

Bergvesenet

Rannortarkivet.

Bergvesenet rapport or BV 1985 Kommer fraarkiv Ekstern rapport or LR 2570 Oversendt fra Oversendt fra Fortrollig pga Fortrollig fra dato: Fittel An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forfatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Bindal Nordland Nordlandske Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Malm/metall Au Internt arkiv or Rapport lokalisering Trondheim Fortrollig pga Fortrollig fra dato: Form Bindal 1: 250 000 kartblad 1: 250 000 kartblad 1: 250 000 kartblad 1: 250 000 kartblad Semneord Au Sammendrag	Rommer fraarkiv Ekstern rapport nr LR 2570 Oversendt fra Fortrolig pga Fortrolig fra dato: Fittel An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forfatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Fylke Bergdistrikt 1:50 000 kartblad 1:250 000 kart 18251 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord						
Ittel An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forlatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Bindal Nordland Nordlandske Bindal Dokument type Forekomster Geokjemi Dokument type Forekomster Bindal Råstofftype Malm/metall Emneord Au	Tittel An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forfatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Bindal Nordland Nordlandske Bergdistrikt 1:50 000 kartblad 1:250 000 kart 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord		Intern Journal	nr I	nternt arkiv nr		Gradering
An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forfatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Bindal Nordland Nordlandske Bindal Fylke Nordlandske Nordlandske Bergdistrikt 1: 50 000 kartblad 1: 250 000 k	An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forfatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Bindal Nordland Nordlandske 1: 250 000 kartblad 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord	Kommer fraarkiv			versendt fra	Fortrolig pga	Fortrolig fra dato:
An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forfatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Bindal Nordland Nordlandske Bindal Fylke Nordland Nordlandske Bergdistrikt 1: 50 000 kartblad 1: 250 000 kart	An investigation of the recovery of gold from samples from Bindal Progress report No.1 Forfatter Williamson, P. Dato 1982 Bedrift Lakefield Research of Canada Ltd. Kommune Bindal Nordland Nordlandske 1: 250 000 kartblad 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord						
Williamson, P. 1982 Lakefield Research of Canada Ltd. Kommune Fylke Bergdistrikt Nordland Nordlandske 1: 250 000 kartblad 1: 250 000 kartblad 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Malm/metall Au	Williamson, P. 1982 Lakefield Research of Canada Ltd. Kommune Fylke Bindal Nordland Nordlandske 1: 50 000 kartblad 1: 250 000 kart 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord		of the recover Progress	ry of gold f s report No	rom samp	les from Bindal	
Williamson, P. 1982 Lakefield Research of Canada Ltd. Kommune Fylke Bergdistrikt 1:50 000 kartblad 1:250 000 kartblad	Williamson, P. 1982 Lakefield Research of Canada Ltd. Kommune Fylke Bindal Nordland Nordlandske 1: 50 000 kartblad 1: 250 000 kart 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord	Forfatter			Dato	Bedrift	A CAPAC
Bindal Nordland Nordlandske 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Malm/metall Au	Bindal Nordland Nordlandske 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord	Williamson, P.			1982	Lakefield Researc	h of Canada Ltd.
Bindal Nordland Nordlandske 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Malm/metall Au	Bindal Nordland Nordlandske 18251 18252 Fagområde Geokjemi Dokument type Forekomster Bindal Råstofftype Emneord	Kommune	Fylke	Bergdis	trikt	1: 50 000 kartblad	1: 250 000 kartblad
Geokjemi Råstofftype Malm/metall Emneord Au	Geokjemi Bindal Råstofftype Emneord	Bindal				18251	
Malm/metall Au			Dokume	nt type			
Sammendrag				d			
	Sammendrag	Sammendrag					

DV 1985

An Investigation of

The state of the s

THE RECOVERY OF GOLD

from samples

submitted by

A/S SULFIDMALM

Progress Report No. 1

Project No. L.R. 2570

Note:

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of Lakefield Research of Canada Limited.

LAKEFIELD RESEARCH OF CANADA LIMITED Lakefield, Ontario April 23, 1982

INTRODUCTION

The state of the s

In a letter dated December 18, 1981, Mr. Frank Nixon of A/S Sulfidmalm requested metallurgical tests on two samples of a gold-arsenopyrite ore from a Falconbridge Nickel Mines property in Bindal, Norway.

LAKEFIELD RESEARCH OF CANADA LIMITED

D. M. Wydnizie

D.M. Wyslouzil, P. Eng.,

Manager.

R.G. Will amson

R.G. Williamson, P. Eng.,

_

Senior Project Engineer.

Investigation by: R.G. Irwin

B. Thomas

INDEX

	Page No.
INTRODUCTION	1
SUMMARY	2 - 11
1. Head Analysis	2
2. Mineralogy	3
3. Gold Association	3 - 4
4. Cyanidation of Ore	4 - 5
5. Flotation	5 - 9
6. Cyanidation of Flotation Products	10
7. Roasting and Cyanidation of Flotation Products .	11
RECOMMENDATIONS	12
SAMPLE PREPARATION	. 13 - 14
INVENTORY	15
DETAILS OF TESTS	16 - 69

SUMMARY

1. Head Analysis

Representative samples were removed from C and F zone ore for analysis.

Ele	ment	C Zone	F Zone
Au	(g/t)	39.1* (40.9)	7.77**(7.89)
Ag	(g/t)	3.3	2.3
As	(%)	7.71 (7.26)	10.9 (10.8)
Fe	(%)	6.13	9.26
S	(%)	3.39 (3.25)	5.05 (4.97)

^{*} average of 32.9, 42.0, 42.4 g/t Au from three head samples

XRF Semi-Quantitative Analysis

Element	<u>C Zone</u>	F Zone	
Titanium	ND	T	
Chromium	ND	FT	2 3
Manganese	T	FT	Code:
Iron	LM	M	H - 10% plus
Cobalt	ND	ND	
Nickel	FT	FT	MH - 5-15%
Copper	ND	FT	M - 1-10%
Zinc	FT	FT	TW 5.5#
Arsenic	MH	MH	LM5-5%
Bismuth	ND	ND	L1-1%
Lead	ND	ND	m. o
Uranium	ND	ND	TL055%
Thorium	ND	ND	T011%
Yttrium	FT	FT	
Columbium	ND	ND	FT - Less than .01%
Molybdenum	ND	ND	ND - Not detected
Silver	ND ·	ND	
Cadmium	ND	ND	
Tin	ND	ND	
Antimony	ND	ND	

^{**} average of 8.75, 4.97 and 9.60 g/t Au from three head samples

^() average from testwork

The state of the s

Summary - Continued

2. Mineralogy

The mineralogy of the gold-arsenopyrite ores was described in a letter from Mr. Frank Nixon to Lakefield Research, dated December 18, 1981.

C Zone High grade gold mineralization was associated with arsenopyrite in quartz veins. Native gold was intergrown with masses of arsenopyrite grains and as free grains. A few gold inclusions were observed in arsenopyrite grains, which were strongly fractured.

F Zone The granite host rock was cut by arsenopyrite veins which were associated with chlorite alteration along fracture zones. The granite which had been strongly shattered consisted of coarse interlocking feldspars with lesser interstitial and fracture filling quartz. Very little visible gold was observed.

3. Gold Association

The gold association in both ores was determined by a sequential amalgamation and leaching procedure. Each ore was ground to approximately 50 and 80 percent minus 200 mesh. The ground pulp was amalgamated and cyanided to recover available gold. The cyanide residue was leached with HCl and cyanided to determine the gold associated with carbonates. The cyanide residue was leached with HCl and SnCl₂ and cyanided to determine the gold associated with iron and metal oxides. The cyanide residue was finally leached with aqua regia to determine the gold associated with sulphides. Gold in the residue from the aqua regia leach was associated with silicates.

The results are presented in Table No. 1. At a grind of about 80% minus 200 mesh a total of 94% of the gold in Sample C was available for recovery by amalgamation/cyanidation. Only 4% was associated with sulphides. At a similar grinding size on Sample F, a total of 88% of the gold was available for recovery by amalgamation/cyanidation. 10% of the gold was associated with sulphides.

Summary - Continued

3. Gold Association - Cont'd

At a coarser grind of about 50 % minus 200 mesh the amount of gold locked into a sulphide matrix increased to 17 % in Sample F.

Table No. 1 - Gold Association

Sample	Zone	C	Zone	F
Grind % -200 mesh	46	77	47	82
Available by amalgamation	45	68	41	56
Available by cyanidation	42	26	39	32
Associated with carbonates	6	1	2	2
Associated with iron oxides etc.	1	<1	1	<1
Associated with sulphides	6	14	17	10
Associated with silicates	(1	1	<1	<1

4. Cyanidation

Cyanidation tests were conducted on both samples at three grinding sizes in bottle tests on rolls (1 g/L NaCN, 33 % solids, pH 10.5-11.5, 2 x 24 h). The results are presented in Table No. 2.

A total of 93 % of the gold in Sample C could be recovered by cyanidation at a primary grind of 70 % minus 200 mesh leaving a residue assaying 2.5 g/t Au. A finer grinc to 98 % minus 200 mesh reduced the residue assay to 2.1 g/t Au.

A total of 80 % of the gold in Sample F could be recovered by cyanidation at a primary grind of 76 % minus 200 mesh leaving a residue assaying 1.6 g/t Au.

The control of the co

Summary - Continued

4. Cyanidation - Cont'd

Cyanide consumption ranged from 2.6 to 3.4 kg/t and reducing powers ranged from 200 to 260 mL 0.1 N KMnO₄/L pregnant solution.

Additional tests are being conducted to examine various methods of reducing the cyanide consumption.

Table No. 2 - Cyanidation of Ore

Test	Sample	Grind % -200	Reagen	t Cons.	Gold	Residue	Head	Reducing	
No.	Zone	mesh	NaCN kg/t	CaO kg/t	Ext'n	Assay Au, g/t	Assay Au g/t	Power*	pH Range
27 28 29	c c c	40 70 98	1.5 2.9 3.4	1.2 1.2 1.5	90 93 94	3.70 2.47 2.06	37.1 36.8 36.0	120 200 220	10.3-11.4 10.3-11.1 10.3-11.2
30 31 32	F. F	45 76 99	1.3 2.8 3.0	1.2 2.0 2.1	73 80 80	1.72 1.57 1.37	6.32 7.76 6.76	122 218 259	10.1-11.5 10.1-11.2 10.0-11.1

*mL 0.1 N KMnO4/L pregnant solution

5. Flotation

Flotation tests were conducted on both samples at two grinding sizes (approximately 80 and 98 % minus 200 mesh).

Sample C: A primary grind of 80 % minus 200 mesh produced a flotation tailing which repres ted 75 % of the feed weight and assayed 1.5 g/t Au. The rougher concentrate assayed 170 g Au, 26 % As, and 12 % S at 98 % gold recovery.

Increasing the grinding fineness to 98 % minus 200 mesh did not significantly reduce gold losses in the flotation tailing.

Summary - Continued

5. Flotation - Cont'd

Cleaning tests reduced the concentrate weight by about 50 % with a loss of about 6 % of the gold. The cleaner concentrate from Test 9 represented 13 % of the feed weight and assayed 306 g/t Au, 41 % As, and 19 % S at 92 % gold recovery.

Sample F: A primary grind of 80 % minus 200 mesh produced a flotation tailing which represented 65 % of the feed weight and assayed 0.5 g/t Au. The rougher concentrate assayed 19 g/t Au, 28 % As, and 13 % S at 96 % gold recovery.

Increasing the grinding fineness did not reduce gold loss in the flotation tailing.

Cleaning tests reduced the concentrate weight by about 50 % with a loss of about 10 % of the gold in the cleaner tailings. The cleaner concentrate from Test 10 represente 19 % of the feed weight and assayed 32 g/t Au, 40 % As, and 19 % S at 86 % gold recovery.

The flotation test conditions and results are contained in Table No. 3. Gold grade versus recovery cleaning curves are illustrated in Figures 1 and 2.

Table No. 3 - Flotation Test Conditions and Results

Conditions

Test		Grind	Roughe	r Flota	tion	D	Cleaner	Flotat	ion	Cleaner Feed
No.	Sample	%-200 mesh	AX350 g/t	AP208 g/t	Time min.	Regrind min	Stages	AX350 g/t	AP208 g/t	% -200 mesh
5 9 11 13 15*	C Zone C Zone C Zone C Zone C Zone	77 77 77 97	40 40 40 70 40	40 40 40 70 40	12 12 12 15 12	10	3 3 3 3	5 15 10 5	5 15 10 5	92 99 99
7 10 12 14 16*	F Zone F Zone F Zone F Zone F Zone	82 82 82 97	40 40 40 70 40	40 40 40 70 40	12 12 12 15 12	- - 15 -	- 3 3 3 3	5 20 10 5	5 20 10 5	92 99 99

^{*10} kg charge for concentrate production

Table No. 3 - Flotation Test Conditions and Results - Cont'd

Results

		Cleane	er Cor	centi	rate				Roughe	er Cor	centi	ate				I	Roughe	er Tai	lling	3	
rest	Wgt.	Assay	r %,g/	/t	% Di	st.		Wgt.	Assay	1 %, B	/t	% D	ist		Wgt.	Assay	, %, g	/t	% Di	st.	
No.	%	Au	As	S	Au	As	s	%	Au	As	S	Au	As	S	%	Au	As	S	Au	As	S
5 9 11 13	- 13.3 9.1 12.0 11.7	306 362 324 303			86 93	- 77 50 67 69	70	27.4 25.4 31.7 36.3 21.3	140 170 118 113 179	21.5	12.0 9.6	98 98 98	93 95 94	97 96 95 95 94	72.6 74.6 68.3 63.8 78.7	1.46 1.32 1.27	0.39 0.63 0.55 0.69 0.68	0.29 0.26 0.27	3 2 2	4 7 5 6 7	3 7 6 5 6
7 0 2 4 6	19.2 12.8 16.7	51.9 38.9	39.6 40.7 37.9 39.9	18.9	75 84	60	- 74 49 63 65	36.0 34.7 40.2 46.8 30.5	19.3 21.0 15.9	28.5 28.4 25.4 21.0 32.2	13.3 11.5 10.1	96 95 96	93 94 93	95 94 95 94 91	64.0 65.3 59.8 53.2 69.5	0.47 0.78 0.54	0.93 1.10 1.07 1.37 1.69	0.44 0.44 0.57	5 5 4	6 7 6 7 11	56569

FIGURE No 1 DEE ZONE C COLD GEADE VS ECCOVERY GOLD RECOVERY ("1) LEGEND CRIND 1 . - 200+ 9 77 11 13 27 85 80 100 540

ASERY (0/t)

GOLD

FIGURE No 2 ZONE F GULD GRADE VS PEGGUERY 100 GULD RECOVERY (1) 80 LECOND GRIND 1 - 200 M N. 10 82 12 + PRECIND 14 70 معا 10 30

(1)t)

COLD ASSERY

Summary - Continued

6. Cyanidation of Flotation Products

Cyanidation tests were conducted on the cleaner concentrate, combined cleaner tailing, and rougher tailing from flotation tests on both samples C and F. The test conditions were 1 g/L NaCN, 33 % solids, pH 10.5-11.5, 2 x 24 h, in bottle test on rolls.

The results which are contained in Table No. 4 showed 85 % gold extraction from the cleaner concentrate, 90 % gold extraction from the rougher concentrate and 93 % overall gold extraction from Sample C.

Sample F produced 64 % gold extraction from the cleaner concentrate, 73 % gold extraction from the rougher concentrate and 76 % overall gold extraction.

Cyanide consumption was significantly lower than cyanide tests on both ground ores. This phenomenon will be examined in further tests.

Table No. 4 - Cyanidation of Flotation Products

Test Sample			Reagen	t Cons.*		Ext'n	Residue		
No. Zone	Flotation Product	NaCN kg/t	CaO kg/t	Ind.		Assay Au, g/t	Head Assay Au, g/t		
17 19 6	C C	Cleaner Conc. Cleaner Tail. Rougher Tail.	0.07 0.09 0.20	0.07 0.14 0.30	96 76 74	85 5 3	13.2 6.2 0.5	303 29 1.9	
18 0 8	F F F	Cleaner Conc. Cleaner Tail. Rougher Tail.	0.15 0.08 0.20	0.13 0.13 0.30	85 57 42	64 9 3	5.6 3.6 0.4	30 8.7 0.8	

^{*}overall

Summary - Continued

7. Roasting and Cyanidation of Flotation Products

The cleaner concentrates and combined cleaner tailings from flotation tests on both Samples C and F were roasted in a muffle furnace in two stages at 575°C and 625°C to eliminate the arsenic and exfoliate the sulphides to expose the gold for recovery by cyanidation.

Efficient arsenic and sulphur elimination was achieved in the tests. Gold recovery from Sample C increased by 2 % from the cleaner concentrate and by 3 % from the rougher concentrate. This data confirmed the gold association testwork in Section 3 which showed approximately 4 % of the gold associated with sulphides.

Gold recovery from Sample F increased by 6 % from the cleaner concentrate and by 9 % from the rougher concentrate. This data also confirmed the gold association result in Section 3 which showed approximately 10 % gold association with sulphides at a primary grind of about 80 % minus 200 mesh.

The results are tabulated in Table No. 5.

Table No. 5 - Effect of Roasting in Cyanide Recovery

Test Sample				Reagen	Cons.*	Comment of the Comment	Ext'n	Residue Assay			
No. Zone	Flotation Product	Treatment	NaCN kg/t	CaO kg/t	Ind.	Au O'all	Au g/t	As %	S %		
17 21 19 23	0000	Cleaner Conc. Cleaner Conc. Cleaner Tail. Cleaner Tail.	As Rec'd Roasted As Rec'd Roasted	0.07 0.10 0.09 0.05	0.07 0.19 0.14 0.08	96 97 76 87	85 87 5 6	13.2 15.0 6.2 3.8	1.1	<0.3	
18 22 20 24	FFFF	Cleaner Conc. Cleaner Conc. Cleaner Tail. Cleaner Tail.	As Rec'd Roasted As Rec'd Roasted	0.15 0.16 0.08 0.16	0.13 0.33 0.13 0.25	85 93 57 70	64 70 9	5.6 5.0 3.6 3.3	1.3	<0.1	

^{*}overall

Control of the Contro

$\underline{\mathtt{R}}\ \underline{\mathtt{E}}\ \underline{\mathtt{C}}\ \underline{\mathtt{O}}\ \underline{\mathtt{M}}\ \underline{\mathtt{M}}\ \underline{\mathtt{E}}\ \underline{\mathtt{N}}\ \underline{\mathtt{D}}\ \underline{\mathtt{A}}\ \underline{\mathtt{T}}\ \underline{\mathtt{I}}\ \underline{\mathtt{O}}\ \underline{\mathtt{N}}\ \underline{\mathtt{S}}$

Additional cyanidation tests are being conducted on Sample C to determine the cause and to examine methods of reducing cyanide consumption.

SAMPLE PREPARATION

On March 5, 1982, 2 drums of F Zone and 1 drum of C Zone gold-arsenopyrite ore were received from A/S Sulfidmalm.

The 2 drums of F Zone were combined, jaw and cone crushed to -10 mm and riffled to reject 3/4 to storage. The remaining 1/4 was roll crushed to -1.7 mm (10 mesh) and riffled into 15 x 2 kg and 1 x 10 kg test charges and a head sample for analysis. Three separate assay samples were prepared for gold analysis.

The drum of C Zone was jaw and cone crushed to -10 mm and riffled to reject 1/2 to storage. The remaining 1/2 was roll crushed to -1.7 mm (10 mesh) and riffled into 15: 2 kg and 1 x 10 kg test charges and a head sample for analysis. Three separate assay samples were prepared for gold analysis.

Screen Analyses

Zone F - Head

Mesh Size	% Ret	ained	% Passing
(Tyler)	Individual	Cumulative	Cumulative
+ 10	0.8	0.8	99.2
14	15.3	16.1	83.9
20	15.5	31.6	68.4
28	14.1	45.7	54.3
35	10.7	56.4	43.6
35 48	9.5	65.9	34.1
65	7.1	73.0	27.0
100	5.8	78.8	21.2
150	5.1	83.9	16.1
200	3.9	87.8	12.2
270	3.3	91.1	8.9
400	2.4	93.5	6.5
- 400	6.5	100.0	
Total	100.0		

Sample Preparation - Continued

Screen Analyses - Cont'd

Zone C - Head

Mesh Size (Tyler)	% Ret Individual	ained	% Passing
(1)101/	Individual	Cumulative	Cumulative
+ 10 14 20 28 35 48 65 100 150 200 270 400 - 400	0.6 16.8 16.8 15.9 10.6 9.1 6.0 5.1 4.5 3.2 2.6 1.5 7.3	0.6 17.4 34.2 50.1 60.7 69.8 75.8 80.9 85.4 88.6 91.2 92.7 100.0	99.4 82.6 65.8 49.9 39.3 30.2 24.2 19.1 14.6 11.4 8.8 7.3
Total	100.0		

and the second of the second o

INVENTORY

The following samples are on hand at Lakefield.

12 kg - 10 mm C Zone

1 x 2 kg - 10 mm C Zone

1 x 2 kg - 1.7 mm (10 mesh) C Zone

100 kg - 10 mm F Zone

3 x 2 kg - 1.7 mm (10 mesh) F Zone

1 x 250 g - Cleaner Concentrate Test 15 C Zone

4 x 250 g - Cleaner Concentrate Test 16 F Zone

2 x 250 g - Combined Cleaner Tailing Test 16 F Zone

redennie. cy is one inter water 1's arrang on the mil ings.

DETAILS OF TESTS

Test No. 1

Purpose:

To determine the Au association of Zone C Sample.

Procedure:

A 2 kg -10 mesh sample was ground and filtered. Two 500 gram samples were cut as opposite 1/8 th's of the filter cake. One 500 gram sample was used as a head sample for screen analysis.

The second 500 gram sample was amalgamated with 10 g of mercury for

one hour at pH 10.5 with NaOH. The mercury was recovered by elutriation.

The amalgamation residue was cyanided in a 2.5 litre bottle for 24 hours. The pH was maintained at 11.5 with $Ca(OH)_2$ and the solution strength maintained at 1.0 g/L NaCN.

The cyanide residue was filtered washed 3 times with water and dried. The solution and residue were sampled and analysed for Au and Ag.

A 100 gram sample was riffled from the cyanide leach residue for further leaching tests.

This sample was leached in 200 mL of concentrated HCl for one hour at 100°C (slight boil) to dissolve carbonate(s). The pulp was filtered and the residue was water washed 3 times. The solution was assayed for Au. The acid leached residue was repulped with 200 mL of water and cyanided at pH ll with 20 g/L NaCN for lh, filtered, and washed 3 times with water.

The cyanide solution was assayed for Au.

To determine the Au in association with iron oxides, the leach residue was leached for 1 h at 100°C (slight boil) in concentrated HCl with stannous chloride. The pulp was filtered and washed 3 times with water. The residue was cyanided at pH 11.0 in 200 mL of 20 g/L NaCN, for 1 h, filtered and washed 3 times with water. The leach residue was leached for 1 h at 100°C in 200 mL of aqua regia. The pulp was filtered and washed. The aqua regia leach was repeated once to ensure complete dissolution of the sulphides. The pulp was filtered, washed and the solution and residue were assayed for Au.

Feed:

2000g minus 10 mesh Zone C ore.

Grind:

20 minutes at 66% solids in lab ball mill.

Conditions:

Amalgamation: Feed - 500 g ground ore % solids - 33

% solids - 33 Time - 1 h Mercury - 10 g

Condition No. 1:

Feed - 500 g amalgamation tailing

% Solids - 33

Solution - pH 10.5 - 11.5 adjusted with

Ca(OH)₂

- NaCN - 1 g/L

Test No. 1 - Continued

Reagent Balance

Time		Added,	Grams		Resi	dual	Cons	umed		
Hours	Act NaCN	tual Ca(OH)2	Equiv NaCN	ralent CaO	Gr. NaCN	ams CaO	Gr. NaCN	ams CaO	рH	R.P.*
0-2 2-8 8-24	1.05 0.10 0.04	1.00	1.00 0.10 0.04	0.72	0.90 0.96 1.00	0.27	0.10	0.45	11.7	- 60
Total	1.19	1.00	1.14	0.72	1.00	0.27	0.14	0.45	-	1

Reagent Consumption (kg per metric ton of cyanide feed) NaCN: 0.28

CaO:

ľ

Final Solution Volumes: 2240 mL

*Reducing Power: mL 0.1 N KMnO4/L pregnant solution

HCl Leach: Feed - NaCN No. 1 Leach Residue

% Solids - 33

Solution - Conc. HCl - 100°C Temp. Time - 1 h

Cyanidation No. 2:

Feed - HCl Leach Residue

% Solids 33

- pH 11.0 adjusted with NaOH Solution

NaCN 20 g/L

Time 1 h

HCl/SnCl2 Leach: Feed - NaCN No. 2 Leach Residue

% Solids 33

Solution 200 mL Conc. HCl - 20 mL 5% Sn Cl₂

Temp. Time l h

Observations - No colour change with SnCl2

Cyanidation No. 3:

Feed - HCl/SnCl2 Leach Residue

% Solids 33

Solution - pH 11.0 adjusted with NaOH

- NaCN 20 g/L

Time 1 h

Aqua-Regia Leach:

Feed - NaCN No. 3 Leach Residue

% Solids 33

Solution - 160 mL HCl + 40 mL HNO3

Temp. - 100°C Time 1 h Repeat 1 time The state of the s

Test No. 1 - Continued

Metallurgical Results

Amalgamation and Cyanidation No. 1

Product	Amount	Assays, mg/L, g/t		% Distri	ibution
Froduct	Amount	Au	Ag	Au	Ag
1. Hg Amalgam 2. 24 h Cyanide Solution 3. 24 h Cyanide Residue	10 g 2240 mL 490.4 g	3.84 5.97	0.33 1.40	44.6 41.3 14.1	51.7 48.3
Head (Calculated)	490.4 g	42.4	2.91	100.0	100.0

Overall Results

Product	A	Assays, mg/L, g/t	% Distribution
Froduct	Amount		Ag
1. Amalgam			44.7
2. NaCN Leach No. 1	456.7 mL	3.84	41.4
3. HCl Leach Solution	480 mL	0.006	0.1
4. NaCN Leach No. 2	500 mL	0.49	5.8
5. HCl/SnCl2 Leach	500 mL	0.002	0.0
6. NaCN Leach No. 3	510 mL	0.11	1.3
7. Aqua Regia	890 mL	0.30	6.3
8. Residue	70.0 g	0.22	0.4
Head (Calculated)	100.0 g	42.3	100.0

Screen Analysis - 20 Minutes/2 kg Zone C

Mesh Size	% Ret	% Passing		
(Tyler)	Individual	Cumulative	Cumulative	
+ 35 48	0.3	0.3	99.7	
	2.1	2.4	97.6	
65	7.3	9.7	90.3	
100	14.2	23.9	76.1	
150	16.8	40.7	59.3	
200	13.7	54.4	45.6	
270	10.9	65.3	34.7	
400	7.7	73.0	27.0	
- 400	27.0	100.0		
Total	100.0			

Test No. 2

Purpose:

To determine the gold association of Zone F sample.

Procedure:

As per test No. 1.

Feed:

2000 grams minus 10 mesh Zone F ore.

Grind:

20 minutes at 66% solids in lab ball mill.

Conditions:

As per test No. 1

Reagent Balance - Cyanidation No. 1

Time		Added,	Grams		Resi	dual	Cons	umed	
Hours	Ac NaCN	tual Ca(OH)2	Equiv NaCN	ralent CaO	Gr NaCN	ams CaO	Gr: NaCN	ams CaO	R.P.*
0-2 2-8 8-24	1.05 0.10 0.04	1.00	1.00 0.10 0.04	0.72	0.90 0.96 1.00	0.27	0.10	- 0.45	- 60
Total	1.19	1.00	1.14	0.72	1.00	0.27	0.14	0.45	

Reagent Corsumption (kg per metric ton of cyanide feed) NaCN: 0.28 CaO: 0.90

Final Solution Volumes: 2120 mL

Metallurgical Results

Amalgamation and Cyanidation No. 1

Product	Amount	Assays,	g/t, mg/L	% Distribution		
110440	Amount	Au	Ag	Au	Ag	
1. Hg Amalgam 2. 24 h Cyanide Solution 3. Residue	10 g 2120 mL 494.1 g	0.76 1.92	0.14 1.50	40.2 37.6 22.2	28.8 71.2	
Head (Calculated)	494.1 g	8.66	2.10	100.0	100.0	

^{*} Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Test No. 2 - Continued

Metallurgical Results - Cont'd

Overall Results

Product	Amount	Assays, g/t, mg/L	% Distribution	
Product	Amount	Au	Au	
1. Amalgam			41.1	
2. NaCN Leach No. 1	429 mL	0.76	38.3	
3. HCl Leach Solution	480 mL	0.003	0.1	
4. NaCN Leach No. 2	470 mL	0.041	2.2	
5. HCl/SnCl2 Leach	550 mL	0.002	0.1	
6. NaCN Leach No. 3	540 mL	0.02	1.3	
7. Aqua Regia	920 mL	0.15	16.2	
8. Residue	66.4 g	0.09	0.7	
Head (Calculated)	100.0 g	8.52	100.0	

Screen Analysis

20 minutes/2 kg Zone F

Mesh Size	% Ret	ained	% Passing
(Tyler)	Individual	Cumulative	Cumulative
+ 20	0.1	0.1	99.9
28	0.1	0.2	99.8
35 48	0.2	0.4	99.5
48	1.6	2.0	98.0
65	5.7	7.7	92.3
100	13.0	20.7	79.3
150	17.8	38.5	61.5
200	14.8	53.3	46.7
270	11.2	64.5	35.5
400	8.4	72.9	27.1
- 400	27.1	100.0	-
Total	100.0		

Test No. 3

Purpose:

To repeat test No. 1, but at a finer grind.

Procedure:

As per test No. 1.

Feed:

2000 grams minus 10 mesh Zone C ore.

Grind:

40 minutes at 66% solids in lab ball mill.

Conditions:

As per test No. 1.

Reagent Balance - Cyanidation No. 1

Time		Added,	Grams		Resi	Residual		umed		
Hours	Ac NaCN	tual Ca(OH)2	Equiv NaCN	ralent CaO	Gr. NaCN	ams CaO	Gr NaCN	ams CaO	рН	R.F
0-2 2-8 8-24	1.05 0.12 0.06	1.00	1.00 0.12 0.06	0.72	0.88 0.94 1.00	0.24	0.12	- 0.48	11.7 11.4 11.3	- 60
Total	1.23	1.00	1.18	0.72	1.00	0.24	0.18	0.48	-	-

Reagent Consumption (kg per metric ton of cyanide feed) NaCN: 0.36 CaO: 0.96

Final Solution Volumes: 2100 mL

*Reducing Power: mL 0.1 N KMnO4/L pregnant solution

The state of the s

The large free for the contract of the contrac

Test No. 3 - Continued

Metallurgical Results

Amalgamation & Cyanidation No. 1

		Assays, mg/L, g/t		% Distribution		
Product	Amount	Au	Ag	Au	Ag	
1. Hg Amalgam 2. 24 h Cyanide Solution 3. Cyanide Residue	10 g 2100 mL 498.7 g	3.25 3.94	0.29 1.30	67.3 25.4 7.3	- 48.4 51.6	
Head (Calculated)	498.7 g	53.9	2.53	100.0	100.0	

Overall Results

		Assays, mg/L, g/t	% Distribution
Product	Amount	Au	Au
1. Amalgam 2. NaCN Leach No. 1 3. HCl Leach Solution 4. NaCN Leach No. 2 5. HCl/SnCl ₂ Leach 6. NaCN Leach No. 3 7. Aqua Regia 8. Residue	421 mL 470 mL 460 mL 510 mL 500 mL 880 mL 67.9 g	3.25 0.002 0.16 <0.001 0.04 0.26 0.50	67.7 25.6 0.0 1.4 - 0.4 4.3 0.6
Head (Calculated)	100.0 g	53.5	100.0

Screen Analysis

40 minutes/2 kg Zone C

Mesh Size	% Ret	% Retained				
(Tyler)	Individual	Cumulative	Cumulative			
+ 65	0.1	0.1	99.9			
100	1.3	1.4	98.6			
150	6.6	8.0	92.0			
200	14.6	22.6	77.4			
270	16.6	39.2	60.8			
400	13.3	52.5	47.5			
- 400	47.5	100.0	-			
Total	100.0					

The second secon

Test No. 4

Purpose:

To repeat test No. 2, but at a finer grind.

Procedure:

As per test No. 1.

Feed:

2000 grams minus 10 mesh Zone F ore.

Grind:

40 minutes at 66% solids in lab ball mill.

Conditions: As per test No. 1.

Reagent Balance - Cyanidation No. 1

Time		Added,	Grams		Residual		Consumed		
Hours	Act NaCN	Ca(OH) ₂	Equiv NaCN	valent Ca0	Gr NaCN	ams CaO	Gr: NaCN	ams CaO	R.P.*
0-2 2-8 8-24	1.05 0.12 0.09	1.00	1.00 0.12 0.09	0.72	0.88 0.91 1.00	- 0.30	0.12 0.09	- 0.42	- 60
Total	1.26	1.00	1.21	0.72	1.00	0.30	0.21	0.42	-

Reagent Consumption (kg per metric ton of cyanice feed) NaCN: 0.42 CaO: 0.84

Final Solution Volumes: 2060

^{*} Reducing Power : mL 0.1 N KMn04/L of pregnant solution

Test No. 4 - Continued

Metallurgical Results

Amalgamation & Cyanidation No. 1

		Assays,	mg/L, g/t	% Distribution		
Product	Amount	Au	Ag	Au	Ag	
1. Amalgam 2. 24 h Cyanida Solution 3. Cyanide Residue	10 g 2060 mL 495.9 g	0.71 1.61	0.13 1.60	53.5 30.0 16.5	- 25.4 74.6	
Head (Calculated)	495.9 в	9.80	2.1	100.0	100.0	

Overall Results

		Assays, mg/L, g/t	% Distribution	
Product	Amount	Au	Au	
l. Amalgam			55.7	
2. NaCN Leach No. 1	416 mL	0.71	31.6	
3. HCl Leach Solution	440 mL	0.304	0.2	
4. NaCN Leach No. 2	500 mL	0.327	1.5	
5. HCl/SnCl2 Leach	540 mL	<0.301		
. NaCN Leach No. 3	480 mL	0.012	0.6	
7. Aqua Regia	940 mL	0.10	10.1	
8. Residue	66.4 g	0.04	. 0.3	
Head (Calculated)	100.0 g	9.34	100.0	

Screen Analysis

40 minute Grind

Mesh Size	% Ret	ained	% Passing
(Tyler)	Individual	Cumulative	Cumulative
+ 65	0.1	0.1	99.9
100	0.8	0.9	99.1
150	4.8	5.7	94.3
200	11.9	17.6	82.4
270	17.4	35.0	65.0
400	14.6	49.6	50.4
- 400	50.4	100.0	
Total	100.0		

Test No. 5

Purpose:

To examine the flotation response of C Zone ore.

Procedure:

As below.

Feed:

2 kg minus 10 mesh C Zone

Grind:

40 minutes at 66% solids in ball mill.

Conditions:

Stage	Reagents Added, g/tonne			Tir	s		
	AX350	AF208	DF250	Grind	Cond.	Froth	pН
Grind	_		1	40			
Rougher 1	20	20	10	-	2	4	7.8
Rougher 2	10	10	5	- 1	1	4	_
Rougher 3	10	10	5	-	1	4	_

Stage

Flotation Cell

Rougher 1000 g D-1

Speed: r.p.m.

1800

% Solids

33

Observations:

The ground sample appeared liberated. The arsenopyrite floated very well.

Strong first stage flotation.

The second and third stages floated coarse arsenopyrite and some middlings.

Test No. 5 - Continued

Metallurgical Results

	Weight	Assays	s, %, g/	tonne	% Distribution			
Product	%	Au	As	S	Au	As	S	
1. Rougher Conc. 1 2. Rougher Conc. 2 3. Rougher Conc. 3 4. Rougher Tailing	ugher Conc. 2 4.31 ugher Conc. 3 3.44		32.3 12.8 5.94 0.39	14.2 5.25 2.32 0.13	94.4 2.4 0.8 2.3	85.9 7.5 2.8 3.8	87.4 7.1 2.5 3.0	
Head (Calculated)	100.00	39.31	7.37	3.18	100.0	100.0	100.0	

Calculated Grades and Recoveries

							400
Products 1 & 2	23.92	159.2	28.8	15.6	96.8	93.4	94.5
Products 1 to 3	27.36	140.3	25.9	11.3	97.6	96.2	97.0

Test No. 6

Purpose:

To cyanide the flotation tailing from test No. 5.

Procedure:

The sample was pulped with water in a two litre bottle. NaCN and lime were added and the cyanidation was carried out on rolls in 1 x 24 hour stage. The pulp was filtered and the residue washed

three times with water.

Feed:

500 g flotation tailing from test No. 5.

Solution Volume: 1000 mL

Pulp Density 33% solids

Solution Composition: 1.0 g/L NaCN

pH Range:

10.5 - 11.5 with Ca(OH)2

Grind:

Nil

Reagent Balance

Time		Added	, Grams		Resi	dual	Cons	umed			
Hours	Actual NaCN Ca(OH)2		Equivalent NaCN CaO		Grams NaCN CaO		Grams NaCN CaO		рН		R.P.*
0-2 2-7 7-24	1.0	0.17 0.07 0.05	0.95	0.13 0.05 0.04	0.84 0.95 0.93	0.02 0.03	0.11 0 0.02	0.16 0.03	10.9 10.9 11.0	10.4 10.7 10.6	22.4
Total	1.12	0.29	1.06	0.22	0.93	0.03	0.13	0.19	-		-

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.26 CaO: 0.38

Ī

* Reducing Power: mL O.1 N KMnO4/L pregnant solution

Metallurgical Results

Product	Amount	Assays, mg/L, g/t	% Distribution	
rroduct	Amount	Au	Au	
1. Solution 2. Residue	2210 mL 497.2 g	0.22 0.34	74.2 25.8	
Head (Calc.)	497.2 g	1.32	100.0	

Comments: Efficient recovery of gold from rougher tailing.

Test No. 7

Purpose:

To repeat test No. 5 on F Zone ore.

Procedure:

As below.

Feed:

2 kg minus 10 mesh F Zone.

Grind:

40 minutes at 66% solids in ball mill.

Conditions:

Stage	Reager	nts Added,	Time, minutes		
Stage	AX350	AF208	DF250	Cond.	Froth
Grind				1 4	
Rougher 1	20	20	10	2	4
Rougher 2	10	10	5	1	4
Rougher 3	10	10	5	1	4

Stage

Rougher

Flotation Cell

1000 g D-1

Speed: r.p.m.

1800

% Solids

33

Observations:

Sample appeared high grade arsenopyrite.

Some arsenopyrite present as pepper inclusions in silicates. These particles remained in the flotation tailing.

Metallurgical Results

Product	Weight	Assays, %, g/tonne			% Distribution		
Product	%	Au 30.53 5.76 2.74 0.42	As	S	Au	As	75.3 16.8 2.9 5.0
1. Rougher Conc. 1 2. Rougher Conc. 2 3. Rougher Conc. 3 4. Rougher Tailing	22.40 9.39 4.18 64.03		35.8 20.3 7.82 0.93	16.5 8.79 3.45 0.38	88.1 7.0 1.5 3.5	73.9 17.6 3.0 5.5	
Head (Calculated)	100.00	7.76	10.8	4.91	100.0	100.0	100.0

Calculated Grades and Recoveries

Products 1 & 2 Products 1 to 3	23.21 20.83	14.22			92.1 95.0
		 1	, , , ,	, , , ,	37.0

Test No. 8

Purpose:

To cyanide the flotation tailing from test No. 7.

Procedure:

The sample was pulped with water in a two litre bottle. NaCN and lime were added and the cyanidation was carried out on rolls in 1 - 24 hour stage. The pulp was filtered

and the residue washed three times with water.

Feed:

500 g flotation tailing from test No. 7.

Solution Volume:

1000 mL Pulp Density 33% solids

Solution Composition:

1.0 g/L NaCN

pH Range:

10.5 - 11.5 with Ca(OH)2

Reagent Balance:

Time		Added	, Grams		Resi	dual	Cons	umed			
Hours		tual Ca(OH) ₂	Equi:	valent Ca0	Gr NaCN	ams CaO	Gr NaCN	ams Ca0	I	Н	R.P.*
0-2 2-5 5-24	1.0 0.13 0.03	0.20 0.08 0.07	0.95 0.12 0.03	0.15 0.06 0.05	0.83 0.92 0.93	0.02 0.03	0.12 0.03 0.02	0.19	11.2 10.9 11.0	10.3 10.6 10.5	32.4
Total	1.16	0.35	1.10	0.26	0.93	0.03	0.17	0.23	-	-	<u>-</u>

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.34 CaO: 0.46

*Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Metallurgical Results

Product	Amount	Assays, mg/L, g/t	% Distribution	
Froduct	Amount	Au	Au	
1. Solution 2. Residue	2130 mL 496.7 g	0.041 0.24	42.2 57.8	
Head (Calc.)	496.7 g	0.41	100.0	

Test No. 9

Purpose:

To examine the cleaning characteristics of ore sample C.

Procedure:

As below.

Feed:

2 kg minus 10 mesh ore sample Zone C.

Grind:

40 minutes at 66% solids in lab ball mill.

Conditions:

	Reager	nts Added	i, g/t	Time, minutes		
Stage	AX350	AF208	DF250	Grind	Cond.	Froth
Grind			9 129 1	40		
Rougher 1	20	20	10	-	2	14
Rougher 2	10	10	5		1	4
Rougher 3	10	10	5	-	1	14
1st Cleaner		-	_	-	1	5
	5	5	-	-	1	2
2nd Cleaner	-	- 1	- 1	-	1	5
3rd Cleaner	-	-	-	-	1	14

Stage Flotation Cell Speed: r.p.m. % Solids Rougher 1000 g D-1 1800 Cleaner 500 g D-1 1200

33

Observations:

Rougher - as per test No. 5

- some sulphides present as small attachments on large gangue particles
- Cleaners most of the arsenopyrite floated rapidly. The first cleaner required additional collector to float large sulphide particles and sulphide middlings.
 - water cleaning was used in later stages
 - 2nd & 3rd cleaner tailings contained middlings and large arsenopyrite grains
 - all cleaner tailings appeared high in slimes

CHIEF THE PROPERTY OF THE PROP

Test No. 9 - Continued

Metallurgical Results

Product	Weight	eight Assays, %, g/tonne			% Distribution		
1100000	%	Au	As	S	Au	As	S
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	13.27 1.87 3.63 6.65 74.58	306.30 41.43 38.42 5.63 1.46	40.8 22.6 13.6 4.18 0.63	19.2 10.6 5.39 1.74 0.29	91.8 1.8 3.1 0.8 2.5	76.5 6.0 7.0 3.9 6.6	77.8 6.1 6.0 3.5 6.6
Head (Calculated)	100.00	44.28	7.08	3.27	100.0	100.0	100.0

Calculated Grades and Recoveries

Products 1 to 4 25.42 169.91 26.00 12.03 97.5 93.4 9						93.6 96.7 97.5	82.5 89.5 93.4	83.9 89.9 93.4 15.6
--	--	--	--	--	--	----------------------	----------------------	------------------------------

Screen Analysis

Combined Cleaner Products

Mesh Size (Tyler)	% Ret	ained Cumulative	% Passing Cumulative
+ 100 150 200 270 400 - 400	0.1 1.6 6.6 13.5 14.9 63.3	0.1 1.7 8.3 21.8 36.7 100.0	99.9 98.3 91.7 78.2 63.3
Total	100.0		

Test No. 10

Purpose:

To examine the cleaning characteristics of ore sample F.

Procedure:

As below.

Feed:

2 kg minus 10 mesh ore sample Zone F.

Grind:

40 minutes at 66% solids in lab ball mill.

Conditions:

	Reagen	ts Added, a	g/tonne	Time, minutes			
Stage	AX350	AF208	DF250	Grind	Cond.	Froth	
Grind				40			
Rougher 1	20	20	10	-	2	14	
Rougher 2	10	10	5	140-	1	14	
Rougher 3	10	10	5	-	1	14	
1st Cleaner	-	_	-	-	1	5	
	5	5		-	1	2	
2nd Cleaner	-	-	-	-	1	5	
3rd Cleaner	-	-	- P. I.	-	1	4	
	The second secon		1		I was a second of the second	1	

Stage
Flotation Cell
Speed: r.p.m.
% Solids

Rougher 1000 g D-1 1800 33

Cleaner 500 g D-1 1200

Observations:

Flotation appeared as per test No. 9.

The silica & sulphide middlings present during cleaning consisted of smaller sulphide inclusions.

Test No. 10 - Continued

Metallurgical Results

Product	Weight	Assays, %, g/tonne			% Distribution		
Product	%	% Au	As	S	Au	As	S
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	19.20 3.14 4.45 7.94 65.27	31.56 8.58 4.80 2.20 0.47	39.6 28.0 17.8 7.20 1.10	18.9 12.8 7.71 3.18 0.44	86.3 3.8 3.0 2.5 4.4	72.0 8.3 7.5 5.4 6.8	73.9 8.2 7.0 5.1
Head (Calculated)	100.00	7.02	10.6	4.91	100.0	100.0	100.0

Calculated Grades and Recoveries

Products 1 & 2 Products 1 to 3 Products 1 to 4 Products 2 to 4	22.34	28.33	38.0	18.04	90.1	80.3	82.1
	26.79	24.42	34.6	16.33	93.1	87.8	89.1
	34.73	19.34	28.4	13.32	95.6	93.2	94.2
	15.53	4.24	14.4	6.42	9.3	21.2	20.3

Screen Analysis

Combined Cleaner Products

Mesh Size	% Ret	% Retained					
(Tyler)	Individual	Cumulative	% Passing Cumulative				
+ 100	0.1	0.1	99.9				
150	1.4	1.5	98.5				
200	6.3	7.8	92.2				
270	14.8	22.6	77.4				
400	16.4	39.0	61.0				
- 400	61.0	100.0	-				
Total	100.0						

Test No. 11

Purpose:

To determine the effect of regrinding the rougher concentrate before

cleaning.

Procedure:

As below.

Feed:

2 kg minus 10 mesh ore sample Zone C.

Grind:

40 minutes at 66% solids in lab ball mill.

Conditions:

	Reagen	ts Added,	g/tonne	Tir	me, minute	s
Stage	AX350	AF208	DF250	Grind	Cond.	Froth
Grind			100 100 100	40		-
Rougher 1	20	20	10	-	2	14
Rougher 2	10	10	5	-	1	14
Rougher 3	10	10	5	-	1	14
Regrind	-		-	10	-	-
lst Cleaner	5	5	5	-	1	3
	5	5	5	- 1	1	3
	5	5	5	-	1	3
2nd Cleaner	-	1	1	-	1	5
3rd Cleaner	-	-	-	-	1	14

Stage Flotation Cell Regrind Ball Mill

Test No. 11 - Continued

Metallurgical Results

Product	Weight	Assay	ys, %, g/	tonne	% Di	% Distribution		
Product	%	Au	As	S	Au	As	S	
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	9.09 3.93 7.59 11.07 68.32	361.52 51.58 20.72 7.55 1.32	39.8 26.5 16.4 8.25 0.55	18.7 11.8 6.74 3.33 0.26	86.0 5.3 4.1 2.2 2.4	50.3 14.5 17.3 12.7 5.2	52.8 14.4 15.9 11	
Head (Calculated)	100.00	38.2	7.19	3.22	100.0	100.0	100.0	

Calculated Grades and Recoveries

Products 1 & 2 Products 1 to 3	13.02	267.97	35.8 28.6	16.61	91.3 95.4	64.8	67.2 83.1
Products 1 to 4	31.68	117.73	21.5	9.61	97.6	94.8	94.5
Products 2 to 4	22.59	19.63	14.2	5.95	11.6	44.5	41.7

Screen Analysis

Combined Cleaner Products

Mesh Size	% Ret	% Passing	
(Tyler)	Individual	Cumulative	Cumulative
+ 150	0.1	0.1	99.9
200	0.8	0.9	99.1
270	3.5	24.24	95.6
400	7.1	11.5	88.5
- 400	88.5	100.0	-
Total	100.0		

Test No. 12

Purpose:

To examine the effect of regrinding sample F before cleaning.

Procedure:

As below.

Feed:

2 kg minus 10 mesh ore sample Zone F.

Grind:

40 minutes at 66% solids in lab ball mill.

Conditions:

	Reagents	Added, gran	ns/tonne	Tir	S		
Stage	AX350	AF208	DF250	Grind	Cond.	Froth	pН
Grind				40	_	- 1	_
	-	-	- 1	-	-	-	7.9
Rougher 1	20	20	10	-	2	14	_
Rougher 2	10	10	5	-	1	14	-
Rougher 3	10	10	5	-	1	14	
Regrind	-	-		15	_	-	-
1st Cleaner	10	10	5	-	1	5	-
	10	10	5	2	1	5	-
2nd Cleaner	-	-	-		1	5	-
3rd Cleaner	-	-	-	-	1	14	-

Observations:

Roughing appeared normal

1st cleaner tailing high in silicates with small sulphide inclusions. 3rd cleaner tailing contained concentrate free arsenopyrite.

Test No. 12 - Continued

Metallurgical Results

Product	Weight	Assa	ys, %, g/	tonne	% D:	% Distribution		
Froquet	%	Au	As	S	Au	As	S	
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	12.82 5.73 9.63 12.03 59.79	51.86 10.29 7.07 4.53 0.78	40.7 30.7 19.9 11.1 1.07	18.9 14.1 8.80 4.70 0.44	74.5 6.6 7.6 6.1 5.2	48.0 16.2 17.6 12.3 5.9	49.4 16.5 17.1 11.9	
Head (Calculated)	100.00	8.93	10.9	4.91	100.0	100.0	100.0	

Calculated Grades and Recoveries

Products 1 & 2	18.55	39.0	37.6	17.4	81.1	64.2	65.9
Products 1 to 3	28.18	28.1	31.6	14.5	88.7	81.8	83.2
Products 1 to 4	40.21	21.0	25.4	11.5	94.8	94.1	94.7
Products 2 to 4	27.39	6.63	18.3	8.11	20.3	46.1	45.3

Screen Analysis

Combined Cleaner Products

Mesh Size		% Retained				
(Tyler)	Individual	Cumulative	Cumulative			
+ 150	0.1	0.1	99.9			
200	0.7	0.8	99.2			
270	3.0	3.8	96.2			
400	7.7	11.5	88.5			
- 400	88.5	100.0				
Total	100.0					

Commence - Superior - FELL TO THE MEDITAL PROPERTY COMMENT

Test No. 13

Purpose:

To repeat test No. 9, but increase primary grind.

Procedure: As below.

Feed:

2 kg minus 10 mesh ore sample Zone C.

Grind:

60 minutes at 66% solids.

Conditions:

Chara	Reagents Added, g/tonne Time, minutes						
Stage	AX350	AF208	DF250	Grind	Cond.	Froth	pН
Grind				60			_
Rougher 1	20	20	10	-	2	5	7.8
Rougher 2	15	15	5	_	1	5	-
Rougher 3	15	15	5	-	1	5	-
1st Cleaner	-	-	-	-	1	5	-
	10	10	5	-	1	5	-
2nd Cleaner	-	-	-	-	1	5	-
3rd Cleaner	-	-	-	-	1	4	-

Test No. 13 - Continued

Metallurgical Results

Product	Weight	Assay	ys, %, g/	tonne'	% D	istribut:	oution	
110440	%	Au	As	S	Au	As	S	
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	12.03 3.30 9.43 11.49 63.75	324.07 23.32 9.33 3.22 1.27	40.2 20.5 10.3 2.95 0.69	19.1 9.33 4.43 0.99 0.27	93.2 1.9 2.1 0.9 1.9	66.6 9.3 13.4 4.7 6.0	69.5 9.3 12.6 3.	
Head (Calculated)	100.00	41.8	7.26	3.31	100.0	100.0	100.0	

Calculated Grades and Recoveries

Products 1 & 2 Products 1 to 3 Products 1 to 4 Products 2 to 4	15.33	259.33	36.0	17.0	95.1	75.9	78.8
	24.76	164.12	26.2	12.2	97.2	89.3	91.4
	36.25	113.12	18.8	8.65	98.1	94.0	94.8
	24.22	8.34	8.20	3.47	4.9	27.4	25.3

Screen Analyses

Rougher Tailing

Mesh Size (Tyler)	% Ret Individual	% Retained Individual Cumulative			
+ 100 150 200 270 400 - 400	0.1 0.7 3.9 12.8 17.4 65.1	0.1 0.8 4.7 17.5 34.9 100.0	99.9 99.2 95.3 82.5 65.1		
Total	100.0		77, 45		

Combined Cleaner Products

Total	100.0		<u> </u>
+ 150 200 270 400 - 400	0.1 1.3 4.8 8.8 85.0	0.1 1.4 6.2 15.0 100.0	99.9 98.6 93.8 85.0

Test No. 13 - Continued

Screen Analysis of Ground Product

	Weight		Cumulat:	ive, % Pas	ssing	
Product	%	100	150	200	270	400
Combined Cleaner Product Rougher Tailing	36.3 63.7	100.0	99.9 99.2	98.6 95.3	93.8 82.5	85.0 65.1
Head (Calculated)	100.0	99.9	99.5	96.5	86.6	72.4

Test No. 14

Purpose:

To repeat test No. 10, but increase grinding time.

Procedure:

As below.

Feed:

2 kg minus 10 mesh ore sample Zone F.

Grind:

60 minutes at 66% solids.

Conditions:

Stage	Reage	nts Added,	g/tonne	Time, minutes		
	AX350	AF208	DF250	Grind	Cond.	Froth
Grind		The state		60		
Rougher 1	20	20	10		2	5
Rougher 2	15	15	5	-	1	5
Rougher 3	15	15 15	5	-	1	5
1st Cleaner	-	-	-	-	1	5
	10	10	5	-	1	5
2nd Cleaner	-	-	-		1	5
3rd Cleaner	-	-	-		1	14

Metallurgical Results

Product	Weight	Assays, %, g/t			% Distribution		
Froduct	%	Au	As	S	Au	As	S
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	16.67 5.66 10.01 14.48 53.18	38.9 6.86 3.63 1.47 0.54	37.9 23.9 14.4 5.09 1.37	18.9 10.9 6.46 2.22 0.57	83.8 5.0 4.7 2.8 3.7	59.7 12.8 13.6 7.0 6.9	62.6 12.3 12.9 6.2 6.0
Head (Calculated)	100.00	7.74	10.6	5.03	100.0	100.0	100.0

Calculated Grades and Recoveries

Products 1 & 2	22.33	30.78	34.4	16.9	88.8	72.5	74.0
Products 1 to 3	32.34	22.38	28.2	13.6	93.5	86.1	87.8
Products 1 to 4	46.82	15.91	21.0	10.1	96.3	93.1	94.0
Products 2 to 4	30.15	3.20	11.7	5.26	12.5	33.4	31.4

Test No. 14 - Continued

Screen Analyses

Rougher Tailing

Mesh Size	% Ret	ained	% Passing
(Tyler)	Individual	Cumulative	Cumulative
+ 65 100 150 200 270 400 - 400	0.1 0.1 0.5 3.3 11.3 17.4 67.3	0.1 0.2 0.7 4.0 15.3 32.7 100.0	99.9 99.8 99.3 96.0 84.7 67.3
Total	100.0		

Combined Cleaner Products

400 - 400 Total	10.4 83.9	16.1	83.9
+ 150	0.1	0.1	99.9
200	0.9	1.0	99.0
270	4.7	5.7	94.3

Screen Analysis of Ground Product

	Weight		Cumulati	ve, % Pa	ssing	
Product	%	100	150	200	270	400
Combined Cleaner Product Rougher Tailing	46.8 53.2	100.0	99.9 99.3	99.0 96.0	94.3 84.7	83.9 67.3
Head (Calculated)	100.0	99.9	99.5	97.4	89.2	75.1

Test No. 15

Purpose:

To repeat test No. 9, but using a 10 kg charge.

Procedure:

As below.

Feed:

10 kg of minus 10 mesh ore sample Zone C.

Grind:

40 minutes at 66% solids in the large ball mill.

Conditions:

Stage	Reagen	ts Added, a	g/tonne	Time, minutes		
brage	AX350	AF208	DF250	Grind	Cond.	Froth
Grind				40		
Rougher 1	20	20	10	-	2	4
Rougher 2	10	10	5	-	1	14
Rougher 3	10	10	5	-	1	14
1st Cleaner	-	-	-	-	1	5
	-	5	5	_	1	2
2nd Cleaner	-		-	-	1	5
3rd Cleaner	-		-	-	1	14

Stage

Flotation Cell

Speed: r.p.m.

Rougher

Agitair

Cleaners

1000 g D-1

1800

Company of the Compan

Test No. 15 - Continued

Metallurgical Results

Product	Weight	Assays	s, %, g/	tonne	% Distribution		
	%	Au	As	S	Au	As	S
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	11.72 1.34 3.23 4.99 78.72	302.59 72.24 38.00 10.70 1.90	43.5 34.2 28.6 7.62 0.68	19.8 15.6 11.4 3.25 0.26	89.4 2.4 3.1 1.3 3.8	68.9 6.2 12.5 5.2 7.2	71.1 6.4 11.3 4.9 6.3
Head (Calculated)	100.00	39.7	7.40	3.27	100.0	100.0	100.0

Calculated Grades and Recoveries

Products 1 & 2	13.06	278.95	42.5	19.4	91.8	75.1	77.5
Products 1 to 3	16.29	231.18	39.8	17.8	94.9	87.6	88.8
Products 1 to 4	21.28	179.48	32.2	14.4	96.2	92.8	93.7
Products 2 to 4	9.56	28.55	18.1	7.73	6.8	23.9	22.6

Test No. 16

Purpose:

To repeat test No. 15, but on sample F.

Procedure:

As below.

Feed:

10 kg of minus 10 mesh ore sample Zone F.

Grind:

40 minutes at 66% solids in the large ball mill.

Conditions:

Stage	Reagen	ts Added,	g/tonne	Time, minutes		
	AX350	AF208	DF250	Grind	Cond.	Froth
Grind	-			40	-	4-1
Rougher 1	20	20	10		1	4
Rougher 2	10	10	5		1	4
Rougher 3	10	10	5	_	1	4
1st Cleaner	-	-			1	5
	-	5	5	-	1	2
2nd Cleaner	-	-	-	_	1	5
3rd Cleaner	-	-	_	-	1	4

Stage

Flotation Cell

Speed: r.p.m.

Rougher

Agitair

Cleaners

1000 g D-1

1800

THE STATE OF THE PROPERTY OF T

Test No. 16 - Continued

Metallurgical Results

	Weight	Assay	s, 5, g/t	conne	% Distribution			
Product	%	Au	As	S	Au	As	S	
1. Cleaner Concentrate 2. 3rd Cleaner Tailing 3. 2nd Cleaner Tailing 4. 1st Cleaner Tailing 5. Rougher Tailing	17.50 3.30 4.67 4.99 69.54	29.77 18.32 7.48 3.50 0.77	39.9 33.6 26.0 9.87 1.69	19.0 15.8 11.9 4.33 0.67	75.8 8.8 5.1 2.5 7.8	63.6 10.1 11.1 4.5 10.7	65.4 10.3 10.9 4.2 9.2	
Head (Calculated)	100.00	6.87	11.0	5.08	100.0	100.0	100.0	

Calculated Grades and Recoveries

Products 1 & 2 Products 1 to 3 Products 1 to 4	20.80 25.47 30.46	27.95 24.20 20.81	38.9 36.5 32.2	18.5 17.3 15.2	84.6 89.7 92.2 16.4	73.7 84.8 89.3 25.7	75.7 86.6 90.8 25.4
Products 2 to 4	12.96	8.71	21.7	9.98	10.4	27.1=	27.4

Test No. 17

Purpose:

To perform a standard cyanidation test on the cleaner concentrate

from flotation test No. 15.

Procedure:

The sample was pulped with water in a two litre bottle.

NaCN and lime were added and the cyanidation was carried out on

rolls in 1 x 24 hour stage.

Feed:

250 g of cleaner concentrate from test No. 15.

Solution Volume: 500 mL Pulp Density 33% solids

Solution Composition: 1.0 g/L NaCN

pH Range: 10.5 - 11.5 with Ca(OH)2

Reagent Balance:

Time	Fime Added		Grams		Residual		Cons	umed		
Hours	1	tual Ca(OH)2	Equi NaCN	valent CaO	Gr NaCN	ams CaO	Gr NaCN	ams CaO	P	Н
0-3 3-8 8-24	0.53 0.11 0.02	0.25	0.50 0.10 0.02	0.19	0.40 0.48 0.48	0.05 0.05 0.04	0.10 0.02 0.02	0.14 0 0.01	11.6 11.5 11.5	11.5
Total	0.66	0.25	0.62	0.19	0.48	0.04	0.14	0.15	-	-

Reagent Consumption (kg/t of cyanide feed)

NaCN: 0.56

CaO: 0.60

Dundunt		Assays, mg/L, g/t	% Distribution
Product	Amount	Au	Au
Solution Residue	1350 mL 247.2 g	52.8 13.17	95.6 4.4
Head (Calc.)	247.2 g	301.54	100.0

or and the first transfer of the contract of t

Test No. 18

Purpose: To perform a standard cyanidation test on the cleaner

concentrate from flotation test No. 16.

Procedure: The sample was pulped with water in a two litre bottle.

NaCN and lime were added and the cyanidation was carried

out on rolls in one 24 hour stage.

Feed: 250 g of cleaner concentrate from test No. 16.

Solution Volume: 500 mL Pulp Density 33% solids

Solution Composition: 1.0 g/L NaCN

pH Range: 10.5 - 11.5 with Ca(OH)2

Reagent Balance:

Time	Added, Grams			Residual		Consumed				
Hours	Ac NaCN	tual Ca(OH) ₂	Equi: NaCN	valent Ca0	Gr NaCN	ams Ca0	Gr NaCN	ams Ca0	pH	
0-3 3-8 8-24	0.53 0.07 0.04	0.25 .0 0	0.50 0.07 0.04	0.19 0 0	0.43 0.46 0.40	0.04 0.03 0.01	0.07 0.04 0.10	0.15 0.01 0.02	11.5 11.3 11.1	11.3 11.1 10.6
Total	0.64	0.25	0.61	0.19	0.40	0.01	0.21	0.18	-	-

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.84 CaO: 0.72

		Assays, mg/L, g/t	% Distribution
Product	Amount	Au	Au
Solution Residue	1290 mL 248.0 g	6.15 5.63	85.0 15.0
Head (Calc.)	248.0 g	37.62	100.0

Test No. 19

Purpose:

To perform a standard cyanidation test on the combined

cleaner tailings from flotation test No. 15.

Procedure:

The sample was pulped with water in a two litre bottle. NaCN and lime were added and the cyanidation was carried

out on rolls in one 24 hour stage.

Feed:

250 g of combined cleaner tailings test No. 15.

Solution Volume:

500 mL

Pulp Density 33% solids

Solution Composition:

1.0 g/L NaCN

pH Range:

10.5 - 11.5 with Ca(OH)2

Reagent Balance:

Time	ime Added		Grams		Residual		Consumed			
Hours		tual Ca(OH)2	Equi NaCN	valent CaO	Gr NaCN	ams CaO	Gr NaCN	ams Ca0	рH	
0-3 3-8 8-24	0.53 0.18 0.05	0.20 0.15 0.15	0.50 0.17 0.05	0.15 0.11 0.11	0.33 0.45 0.48	0 0 0.01	0.17 0.05 0.02	0.15 0.11 0.10	11.4 11.2 11.4	10.0 10.6 10.6
Total	0.76	0.50	0.72	0.37	0.48	0.01	0.24	0.36	-	

Reagent Consumption (kg/t of cyanide feed)

NaCN: 0.96

CaO: 1.44

Product	Amount	Assays, mg/L, g/t	% Distribution
Product	Amount	Au	Au
Solution Residue	1350 mL 248.5 g	3.54 6.17	75.8 24.2
Head (Calc.)	248.5 g	25.39	100.0

Test No. 20

Purpose:

To perform a standard cyanidation test on the combined

cleaner tailings from flotation test No. 16.

Procedure:

The sample was pulped with water in a two litre bottle. NaCN and lime were added and the cyanidation was carried

out on rolls in one 24 hour stage.

Feed:

250 g of combined cleaner tailings test No. 16.

Solution Volume:

500 mL Pulp Density 33% solids

Solution Composition:

1.0 g/L NaCN

pH Range:

10.5 - 11.5 with Ca(OH)2

Reagent Balance:

Time	Added, G		Grams	Grams		Residual		umed		
Hours		tual Ca(OH)2	Equi:	ralent Ca0	Gr NaCN	ams CaO	Gr NaCN	ams CaO	pH	
0-3 3-8 8-24	0.53 0.12 0.02	0.20 0.15 0	0.50 0.11 0.02	0.15 0.11 0	0.39 0.48 0.48	0 0.02 0.01	0.11 0.02 0.02	0.15 0.09 0.01	11.5 11.5 11.1	10.3 11.1 10.6
Total	0.67	0.35	0.63	0.26	0.48	0.01	0.15	0.25	-	

Reagent Consumption (kg/t of cyanide feed)

NaCN: 0.60 CaO: 1.00

		Assays, mg/L, g/t	% Distribution
Product	Amount	Au	Au
Solution Residue	1350 mL 248.7 g	0.88 3.57	57.2 42.8
Head (Calc.)	248.7 g	8.36	100.0

Test No. 21

Purpose:

To investigate the effect of roasting the cleaner concentrate from test No. 15 followed by acid leaching and cyanidation.

ľ

Roast Feed:

250 g of cleaner concentrate from flotation test No. 15, Zone C ore.

Roast Conditions:

A two stage roast was performed in a muffle furnace with constant rabbling. During the first stage the sample was maintained at a temperature of 575°C for 45 minutes. After the fuming had stopped the sample was brought up to 625°C for 30 minutes. The sample was air cooled and weighed.

Acid Leach Feed:

127.9 g of calcine.

Acid Leach Conditions:

The calcine was acid leached for one hour at 80° C, with a pulp density of 33% solids using 5 g/L of H_2SO_4 .

After leaching, the sample was filtered and displacement washed 3 times using water.

Cyanidation Feed:

127.9 g of acid leach residue.

Cyanidation Conditions:

A standard cyanidation was carried out on the acid leach residue. The residue was repulped to 33% solids in a two litre bottle, the cyanide strength was controlled at 1.0 g/L and the pH was maintained with lime at 10.5 - 11.5. After 24 hours the pulp was filtered and the residue washed 3 times with water.

Test No. 21 - Continued

Reagent Balance:

Time	Added,		Grams		Residual		Consumed			
Hours	Ac NaCN	tual Ca(OH)2	Equi: NaCN	valent Ca0	Gr NaCN	ams Ca0	Gr NaCN	ams Ca0	pН	
0-2 2-8 8-24	0.27 0.08 0.03	0.13 0.10 0.05	0.26 0.08 0.03	0.10 0.08 0.04	0.18 0.23 0.26	0 0.01 0.01	0.08	0.10 0.07 0.04	11.6 11.2 11.4	9.8 10.8 10.8
Total	0.38	0.36	0.37	0.22	0.26	0.01	0.11	0.21	11-	-

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.86 CaO: 1.64

Product	Amount	Assays,	%, mg/1	% Distribution	
110000	Amount	Au	As	S	Au
1. Acid Leach Solution 2. Cyanide Solution 3. Residue	860 mI 1000 mL 125.6 g	67.0 14.95	1.13	- <0.05	97·3 2·7
Head (Calculated)	250.0 g	275.5	-	-	100.0

Test No. 22

Purpose: To repeat test No. 21, but on the cleaner concentrate

from test No. 16.

Roast Feed: 250 g of cleaner concentrate from flotation test No. 16,

Zone F ore.

Roast Conditions: As for test No. 21.

Acid Leach Feed: 132.2 g of calcine.

Acid Leach Conditions: As for test No. 21.

Cyanidation Feed: 132.2 g of acid leach residue.

Cyanidation Conditions: As for test No. 21.

Reagent Balance:

Time	Added, Grams		Residual		Cons	umed				
Hours	The second second second	tual Ca(OH)2	Equi NaCN	valent CaO	Gra NaCN	ams CaO	Gr NaCN	ams Ca0	pH	
0-2 2-8 8-24	0.28 0.13 0	0.13 0.15 0.05	0.27 0.12 0	0.10 0.11 0.04	0.15 0.27 0.27	0 0 0	0.12	0.10 0.11 0.04	11.1	9.4 10.5 10.5
Total	0.41	0.33	0.39	0.25	0.27	0	0.12	0.25	-	-

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.91 CaO: 1.89

Product	A	Assays,	%, mg/1	% Distribution	
Product	Amount	Au	Au	S	Au
1. Acid Leach Solution 2. Cyanide Solution 3. Residue	865 mL 1070 mL 130.3 g	7.80 4.97	- 1.30	- <0.05	92.8 7.2
Head (Calculated)	250.0 g	36.00	-	-	100.0

The Property of the State of th

Test No. 23

Purpose:

To investigate the effect of roasting a sample of

combined cleaner tailings from test No. 15 followed

by acid leaching and cyanidation.

Roast Feed:

250 g of combined cleaner tailing from flotation

test No. 15, Zone C ore.

Roast Conditions:

As for test No. 21.

Acid Leach Feed:

210.0 g of calcine.

Acid Leach Conditions:

As for test No. 21.

Cyanidation Feed:

210.0 g of acid leach residue.

Cyanidation Conditions:

As for test No. 21.

Reagent Balance:

Time	Added, Grams		Residual		Consumed					
Hours		tual Ca(OH) ₂	Equi NaCN	valent CaO	Gr NaCN	ams CaO	Gr Na CN	ams CaO	P	Н
0-2 2-8 8-24	0.45 0.08 0.04	0.15 0.10 0	0.43 0.08 0.04	0.11 0.08 0	0.35 0.39 0.43	0.01 0.03 0.02	0.08 0.04 0	0.10 0.06 0.01	11.4 11.5 11.3	10.6
Total	0.57	0.25	0.53	0.19	0.43	0.02	0.12	0.17	-	1-

Reagent Consumption (kg/t of cyanide feed)

NaCN: 0.57 CaO: 0.81

Product	Amount	Assays,	%, mg/I	, g/t	% Distribution	
Troduct	Amount	Au	As	S	Au	
1. Acid Leach Solution 2. Cyanide Solution 3. Residue	990 mL 1135 mL 204.6 g	4.63 3.84	3.34	- - 0.53	86.9 13.1	
Head (Calculated)	250.0 g	24.2	-	-	100.0	

Test No. 24

Purpose: To repeat test No. 23, but on the combined cleaner

tailings from test No. 16.

Roast Feed: 250 g of combined cleaner tailing from flotation test

No. 16, Zone F ore.

Roast Conditions: As for test No. 21.

Acid Leach Feed: 196.7 g of clacine.

Acid Leach Conditions: As for test No. 21.

Cyanidation Feed: 196.7 g of acid leach residue.

Cyanidation Conditions: As for test No. 21.

Reagent Balance:

Time	Added, Grams		Residual		Const	umed				
Hours	0.017100	tual Ca(OH) ₂	Equi NaCN	valent Ca0	Gra NaCN	ams CaO	Gra NaCN	ams CaO	P	H
0-2 2-8 8-24	0.42 0.25 0	0.15 0.25 0.10	0.40 0.24 0	0.11 0.19 0.08	0.16 0.40 0.40	0 0	0.24	0.11 0.19 0.08	11.1 11.2 11.0	9.1 10.1 10.3
Total	0.67	0.50	0.64	0.38	0.40	0	0.24	0.38	-	

Reagent Consumption (kg/t of cyanide feed) NaCN: 1.22 CaO: 1.93

Duoduot	Amount	Assays,	%, mg/	% Distribution	
Product	Amount	Au	As	S	Au
1. Acid Leach Solution 2. Cyanide Solution 3. Residue	1000 mL 1095 mL 192.0 g	1.37 3.26	3.27	0.18	70.4 29.6
Head (Calculated)	250.0 g	8.52		-	100.0

A STATE OF THE PARTY OF THE PAR

Test No. 25

Purpose:

To cyanide the flotation tailing from Test 13.

Procedure:

The sample was pulped with water in a 2 liter bottle. NaCN and lime were added and the cyanidation was carried out on rolls in one 24 hour stage. The pulp was filtered and the

residue washed three times with water.

Feed:

500 g flotation tailing from Test 13.

Solution Volume:

1000 mL Pulp Density 33 % solids

Solution Composition:

'1.0 gpL NaCN

pH Range:

10.5-11.5 with Ca(OH)2

Reagent Balance:

Time		Added, grams			Residual		Consumed			
Hours	Ac NaCN	tual Ca(OH) ₂	Equi	valent CaO	Gr NaCN	ams CaO	Gr NaCN	ams CaO	pH	R.P.*
0-2 2-9 9-20 20-24	1.06 0.00 0.11 0.00	0.20 0.10 0.20 0.00	1.00 0.00 0.10 0.00	0.15 0.08 0.15 0.00	1.00 0.90 1.00 1.00	0.00 0.00 0.05 0.04	0.00 0.10 0.00 0.00	0.15 0.08 0.10 0.01	11.0-10.3 10.8-10.4 11.3-10.9 10.9-10.8	-
Total	1.17	0.50	1.10	0.38	1.00	0.04	0.10	0.34	-	-

Reagent Consumption (kg/tonne of cyanide feed) NaCN: 0.20 CaO: 0.68

*Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Metallurgical Results

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au
24 h Cyanide Preg. + Wash 24 h Residue	2280 mL 498.3 g	0.20 0.31	74.6 25.4
Head (Calculated)	500.0 g	1.22	100.0

Comments:

The results were similar to Test 6 at a primary grind of 77 % -200 mesh.

Test No. 26

Purpose:

To cyanide the flotation tailing from Test 14.

Procedure:

Same as Test 25.

Feed:

500 g flotation tailing from Test 14.

Solution Volume:

1000 mL Pulp Density 33 % solids

Solution Composition: 1.0 gpL NaCN

pH Range:

10.5-11.5 with Ca(OH)2

Reagent Balance:

Time		Added	, grams		Residual		Cons	umed		
Hours	Ac NaCN	tual Ca(OH) ₂	Equi:	valent CaO	Gr NaCN	ams CaO	Gr NaCN	ams CaO	pН	R.P.
0-2 2-9 9-20 20-24	1.06 0.11 0.11 0.00	0.20 0.10 0.20 0.00	1.00 0.10 0.10 0.00	0.15 0.08 0.15 0.00	0.90 0.90 1.00 1.00	0.00 0.00 0.05 0.04	0.10 0.10 0.00 0.00	0.15 0.08 0.10 0.01	10.9-10.2 10.6-10.3 11.2-10.9 10.9-10.8	-
Total	1.28	0.50	1.20	0.38	1.00	0.04	0.20	0.34	- 1	-

^{*}Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.40 CaO: 0.68

Metallurgical Results

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au
24 h Cyanide Preg. + Wash 24 h Residue	2130 mL 498.7 g	0.051 0.27	44.7 55.3
Head (Calculated)	500.0 g	0.49	100.0

Comments:

The results were similar to Test 8 at a primary grind of

82 % -200 mesh.

reconstitution of the second o

Test No. 27

Purpose:

To investigate the cyanidation response of Sample C.

Procedure:

The sample was ground, filtered and pulped with water in a 2 liter bottle. NaCN and lime were added and the cyanidation was carried out on rolls in two 24 hour stages with the solution being changed after each stage. Between each stage the pulp was filtered and the residue washed three times with water. The residue was then repulped with fresh cyanide solution and the test continued.

Feed:

500 g minus 10 mesh Sample C.

Solution Volume:

1000 mL

Pulp Density 33 % solids

Solution Composition:

1.0 gpL NaCN

pH Range:

10.5-11.5 with Ca(OH)2

Grind:

5 minutes at 66 % solids in the lab rod mill.

Reagent Balance:

m.;		Added	, grams		Resi	dual	Cons	umed		D D #
Time Hours	Ac NaCN	tual Ca(OH)2	Equiv	valent CaO	Gr NaCN	ams CaO	Gr NaCN	ams CaO	pН	R.P.*
lst Sta	ge									
0-2	11.06	0.30	1.00	0.23	0.65	0.01	0.35	0.22	11.4-10.6	-
2-5	0.37	0.20	0.35	0.15	1.00	0.05	0.00	0.11	11.4-11.0	-
5-20	0.00	0.00	0.00	0.00	0.95	0.01	0.05	0.04	11.0-10.3	-
20-24	0.05	0.10	0.05	0.08	0.80	0.04	0.20	0.05	11.1-10.8	120
2nd Sta	ge									
24-30	, 1.06	0.30	1.00	0.23	1.90	0.05	0.10	0.18	11.6-10.9	_
30-48	0.11	0.00	0.10	0.00	0.95	0.03	0.05	0.02	10.9-10.0	72
Total	2.65	0.90	2.50	0.69	1.75	0.07	0.75	0.62	-	_

^{*}Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Reagent Consumption (kg/tonne of cyanide feed) NaCN: 1.50 CaO: 1.24

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au
24 h Cyanide Preg. + Wash 48 h Cyanide Preg. + Wash 48 h Residue	2000 mL 2000 mL 484.3 g	8.15 0.24 3.70	87.8 2.6 9.6
Head (Calculated)	500.0 g	37.14	100.0

Test No. 27 - Continued

Screen Analysis - 48 h Cyanide Residue

Mesh Size		tained	% Passing
(Tyler)	Individual	Cumulative	Cumulative
+ 35	1.3	1.3	98.7
48	6.4	7.7	92.3
65	10.6	18.3	81.7
100	12.9	31.2	68.8
150	15.8	47.0	53.0
200	13.2	60.2	39.8
270	9.8	70.0	30.0
400	6.7	76.7	23.3
- 400	23.3	100.0	-
Total	100.0		

Test No. 28

Purpose:

To repeat Test 27 but at a finer grind.

Procedure:

Same as Test 27.

Feed:

500 g minus 10 mesh Sample C.

Solution Volume:

1000 mL

Pulp Density 33 % solids

Solution Composition:

1.0 gpL NaCN

pH Range:

10.5-11.5 with Ca(OH)2

Grind:

10 minutes at 66 % solids in the lab rod mill.

Reagent Balance:

Time		Added	, grams		Resi	Residual		umed		
Hours	Ac NaCN	tual Ca(OH)2	Equi NaCN	valent CaO	Gr NaCN	ams CaO	Gr NaCN	ams	рН	R.P.*
1st Sta 0-2 2-5 5-20 20-24 2nd Sta	1.06 0.89 0.26 0.16	0.30 0.00 0.00 0.10	1.00 0.85 0.25 0.15	0.23 0.00 0.00 0.08	0.15 0.85 0.85 1.00	0.05 0.05 0.01 0.04	0.85 0.15 0.25 0.00	0.18 0.00 0.04 0.05	11.5-11.0 11.1-10.9 10.9-10.3 10.9-10.5	_
24-30 30-48	1.06	0.30	1.00	0.23	0.85	0.03	0.15	0.20	11.6-10.5	- 88
Potal	3.59	0.90	3.40	0.69	1.95	0.07	1.45	0.62	PLUE W	

Reducing Power: mL 0.1 N KMnO4/L pregnant solution

eagent Consumption (kg per tonne of cyanide feed) NaCN: 2.90 CaO: 1.24

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au
24 h Cyanide Preg. + Wash 48 h Cyanide Preg. + Wash 48 h Residue	2000 mL 2000 mL 484.0 g	8.55 0.04 2.47	93.1 0.4 6.5
Head (Calculated)	500.0 g	36.76	100.0

Test No. 28 - Continued

Screen Analysis - 48 h Cyanide Residue

Mesh Size	% Ret	ained	% Passing	
(Tyler)	Individual	Cumulative	Cumulative	
+ 65	0.2	0.2	99.8	
100	1.1	1.3	98.7	
150	8.7	10.0	90.0	
200	19.9	29.9	70.1	
270	18.3	48.2	51.8	
400	11.9	60.1	39.9	
- 400	39.9	100.0	100	
Total	100.0		-	

Test No. 29

Purpose:

To repeat Test 28 but at a finer grind.

Procedure:

Same as Test 27.

Feed:

500 g minus 10 mesh Sample C.

Solution Volume:

1000 mL

Pulp Density 33 % solids

Solution Composition:

1.0 gpL NaCN

pH Range:

10.5-11.5 with Ca(OH)2

Grind:

20 minutes at 66 % solids in the lab rod mill.

Reagent Balance:

Time		Added	, grams		Resi	dual	Cons	umed		
Hours		tual	Annual Control of the	valent	1000	ams		ams	pH	R.P.*
	NaCN	Ca(OH)2	NaCN	CaO	NaCN	Ca0	NaCN	CaO		
lst Sta	ge									
0-2	11.06	0.30	1.00	0.23	0.10	0.04	0.90	0.19	11.3-10.6	_
2-5	0.95	0.20	0.90	0.15	0.80	0.03	0.20	0.16	11.2-10.9	-
5-20	0.32	0.00	0.30	0.00	0.85	0.01	0.25	0.02	10.9-10.3	_
20-24	0.16	0.15	0.15	0.11	0.95	0.07	0.05	0.05	10.9-10.6	220
2nd Sta	ge									
24-30	11.06	0.30	1.00	0.23	0.80	0.01	0.20	0.22	11.6-10.4	-
30-48	0.21	0.20	0.20	0.15	0.90	0.03	0.10	0.13	11.0- 9.9	96
Total	2 76	2.25	2.55	0.07	2 05	10.00	3 50	-	-	-
TOTAL	3.76	1.15	3.55	0.87	1.85	0.10	1.70	0.77	-	-

Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Reagent Consumption (kg per tonne of cyanide feed) NaCN: 3.40 CaO: 1.54

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au	
24 h Cyanide Preg. + Wash 48 h Cyanide Preg. + Wash 48 h Residue	2040 mL 2000 mL 504.0 g	8.35 0.04 2.06	93.8 0.5 5.7	
Head (Calculated)	504.0 g	36.01	100.0	

Test No. 29 - Continued

Screen Analysis - 48 h Cyanide Residue

Mesh Size	% Ret	ained	% Passing		
(Tyler)	Individual	Cumulative	Cumulative		
+ 100	0.1	0.1	99.9		
150	0.2	0.3	99.7		
200	1.4	1.7	98.3		
270	9.2	10.9	89.1		
400	18.6	29.5	70.5		
- 400	70.5	100.0			
Total	100.0				

Test No. 30

Purpose:

To investigate the cyanidation response of Sample F.

Procedure:

Same as Test 27.

Feed:

500 g minus 10 mesh ore Sample F.

Solution Volume:

1000 mL

Pulp Density 33 % solids

Solution Composition: 1.0 gpL NaCN

pH Range:

10.5-11.5 with Ca(OH)2

rind:

5 minutes at 66 % solids in the lab rod mill.

Reagent Balance:

Time		Added	, grams		Residual Consumed					
Hours	Ac NaCN	Actual NaCN Ca(OH) ₂		Equivalent NaCN CaO		Grams NaCN CaO		ams CaO	pH	R.P.*
lst Sta	ge									-
0-2 2-5 5-20 20-24	1.06 0.26 0.05 0.11	0.30 0.20 0.00 0.10	1.00 0.25 0.05 0.10	0.23 0.15 0.00 0.08	0.75 0.95 0.90 0.95	0.02 0.08 0.04 0.06	0.25 0.05 0.10 0.05	0.21 0.09 0.04 0.06	11.4-10.7 11.5-11.2 11.2-10.6 11.2-10.9	-
2nd Sta 24-30 30-48	1.06 0.16	0.30	1.00	0.23	1.85	0.07	0.15	0.16	11.6-10.9	
Total	2.70	0.90	2.55	0.69	1.90	0.09	0.65	0.60		_

Reducing Power: mL 0.1 N KMnO4/L pregnant solution

eagent Consumption (kg/tonne of cyanide feed) NaCN: 1.30 CaO: 1.20

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au
24 h Cyanide Preg. + Wash 48 h Cyanide Preg. + Wash 48 h Residue	2040 mL 2000 mL 498.4 g	1.11 0.02 1.72	71.5 1.3 27.2
Head (Calculated)	500.0 g	6.32	100.0

The same of the sa

AREA TO THE PROPERTY OF THE PR

Test No. 30 - Continued

Screen Analysis - 48 h Cyanide Residue

Mesh Size	% Ret	ained	% Passing
(Tyler)	Individual	Cumulative	Cumulative
+ 65	5.5	5.5	94.5
100	13.1	18.6	81.4
150	20.7	39.3	-60.7
200	15.7	55.0	45.0
270	11.8	66.8	33.2
400	8.0	74.8	25.2
- 400	25.2	100.0	-
Total	100.0		-

Test No. 31

Purpose:

To repeat Test 30 but at a finer grind.

Procedure:

Same as Test 27.

Feed:

500 g minus 10 mesh ore.

Solution Volume:

1000 mL Pulp Density 33 % solids

Solution Composition:

1.0 g/L NaCN

H Range:

10.5-11.5 with Ca(OH)2

Grind:

10 minutes at 66 % solids in the lab rod mill.

Reagent Balance:

Time		Added	, grams		Residual Consumed																				
Hours	Ac NaCN	tual Ca(OH) ₂	Equi:	Equivalent Grams														Grams NaCN CaO						pH	R.P.*
	114011	02(01/2	Haon	Cao	Nach	Cao	Nach	Cao																	
1st Sta	ge																								
0-2	11.06	0.30	1.00	0.23	0.15	0.07	0.85	0.16	11.4-10.7	-															
2-6	0.89	0.20	0.85	0.15	0.85	0.10	0.15	0.12	11.2-10.8	_															
6-24	0.26	0.10	0.25	0.08	0.91	0.08	0.19	0.10	11.1-10.2	218															
2nd Sta	ge																								
24-29	11.06	0.30	1.00	0.23	0.85	0.03	0.15	0.20	10.8-10.1	-															
29-34	0.16	0.20	0.15	0.15	0.95	0.07	0.05	0.11	10.9-10.2	_															
34-45	0.05	0.20	0.05	0.15	1.00	0.05	0.00	0.17	10.8-10.3																
45-48	0.00	0.20	0.00	0.15	1.00	0.08	0.00	0.12	10.7-10.5	80															
otal	3.48	1.50	3.30	1.14	1.91	0.16	1.39	0.98	1	_															

*Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Reagent Consumption (kg/tonne of cyanide feed) NaCN: 2.78 CaO: 1.96

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au
24 h Solution 48 h Solution Residue	2020 mL 2000 mL 501.0 g	1.39 0.15 1.57	72.2 7.7 20.1
Head (Calc.)	501.0 g	7.76	100.0

Test No. 31 - Continued

Screen Analysis - 48 h Cyanide Residue

Mesh Size	% Ret	% Passing	
(Tyler)	Individual	Cumulative	Cumulative
+ 65	0.3	0.3	99.7
100	0.6	0.9	99.1
150	6.0	6.9	93.1
200	17.0	23.9	76.1
270	20.1	44.0	56.0
400	14.0	58.0	42.0
- 400	42.0	100.0	
Total	100.0		A COLUMN

The first of the second of the

Test No. 32

Purpose:

To repeat Test 31, but at a finer grind.

Procedure:

Same as Test 27.

Feed:

500 g minus 10 mesh ore.

Solution Volume:

1000 mL

されることできることできて、大人の大学のないないできたから、 あっていることには

Pulp Density 33 % solids

Solution Composition: 1.0 gpl NaCN

pH Range:

10.5-11.5 with Ca(OH)2

Grind:

20 minutes at 66 % solids in the lab rod mill.

Reagent Balance:

Mima		Added	, grams		Resi	dual	Cons	umed		
The second second	Ac NaCN	tual Ca(OH)2	Equi:	valent CaO	Gr NaCN	ams CaO	Gr NaCN	ams CaO	pН	R.P.*
lst Stag	ge									
0-2 2-6 6-24	1.06 0.95 0.26	0.30 0.20 0.20	1.00 0.90 0.25	0.23 0.15 0.15	0.10 0.85 0.91	0.07 0.09 0.08	0.90 0.15 0.19	0.16 0.13 0.16	11.5-10.6 11.1-10.6 11.0-10.0	-
2nd Stag 24-29 29-34	ge 1.06 0.16	0.30	1.00	0.23	0.85	0.03	0.15	0.20	10.8-10.0	
34-45 45-48	0.11	0.20	0.10	0.15 0.15	1.00	0.05	0.00	0.16	10.8-10.2	
otal	3.60	1.60	3.40	1.21	1.91	0.16	1.49	1.05	-	-

Reducing Power: mL 0.1 N KMnO4/L pregnant solution

Reagent Consumption (kg/tonne of cyanide feed) NaCN: 2.98 CaO: 2.10

一年中国中国中国中国中国中国中国中国中国中国中国中国中国中国

Product	Amount	Assays, mg/L,g/t Au	% Distribution Au 73.3 6.5 20.2	
24 h Solution 48 h Solution Residue	2020 mL 2000 mL 504.2 g	1.24 0.11 1.37		
Head (Calc.)	504.2 g	6.76	100.0	

Test No. 32 - Continued

Screen Analysis - 48 h Cyanide Residue

Mesh Size (Tyler)	% Ret	% Passing		
	Individual	Cumulative	Cumulative	
+ 100	0.1	0.1	99.9	
150	0.1	0.2	99.8	
200	0.4	0.6	99.4	
270	5.2	5.8	94.2	
400	15.1	20.9	79.1	
- 400	79.1	100.0	-	
Total	100.0			

LAKEFIELD RESEARCH OF CANADA LIMITED Lakefield, Ontario
April 23, 1982 / sem, lmn