	LIGHT 25	15) 8	10	30	26	•		٠.				
	937		4	2	7	8	14	3		8 10	7. 32.	1	111	751	13
	950		3	4	3	6	21	12		4	21 .	1	161 126	89 730	110 14
				-				12	:	•	21 .		126	/30	14
L	NE 7	772	(F	LIGHT	18)										
A	2252	В	2	1	1	3	10	9		1	4.	1	108	136	79
									•						
		782		LIGHT	18)				•	_					
	2137 2142		11	18 13	8 15	9 10	33	34		6	4.	1	68	369	14
	2147		3	7	8	5	34 28	5 19		22 5	16 . 30 .	1	140	79	93
	2154		3	2	2	2	11	6		8	41.	2 1	155 183	51 1035	115 0
						-	15 (5)		:	•	• • •		103	1033	U
	NE	79		LIGHT	14)										
	2939		9	18	6	14	45	81	•	4	3.	1	42	520	0
	2947		26	10	27	15	63	10		36	14 .	4	81	13	58
	2952		4	9	27	7	47	34		16	34 .	2	116	36	84
	2966 2970		3	2	1 2	6	13	33		3	31 .	1	157	981	19
	2370		3	2	2	6	14	33	•	1	5.	1	34	663	6
	NE	80	(F	LIGHT	14)				•		•				
	2423		4	14	1	11	30	61	•	2	ο.	1	75	602	2
	2426		2	5	8	11	30	61		4	14 .	i	70	174	3 23
C	2433	D	81	41	63	29	138	62		44	9.	2	86	27	58
												-		-,	50

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

			AXIAL 00 HZ		ANAR 00 HZ		CANAR 00 HZ			FICAL .		ZONTAL EET	CONDUC	- CONTROL - CONTROL
ANOMALY	/ 1	REAL	QUAD	REAL	QUAD	REAL	QUAD	:	COND	DEPTH*.	COND	DEPTH	RESIS	DEPTH
FID/INTE				PPM	PPM	PPM			MHOS		MHOS		OHM-M	М
LINE	80	/1	LIGHT	14)				•		•				
D 2439		17	22	63	26	98	78	•	3	3.	1	42	37	28
E 2450		2	3	3	2	13	7		4	44 .	i	161	971	26
												0.5.0	5.50	
LINE 8			LIGHT					٠						
A 2535		0	7	5	11	36	34	•	2	0.	1	32	102	12
	81	/ F	LIGHT	14)				•		•				
A 2088		10	22	13	33	132	111	•	4	0.	1	31	195	0
B 2090	В	10	22	13	33	132	111		4	0.	i	54	57	20
C 2099	D	24	12	35	12	55	12		37	9.	3	108	23	78
D 2102	_	24	12	35	12	55	12		37	20 .	11	88	2	74
E 2114		0	0	3	3	14	7		2	18 .	1	97	22	80
F 2163	В	0	1	1	3	9	7	•	. 1	26 .	1	130	114	103
LINE	82	/5	LIGHT	14)				•		•				
A 1725		2	6	3	9	39	21	•	3	15 .	1	41	144	10
B 1720		0	2	0	2	10	27		1	0.	1	41 25	144 423	19 0
C 1716		32	50	58	107	379	226		9	0.	2	24	21	4
					in Section	G(1)(B)			-		_			•
	22	(F	LIGHT	14)										
A 2260		36	43	68	92	281	119	•	12	0.	3	28	19	6
В 2272		7	7	5	3	18	17		8	32 .	2	156	42	117
C 2276		4	7	8	8	36	29		5	23 .	3	111	23	82
D 2282	в	1	3	9	6	22	7		6	34 .	2	111	36	79
LINE	83	(F	LIGHT	15)				•		•				
A 336		1	3	3	7	24	10	•	4	18 .	1	47	161	24
В 344		40	52	62	108	336	217	-	10	0.	2	26	23	5
C 355	D	15	4	6	3	12	13		42	27 .	3	154	25	119
	84		LIGHT	14)				•						
A 1535		6	23	11	40	153	176		2	0.	1	39	103	7
B 1553		20	12	14	10	37	13		21	15 .	2	139	42	102
C 1568	D	7	5	2	2	10	6	٠	11	29 .	1	196	181	111

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ				LANAR 00 HZ			CICAL IKE	. HORI		CONDUC	
AN	OMAT	Y / I	REAL	OUAD I	REAL	OUAD	REAL	OUAD	:	COND	DEPTH*	. COND	DEPTH	RESIS	DEPTH
											М				М
									•			•			
	NE			FLIGHT					•			٠.	40	220	
A	1361	B?	1	3	0	8	28	5 1	•	1	2	. 1	40	330	13
	NE	76	/1	LIGHT	15)				•			•			
	1129			1	0		10	12	:	1	13	. 1	86	409	49
				•		_						•			
LI	NE	802	(I	FLIGHT	14)				•			•			
	2631				2					3			151		
	2578		0	3	1	6	8	53	٠	1	0	. 1	24	1130	0
			/*	nt t 011m	151				•			•			
	NE 244	83 B2	-	FLIGHT 1	15) 1		14	9	•	2	29	. 1	65	346	33
				3											106
				19							0		35	93	5
LI	NE	84	(1	FLIGHT					•					_	
	1430				7									7	
	1434			2	7	5	17	5	•	6	27	. 1	102	57	81
	NE	85		FLIGHT	14)	v.			•			•			
	1271		0.75	1			9	4	:	3	39	. 1	101	198	72
	1264				10		100		:				125		
	1260			2			18			24	34	. 2	128	63	
D	1246	В?	0	0	0	1	4	3	•	1	51	. 1	29	6337	0
									•			•			
		86	- 2	FLIGHT		5	4.5	40	•	1	•	•	46	211	21
	1077 1081			3									46 87		
	1094			2									135		
	1109			16		48							41	4	26
	1113		10		75	49	118	48		17	0	. :	3 26		
G	1116	D	23	20	32		137								
H	1125	B?	0	0	0	0	2	2	•	1	81	•	58	7854	0
-									•		v	•			
	INE 969	87	14	FLIGHT 21	14		92	23	•	9	0	•	3 38	18	15
B		, в В В?			34								20		
D			31		69								35		
E		B?			2						33		78		
F	945	D	5		14								121		
G			4		5								1 88		
H	936	5 B	2	5	3	5	16	6	•	4	21	•	55	170	30

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

				XIAL 00 HZ		LANAR 00 HZ		LANAR 00 HZ			FICAL IKE		ZONTAL EET	CONDUC	
	OMAL!			QUAD PPM	REAL PPM	QUAD PPM	REAL PPM			COND	DEPTH*	COND MHOS		RESIS OHM-M	DEPTH M
LI	NE NE	87	(1	LIGHT	14)	1			•		9				
I	932		100	1	1	3	11	6	•	2	18	. 1	54	271	24
J	927	s?	0	0	1	0	9	2		1	17		185	1035	0
			/*	T TOW					٠			•			
	NE 791	88	6	LIGHT	14)	13	47	53	•	10	17	٠ ,	92	10	
A C	795		12	26	27	53	155	114	-	10 5	0		37	10 30	69 11
D	798		10	30	27	40	155	114		5	3		42	53	14
F	803		10.000	5	15	33	36	28		4	7	. 2	102	52	64
G	819		1	3	1	10	39	23		3	10	. 1	50	59	32
H	827		11	19	17	39	129	107		5	10	. 2	52	46	23
I	834	В	5	7	22	18	46	10		10	15	. 2	58	38	28
J	839	B?	0	4	4	11	41	10	•	1	0	. 1	56	217	11
									•						
LI	NE	89		LIGHT					•			•			
A	718		16	10	43	13	56	1	- 7	37	13		60	2	46
В	714		16	8	30	21	48	7		24		. 3	43	3	36
D	707		23	9	72	25	114	15		54		. 14	44	1	33
E	704		5	1	21	6	31	3		49	30		70	1	56
G	700		11	4	32	25	58	29		21		. 5	75	7	56
I K	695 689		0	2 14	5 29	9 42	41 157	26 73		3 7	7	. 1	41	50	26
L	686		8	6	29	42	157	73	٠	9		. 1	37 4 7	54 22	8 22
M	682		8	18	16	35	107	47		5	0		39	50	10
N	680		4	18	16	35	107	44		3		. 1	60	109	16
			-		, a										
LI	NE	90	(I	FLIGHT	14)						•			
D	581	E?	0	7	9	12	177	43		5	19	. 1	15	725	0
\mathbf{E}	586	В	39	44	14	43	177	201	•	9	4	. 1	25	129	0
F	591		50	38	6	18	90	89		16	5	. 1	19	738	0
H	598			8	0	16	62	58		1	0	. 1	17	728	0
I	601		12	10	19	41	168	104	•	7	0		44	48	13
J	604		12	31	57	41	168	220	•	10		. 2		26	16
K	607		17	31	22	52	160	220	•	6		. 1	39	52	12
L	617	B?	1548	1	2	7	29	35	•	1	2	. 1	42	221	16

^{.*} ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

[.] OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .

[.] LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.