SUMMARY REPORT

THE AWARUITE (NICKEL-IRON ALLOY) EXPLORATION REPORT ON FPM EXPIRED LICENSES AT RØROS-FERAGEN AREA, SØR-TRØNDELAG, NORWAY

Prepared for:

Norwegian Directorate of Mining with the Commissioner of Mines at Svalbard Postboks 3021 Lade N - 7441 Trondheim mail@dirmin.no

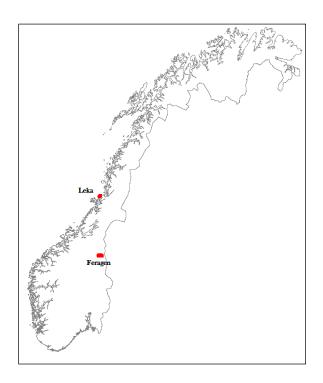
Prepared by:

First Point Minerals Corp.
Sven Hönig, M.Sc.
Project geologist
Bayerova 8
60200 Brno
Czech Republic
s.honig@centrum.cz

CC to:

Ron Britten, PhD VP Exploration First Point Minerals Corp. - FPX Suite 200 - 1155 West Pender St. Vancouver, BC V6E 2P4 rbritten@firstpointminerals.com

Table of Contents


SUMN	MARY REPORT	1
1.	INTRODUCTION	3
2.	RØROS - FERAGEN REGION	4
2.1	GEOLOGICAL SETTING OF FERAGEN ULTRAMAFIC BELT	4
2.1.1	PUBLISHED AWARUITE MINERALIZATION AT FERAGEN ULTRAMAFIC BODY	7
2.1.2	FORMER DATA COMPILATION	7
2.2	FPM FIELD OBSERVATIONS	11
2.2.1	FIRST POINT SEM OBSERVATION	21
3.	LEKA ISLAND REGION	22
3.1	GEOLOGIAL SETTING OF LEKA ISLAND OPHIOLITE	22
3.2	FPM OBSERVATIONS	22
4.	REFERENCES	26
5.	Appendix 1 – Analytical Methods	27

1. INTRODUCTION

This report summarizes the First Point Minerals (FPM) exploration program and its results obtained by field mapping/rock sampling, field observations and GIS data evaluation during the period 2011-2013. FPM has been active in two exploration regions which are reported one by one: a) Røros - Feragen (Sør Trønderlag county and b) Leka island (Nord-Trøndelag county). The summary consists of data gathered on expired (2013) claims only, as listed in Figure 1, Table 1.

Report is accompanied by GIS files created in MapInfo software consist of digitized relevant parts of former NGU reports, NGU 250K digital geology basemap, and FPM rock samples database including the Lab assays. Moreover newspaper highlights of FPM activities and relevant FPM exploration reports made during the field work are also attached.

Some of the permits did not enclose the right type of rocks to host awaruite mineralization and consequently they haven't been explored and therefore FPM doesn't have any data to report.

Permit ID	NAME
1500-1/2011	FERAGEN 1
1501-1/2011	FERAGEN 2
1503-1/2011	FERAGEN 4
1504-1/2011	FERAGEN 5
1507-1/2011	FERAGEN 8
1508-1/2011	FERAGEN 9
1510-1/2011	FERAGEN 11
1511-1/2011	FERAGEN 12
1512-1/2011	FERAGEN 13
1516-1/2011	FERAGEN 17
1517-1/2011	FERAGEN 18
1148-1/2012	LEKA 1
1149-1/2012	LEKA 2
1150-1/2012	LEKA 3
1151-1/2012	LEKA 4

Fig 1. Position of FPM expired (2013) claims; ID of individual permits shown in Tab 1.

2. RØROS - FERAGEN REGION

2.1 GEOLOGICAL SETTING OF FERAGEN ULTRAMAFIC BELT

The Feragen ultramafic body is located, beside a number of smaller ultramafic bodies, at the structural base of a nappe unit (Köli sequence) in the Caledonides that consists primarily of mica schists and metavolcanics. The Scandinavian Caledonides is a complex orogenic belt, approximately 100 - 200 km wide, extending for 2000 km along the length of the Norway that was formed by the closure of the lapetus Ocean and collision of Baltica with Laurentia during 510 - 400 Ma. Oceanic crust and overlying volcanic and sedimentary rocks were obducted and thrust eastwards over the Baltic shield in a series of allochthons, Figure 2.

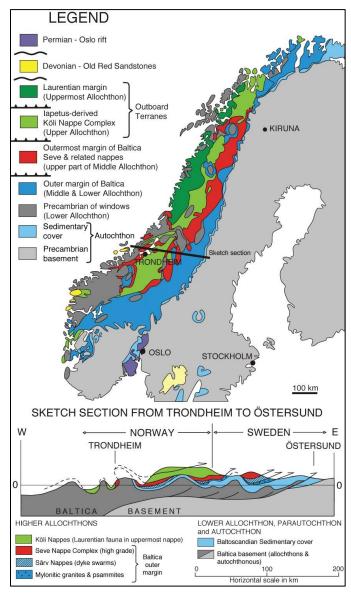


Fig 2. The Norwegian Caledonides, (Gee et al 2010)

After Nilsson (1990) the Feragen and other ophiolitic fragments in the Røros area has been considered as the rocks representing a transitional continental-oceanic terrane in which the ultramafic bodies intruded along faults and weakening zones during an early extensional phase of the Caledonian orogeny. The ultramafic bodies are considered to represent the dismembered Vågåmo Ophiolite (Nilsson et al., 1997) that extends from Feragen to the southwest for over 150 km (Figure 3). The once continuous ophiolite sheet was thrust over the Heidal unit, uplifted, and eroded to form serpentinite conglomerates at the base of the Sel Group.

The Feragen body therefore probably belongs to the "Upper Allochthon" (Roberts, 2003). The ophiolite represents the lapetus oceanic crust that was obducted eastwards (from Laurentia) onto a fragment of Baltica (the so-called Gula Complex) in the Early Ordovician "Trondheim Event". The subsequent compressive deformation, and folding of the Feragen-Raudhammeren fragments, occurred during the Scandian Orogenic Event (Caledonian Orogenesis), which marked the collision of Laurentia with Baltica in the Late Ordovician to Early Devonian.

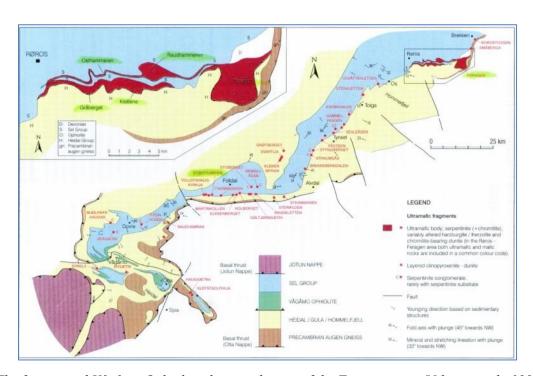


Fig 3. The fragmented Vågåmo Ophiolite sheet, with inset of the Feragen area (Nilsson et al., 1997).

The Feragen ultramafic body covers an area of about 3 x 5 km (15 sq km) and is described by Nilsson et al. (1997) as having a "pseudostratigraphic thickness" of 4-5 km thick. Internal layering generally strikes NW-SE to E-W, and dips steeply to vertical. It is considered to represent the upper mantle section of the ophiolite sequence. To the south and east, the

ultramafic body is in thrust contact with the underlying basement gneisses and schists, to the west it is in faulted contact with Ordovician metagabbro of unknown provenance, and to the north it is in contact with Ordovician schists (Røros Schist – a calcareous schist) and Devonian serpentinite conglomerates that unconformably overly the ultramafic body.

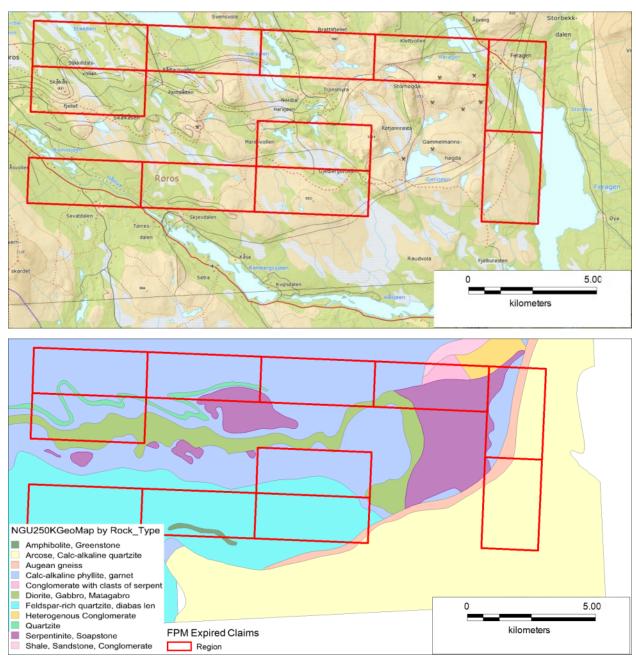
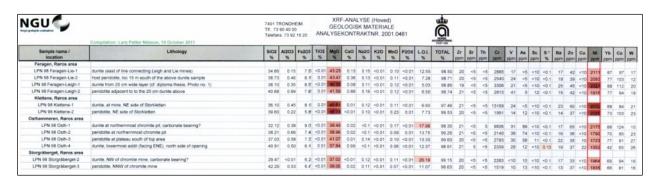



Fig 4. The Topographic and Geological map of Feragen ultramafic body overlaid by FPM expired permits (modified after NGU 250K public online map).

2.1.1 PUBLISHED AWARUITE MINERALIZATION AT FERAGEN ULTRAMAFIC BODY

Awaruite was described by Hultin (1968) and Du Rietz (1956) (summarised by Moore & Hultin, 1980) as forming small (0.05 mm) anhedral grains associated with magnetite, chromite, chlorite and serpentine. These authors also note that no primary sulphides have been found, and pentlandite only rarely occurs around awaruite — it is assumed that this pentlandite is secondary replacement of awaruite (but begs the question of the source of the sulphur). Awaruite is invariably hosted by medium- to strongly serpentinized rocks, and is presumed to be related to the release of nickel during the alteration of the olivine.

Favourable characteristics for awaruite mineralization are indicated by XRF analyses made by Lars Petter Nilsson (see Table 2 for details) which shows the ultramafics at Feragen and the surrounding area have Ni contents of about 1800 - 2200 ppm Ni. Sulphur is <0.1% throughout. The NGU former reports mention Ni contents of 0.25 - 0.35% Ni in 18 ultramafic rocks (peridotite, dunite, serpentinite) sampled at Feragen for PGE, with 0 - 0.05% Ni in sulphide, and 0.14 to 0.15% Ni in 5 samples of chromitite (> 38% Cr_2O_3) from Feragen. The more recent investigations (1980's) by Lars Petter Nilsson and his colleagues at NGU have focused on the PGE content of the ultrabasic bodies. PGE contents are generally very low (100 – 200 ppb total PGE) with only very occasional samples yielding >1 ppm total PGE.

Tab. 2 Selected XRF Analyses on peridotites from the Feragen and surrounding areas. Provided by Dr Lars Petter Nilsson, NGU Trondheim, 2011.

2.1.2 FORMER DATA COMPILATION

FPM's dataset have been mainly compiled of several publications obtained during the visit of company's geologists to NGU in Trondheim in winter 2011, namely to Dr Rogn Boyd (Head of Mineral Resources Section) and Dr Lars-Petter Nilsson. Based on older reports available on NGU, (list attached in Table 3) the relevant data have been extracted and in-built into the dataset. Some of these data are presented herein, however rest remaining unpublished due to still valid permits in the region.

2.1.2.1 GEOLOGICAL MAPPING

Two special data sources have been chosen as base for further field work: (i) Cotkin (1983) covering the eastern part of body and sketch from Nilsson (?1997 - unpublished) relating to distribution of ultramafic phaneritic rocks and chromite deposits showing the detail mapping results of western Raudhammer ultramafic body (Figure 5). Both maps accompanying this report are geo-referenced raster images.

The Feragen body consists of medium to strongly serpentinized peridotite (harzburgite) and dunite intrusions – serpentinite, magnetite, chlorite, talc and carbonate (magnesite) are the dominant minerals. In an early study, Cotkin (1983) describes various phases of serpentine, and relates these to a metamorphic history. Primary olivine, orthopyroxene and clinopyroxene are described from the less altered dunites and peridotites (Moore & Hultin, 1980).

The subsequent geological work at Feragen concentrated on the chromite and the PGM during the 1980's as part of a national programme to investigate PGE potential. As part of this project, Lars-Petter Nilsson undertook detailed petrological work, including further descriptions on awaruite, during and after his PhD studies on PGE and Cr potential in the deposits. During the 1980's, the NGU undertook geological and geophysical studies over the Feragen ultramafic as part of a nation-wide programme on PGE exploration, and drilled 6 ddh (total 640 m) into, but not through (it is estimated from geophysical studies to be about 300 m thick) the ultramafic body.

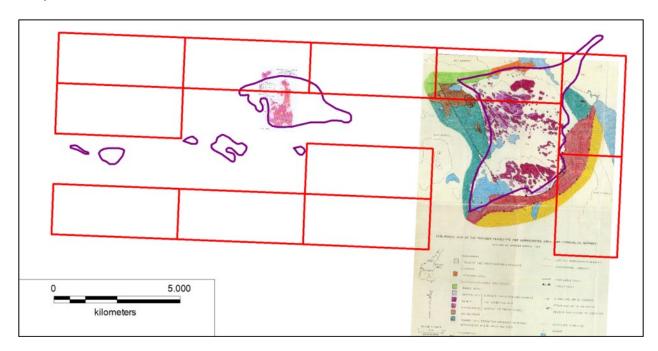


Fig 5. Two detailed geological maps of the exploration area: West - distribution of ultramafic phaneritic rocks and chromite deposits (Nilsson ?1997); East – The petrogenesis and structural geology of the Feragen peridotite (Cotkin 1983).

2.1.2.2 GEOPHYSICS

NGU geophysical survey work included: ground magnetics, gravity as well as helicopter-borne airborne EM, magnetics and radiometrics on the area of expired claims. (Figure 6)The results of the airborne and gravity are summarised in NGU Report 1750-33E (1980).

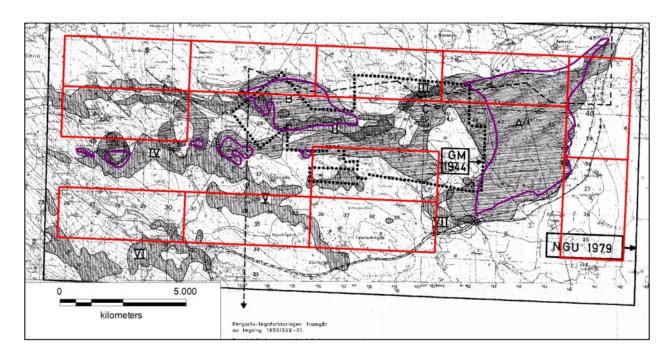


Fig 6. Airborne EM, Radiometric and Magnetic survey over the Roros-Feragen ultramafic body (NGU Report 1750-33E, Plot 01A).

Title	NGU Report Number	Author	Date	Comments
Tyndemålinger over Feragen ultrmafittmassiv	1750/33D	Sindre, Atle	1981	Gravity Survey
IP- og magnetiske målinger i Feragen Kromittfelt, Røros, Sør-Trøndelag	1650/33b	Eidsvig, Per	1978	IP and ground mag surveys
Undersøkelse av ultramfiske bergater og krommalm på strekningen Røros-Feragen, Røros, Sør-Trødelag	1650/33A	Nilsson, Lars Petter	1978	Maps, petrology and chemistry
Røros-Feragen områdets ultramafiske bergarter og kromittforekomster, Røros, Sør-Trøndelag	1750/33E	Korneliussen, arne & Nilsson, Lars Petter	1980	Geochem, results of the diamond drilling
Magetiske-, elektromagnetiske og radiometriske målinger fra helikpter over Feragen, Røros, Sør-Trøndelag	1750/33C	Håbrekke, Henrik	1980	Airborne geophysics
En malmgeologisk undersøkelse av kromittforekomstene i Fergaen-Feltet met hinblikk på å bestemme eventuele økonomiske produkter		Nilsson, Lars Petter	1977	Diploma thesis

Tab. 3 List of the NGU reports have used for data compilation plus reference of Nilsson's Master Thesis which have been used as well.

2.1.2.3 NGU ROCK SAMPLES

Identified in NGU reports and attached graphics, 39 Rock samples collected by NGU during the 1980' have been digitized and plotted in database on expired permits area. None of them contains awaruite based on given description but they provide a good lead to first recognition of the rock types and chromite mineralization. A good consistency have been found between what's been observed in the field and sample description recorded in the reports. The sample locations are shown on Figure 7 along the chromite occurrences obtained as a public file on NGU website. List of the samples is given in Table 4.

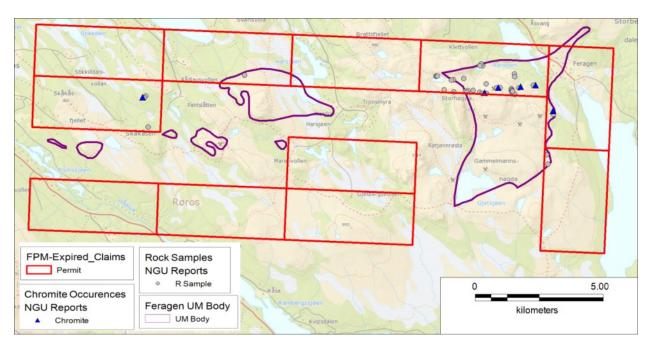


Fig 7. Position of Rock samples extracted from NGU reports) and chromite occurrences downloaded from NGU GIS website. List of the rock samples and its description see in Table 4.

# on Original Sketch	# Assay	Locality	Rock	Awaruite Record	X(UTM32)	Y(UTM32)
5	5	Lergruben	Not recorded	No	644918.21	6940427.25
6	6	Stensgruben	Not recorded	No	644349.33	6940293.87
7	7	north of Fjelltjern	serpentinite, magnesite	No	642912.25	6941091.6
8	8A	north of Fjelltjern	Not recorded	No	642839.07	6941165.33
8	8B		Not recorded	No	642793.83	6941088.17
9	9	east of Djupskartjern	Not recorded	No	642188.14	6940559.03
10	10	east of Djupskartjern	Not recorded	No	641790.84	6940497.32
11	11A	Kongen	Not recorded	No	642271.93	6940073.71
11	11B		Not recorded	No	642382.48	6940093.86
12	12	Koyegruben	Not recorded	No	642578.65	6940116.09
13	13	east of Koyegruben	Not recorded	No	642831.13	6940060.54
14	14	St.Paul	Not recorded	No	643065.04	6940397.4
15	15	Falkestien	Not recorded	No	643481.01	6940258.13
16	16A	Jonetta	Not recorded	No	644132.67	6940061.29
16	16B		Not recorded	No	644198.7	6940037.77

17	17	Northwest of Jonetta	Not recorded	No	644063.93	6940147.61
18	18A	Amalie? og Konradine	Not recorded	No	644064.9	6940247.28
18	18B		Not recorded	No	644078.99	6940205.91
18	18C		Not recorded	No	644097.88	6940175.23
18	18D		Not recorded	No	644112.97	6940151.37
24	24	south of Kongen	Not recorded	No	642316.93	6940030.24
28	28	Vessel	Not recorded	No	642917.01	6940015.03
29	29	Smegruben	Not recorded	No	643100.56	6940021.21
52	52	Trilotten	Not recorded	No	645556.53	6937741.04
64	64	north of Roragsgruben ?	Not recorded	No	644153.78	6940834.7
65	65	Roragsgruben?	Not recorded	No	644169.35	6940718.24
100	100	east of Skarhogdgruben	serpentinized peridotite	No	645749.73	6939319.9
103	103	northwest of Djupskartjern	Not recorded	No	641099.28	6940601.17
104	104	northwest of Djupskartjern	hornblendite	No	641142.94	6940615.75
105	105	northwest of Djupskartjern	hornblendite	No	641151.61	6940613.26
106	106	east of Djupskartjern	tuffite	No	641714.09	6940488.5
123	123	Rauhammeren	serpentinized dunite	No	633646.57	6940339.32
138	138	Osthammeren	compact chromite ore	No	629830.71	6939373.93
139	139	Osthammeren	serpentinized peridotite	No	629788.22	6939298.55
140	140	south of Osthammeren	serpentinized peridotite	No	629972.7	6938166.5
149	149	Klumpen, Seast offeltet	mylonittiserte	No	645618.77	6937372.76
155	155	Storhogda	saussuritt gabbro	No	641442.69	6940090.95
156	156	Storhogda	saussuritt gabbro	No	641831.14	6940020.97
160	160	east of Falkestien	serpentinized peridotite	No	643627.26	6940278.32

Tab. 4 List of 39 Rock samples extracted from NGU reports within the expired claims. No awaruite recorded within this area.

2.2 FPM FIELD OBSERVATIONS

Initial reconnaissance field visit of the FPM geologists took place in late 2011. Dr Duncan Large and MSc Sven Hönig made a one day trip to the northeastern part of the Feragen body to make first observations to confirm the magnetism and to collect several rock samples.

Crew sampled 13 rock and float samples (usually highly magnetic peridotite) from boulders and outcrops, and walked through the property - photographing, visiting the dumps of the old Lergruv and Skardgruv mines as well as other outcrops. Rock samples were firstly cut, slabs inspected by hand lens and latter under the optic microscope. Awaruite (or other metallic highly reflecting mineral/aggregates) were observed almost in each slab. Samples were later on submitted to ALS Lab in Pitea (sample prep) and to ACME Labs in Vancouver (Appendix 1 – Analytical Methods). Assay results of 2011 collected samples are presented in Table 5.

Favorable results from 2011 attracted the FPM to apply for exploration permits (submitted 2011, approved early 2012) as well to design 2012 summer exploration/sampling program.

FPM Geologist Sven Hönig and contractor geologist Robert Stenberg from Geopool came to Roros early July 2012 to run 6 weeks sampling survey thru the main Feragen ultramafic body. As proposed by Dr Ron Britten (FPM VP Exploration) — crew completed a 200 m GPS-controlled grid, collecting the fist-size rock sample every 200 m on each line. Samples were continuously

cut using the diamante blade in Mr. Ole-Jörgen Kjellmark assembly hall in Roros. Thus 74 rock samples (both from outcrops and boulders) were collected, which of 46 were submitted to laboratory analysis. Sample description and its chemical composition results are shown in Table 6, Figure 8. The GIS Mapinfo file (.tab) with the rock sample characteristics accompanies the report. Figure 9 shows rock samples in more detail as well as location of field-made photos published on Figure 10.

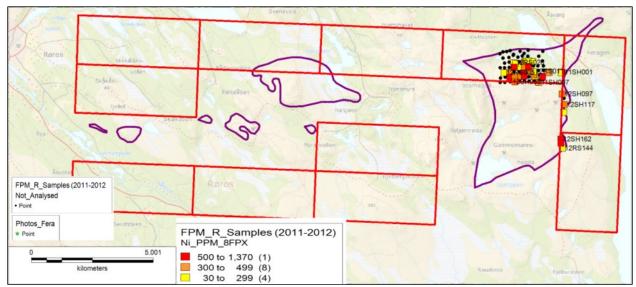


Fig 8 Overview of field activity in 2011 and 2012; Rock sampling/field observation have focused only on eastern main ultramafic body. Many more samples were collected within the still active claims. Legend: squares refer to Ni8FPX (Partial extraction Nickel) concentration, dots represent collected but not assayed samples.

Generally, the field observations were favorable, and permissive for awaruite further exploration (serpentinized and fractured peridotite, moderate to strong magnetism of non-chromite mineralized serpentinite, reported presence of awaruite in chromite-bearing samples, lack of sulphide mineralization and moderate Ni8FPX numbers). No or very little sulphides were observed in the serpentinite, but do occur in stream float association with dark grey schists (probably the host to copper sulphide mineralization in the country rocks, close to E contact of the body).

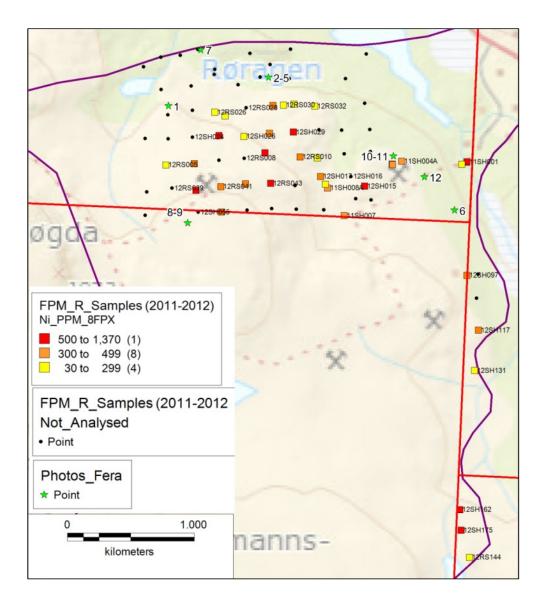


Fig 9 Detail of exploration results from 2011-2012. Legend: squares refer to Ni8FPX (Partial extraction Nickel) concentration, dots represent collected but not assayed samples. Green stars show location of field-made photos, recorded in Figure 10.

Mapping results indicated serpentinized peridotite is locally strongly fractured (spacing 4-5 cm), and shears are marked by talc and "soapy" serpentinite veins (Figure 10). Magnetism is variable from weak (usually in association with chromite) to strong — both on the sheared surfaces as well as locally in the fine-grained host rocks. In spite of the strong magnetism, magnetite is difficult to see except rare blebs, however is very common microveinlets. No detailed mapping and/or no geophysical survey were made during the field work. Thus, main results are related to the area of the rock samples and their chemical and mineralogical composition.

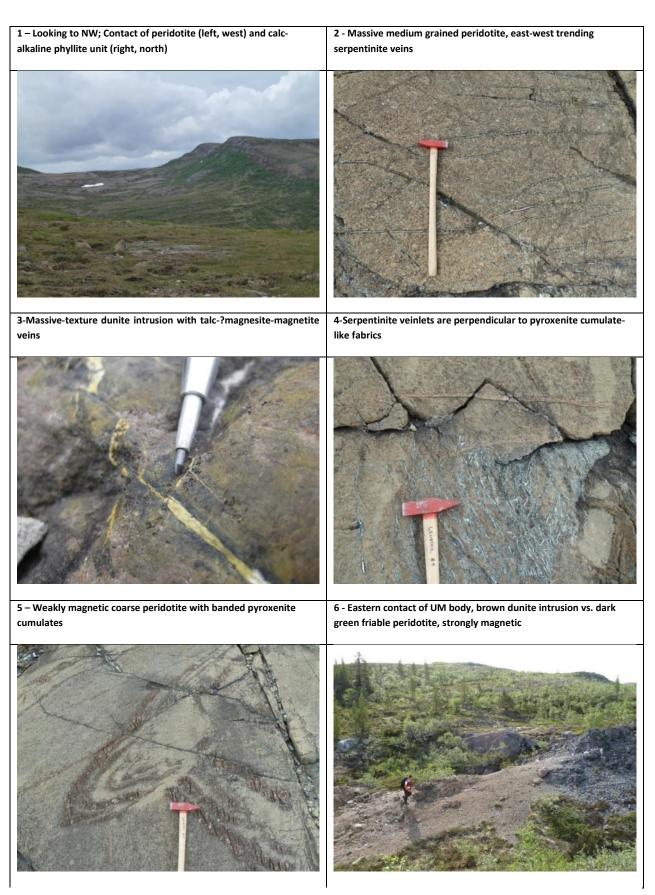


Fig 10 Typical rock types, textures and features of Feragen northeastern part. Photo locations shown on Figure 9.

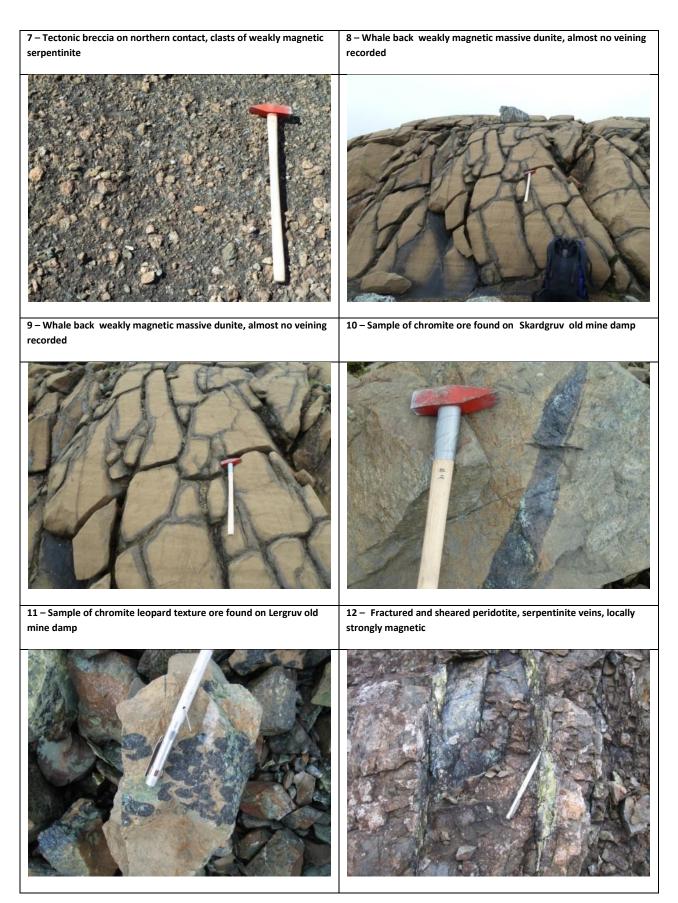


Fig 10 (continue) Typical rock types, textures and features of Feragen northeastern part. Photo locations shown on Figure 9.

Sample_ #	Area	Zone	Easting	Northing	Rock_Type	Mag_text	Serp	Awar_ size	Awar_ra nge	Awar _%	Sulphi de	Awar _Char acter	Mag_ Susc	Ni_PP M_8F PX	Ni_PP M_1E	Fe_PP M_8F PX	Mg_PP M_8FPX	Fe 1E	Cr_PPM _1E	Mg _1E	S _1 _e
11SH001	Ferag en	UTM 33	645424.1	6940470	peridotite	mg vlets	m serp	3	3	а	0	diss	S	178	2035	133	854	5.09	1368	24.33	<0. 1
11SH002	Ferag en	UTM 33	645425.7	6940471	peridotite	cg stwk	s serp	2	2	а	0	diss	m	554	2725	119	1739	4.36	1197	26.74	<0. 1
11SH003 A	Ferag en	UTM 33	645386.7	6940450	dunite	mg vlets	m serp	2	2	С	0	diss	m	304	2977	280	1555	5.45	1733	24.5	<0. 1
11SH003 B	Ferag en	UTM 33	645386.7	6940450	peridotite	cg px xtals	m serp	1	1	w-c	0	diss	m	73	2515	140	1002	5.47	1049	22.73	<0. 1
11SH004 A	Ferag en	UTM 33	644908.2	6940454	peridotite	mg mfs	s serp	1	1	w	0	diss	S	214	2407	140	1986	4.68	1495	24.42	<0. 1
11SH004 B	Ferag en	UTM 33	644908.2	6940454	peridotite	cg mfs	m serp	3	3	С	0	diss	m-w	416	2393	158	1459	4.62	1145	24.09	<0. 1
11SH005	Ferag en	UTM 33	644834.7	6940429	dunite	fg mfr, rext	m serp	2	2	v	0	diss	s	455	2961	242	1300	4.24	1743	25.94	<0. 1
11SH006	Ferag en	UTM 33	644837.8	6940424	peridotite	mg mfr	m serp	2	2	w	0	diss	s	397	2546	100	2208	4.19	838	26.37	<0. 1
11SH007	Ferag en	UTM 33	644471.6	6940004	dunite	fg serp vlets	m serp	2	2	t-w	0	in vlets	s	415	2662	142	1873	5.19	1025	26.94	<0. 1
11SH008 A	Ferag en	UTM 33	644332	6940217	peridotite	mg mfr	m serp	3	3	a	0	in clucte rs	m	462	2479	276	1086	5.18	1053	25.8	<0. 1
11SH008 B	Ferag en	UTM 33	644332	6940217	peridotite	mg mfr	m serp	3	3	С	0	diss	m	427	2296	235	1776	5.77	1094	24.48	<0. 1
11SH008 C	Ferag en	UTM 33	644332	6940217	dunite	fg serp vlets	m serp	2	2	w-c	0	diss		343	2519	293	2167	4.19	817	25.34	<0. 1
11SH009	Ferag en	UTM 33	644313.1	6940247	dunite	mg mfr	m serp	2	2	t	0	diss	m	180	2495	304	1212	4.66	923	26.24	<0. 1

Tab. 5 List of 13 Rock samples collected during 2011 first observation. Explanation of abbreviations in Table 6.

Sample_ #	Outcr op bould er	Zone	Easting	Northing	Rock_ Type	mag_text	Awar _size	Awar _rang e	aw ar_ %	Sulphi de	mag_ susc	Ni_PPM _8FPX	Ni_PPM _1E	Fe_PP M_8F PX	Fe 1E	Mg_P PM_8 FPX	Mg _1E	S_PPM_ 8FPX	S _1E	Ca1 E	Al _1E	Cr1E
12RS005	outcr op	UTM3 2	643044.94	6940344.14	dunit e	msv text, r irreg serp v, awar in v	2	2/1	w	0	S	272	2695	213	4.22	2119	26.37	0	0	0.12	0.04	404
12RS006	outcr op	UTM3 2	643268.5	6940364.17	dunit e	irreg mfr serp v, diss awar	4	4/2	w-c	0	S	433	2728	243	4.22	2329	26.25	0	0	0.06	0.21	1028
12RS007	bould er	UTM3 2	643462.75	6940399	perid otite	fg text, diss awar	2	2/2	r	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS008	bould er	UTM3 2	643660.66	6940423.85	perid otite	rext py	2	2/1	w	0	m	0	0	0	0	0	0	0	0	0	0	0
12RS009	outcr op	UTM3 2	643824.47	6940474.03	dunit e	serp mfr, diss awar	3	3/1	а	0	S	520	2443	410	6.03	1589	23.55	0	0	0.04	0.31	1630
12RS010	outcr op	UTM3 2	644103.17	6940453.2	dunit e	m serp vlet, diss awar	4	4/1	w	0	S	387	2747	356	4.71	2259	24.85	0	0	0.06	0.11	2062
12RS011	outcr op	UTM3 2	644240.22	6940449.56	perid otite	rext text	3	3/1	w-c	0	m	172	2257	255	8.52	997	22.25	0	0	0.04	0.49	1858
12RS012	bould er	UTM3 2	644452.6	6940493.82	perid otite	serp v	0	0-0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS013	outcr op	UTM3 2	644657.06	6940519.3	perid otite	rext px, diss awar	1	1/1	r	0	m	0	0	0	0	0	0	0	0	0	0	0
12RS024	bould er	UTM3 2	643041.53	6940740.95	perid otite	rext/ m serp mfr	0	0/0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS025	bould er	UTM3 2	643234.95	6940782.97	perid otite	serp in mfr	0	0-0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS026	outcr op	UTM3 2	643412.32	6940776.69	perid otite	rext px, diss awar	3	3/1	w-c	0	S	152	2455	906	5.21	2252	25.22	0	0	0.59	0.39	1098
12RS027	outcr op	UTM3 2	643494.28	6940750.18	dunit e	serp mrf, diss awar	1	1/1	r	0	m	287	2558	586	4.88	1992	25.11	0	0	0.04	0.34	1344
12RS028	bould er	UTM3 2	643660.11	6940821.65	perid otite	rext/ mfr serp v/ Awar in serp v	3	3/1	а	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS029	outcr op	UTM3 2	643870.41	6940850.96	perid otite	serp mfr, rext px, diss mawar	2	2/1	W-C	0	S	361	2471	356	4.51	1866	24.33	0	0	0.49	0.44	1165
12RS030	outcr op	UTM3 2	643955.24	6940856.63	perid otite	rext/ W serp v/ Awar in serp v	1	1/1	w	0	S	250	2328	300	5.01	1297	23.18	0	0	1.1	0.65	1281
12RS031	outcr op	UTM3 2	644036.86	6940867.41	perid otite	irreg w serp v	2	2/1	w	0	S	225	2437	238	4.2	1538	23.26	0	0	0.83	0.65	1425
12RS032	outcr op	UTM3 2	644202.65	6940858.42	perid otite	mfr serp vlet/ Awar in serp vlet	4	4/1	r	0	S	219	2507	317	5.56	1543	24.71	0	0	0.7	0.59	1410
12RS038	outcr op	UTM3 2	642902.29	6940125.09	dunit e	msv text	1	1/1	r	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS039	outcr op	UTM3 2	643100.8	6940162.36	dunit e	irreg w serp v	1	1/1	r	0	m	0	0	0	0	0	0	0	0	0	0	0
12RS040	outcr op	UTM3 2	643290.06	6940152.82	dunit e	serp mfr, awar in v	4	4/2	w	0	s	537	2875	402	4.15	2464	25.62	0	0	0.07	0.04	527
12RS041	outcr op	UTM3 2	643485.56	6940191.12	dunit e	serp in mfr/ Diss Awar	2	2/1	С	0	s	407	2706	473	5.1	3031	25.72	0	0	0.02	0.06	929
12RS042	outcr op	UTM3 2	643680.28	6940222.22	dunit e	serp mfr, awar in v	3	3/1	W-C	0	S	401	2837	803	5.71	4043	27.23	0	0	0.06	0.13	1364
12RS043	outcr op	UTM3 2	643880.74	6940234.01	dunit e	m serp vlet, awar in v	3	3/1	С	0	m	846	2818	518	4.1	2852	26.02	0	0	0.1	0.1	462
12RS044	outcr op	UTM3 2	644072.94	6940225.2	dunit e	m serp mfr	2	2/2	r	0	m	0	0	0	0	0	0	0	0	0	0	0
12RS076	bould er	UTM3 2	645547.83	6939400.41	perid otite	rext px, diss awar	1	1/1	w-c	0	s	0	0	0	0	0	0	0	0	0	0	0

12RS144	outcr op	UTM3	645581.9	6937351.08	perid otite	rext px, diss awar	2	2/1	w	0	S	213	2181	1047	5.04	2236	23.13	0	0	0.92	1.04	1223
12RS160	bould er	UTM3	643120.6	6941213.45	perid otite	mfr	2	2/1	c-a	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS161	outcr	UTM3	643257.74	6941266.87	dunit e	msv text. Diss awar	1	1/1	r-w	0	s	0	0	0	0	0	0	0	0	0	0	0
12RS162	outcr op	UTM3 2	643397.54	6941115.59	perid otite	rext px, serp mfr, diss awar	1	1/1	а	0	s	0	0	0	0	0	0	0	0	0	0	0
12RS163	outcr op	UTM3 2	643671	6941253.99	perid otite	rext px, msv text, diss awar	1	1/1	а	0	s	0	0	0	0	0	0	0	0	0	0	0
12RS164	outcr op	UTM3 2	643835.03	6941171.9	perid otite	fluid text	1	1/1	r	0	S	0	0	0	0	0	0	0	0	0	0	0
12RS165	outcr op	UTM3 2	643990.98	6941299.94	dunit e	tectonic bx	0	0-0	0	0	m	0	0	0	0	0	0	0	0	0	0	0
12RS166	bould er	UTM3 2	644591.95	6941288.1	dunit e	serp msv text, diss awar	1	1/1	r-w	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH015	outcr op	UTM3 2	644624.85	6940243.9	dunit e	int serp mfr, diss awar	3	3/1	c-a	0	S	631	2531	413	5.3	1914	24.72	0	0	0.05	0.26	1162
12SH016	bould er)	UTM3 2	644512.74	6940316.76	dunit e	serp mfr, diss awar	1	1/1	r-w	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH017	outcr op	UTM3 2	644271.71	6940306.52	perid otite	serp mfr, rext py, diss awar	3	3/1	С	0	s	413	2700	326	4.25	1919	25.2	0	0	0.14	0.33	1017
12SH022	bould er	UTM3 2	642870.88	6940546.05	dunit e	msv text	0	0-0	0	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH023	bould er	UTM3 2	643053.63	6940552.18	perid otite	serp in mfr/ Diss Awar/ magn in serp v	6	6/1	а	0	s	0	0	0	0	0	0	0	0	0	0	0
12SH024	bould er	UTM3 2	643244.55	6940572.48	perid otite	rext/ s serp v, mfr	0	0-0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH025	outcr op	UTM3 2	643454.26	6940593.78	perid otite	m serp v	2	2/1	С	0	m	634	2514	352	5.12	1419	24.37	0	0	0.28	0.32	1148
12SH026	outcr op	UTM3 2	643652.39	6940595.43	perid otite	w serp v, diss awar	2	2/1	W-C	0	m	289	2412	356	4.98	1729	24.17	0	0	0.98	0.7	1157
12SH027	outcr op	UTM3 2	643853.52	6940627.75	perid otite/ dunit e	serp vlet/ Awar in serp vlet	1	1/1	r	0	S	384	2999	550	4.84	2979	27.4	0	0	0.08	0.05	1085
12SH029	outcr op	UTM3 2	644041.27	6940645.98	dunit e	serp mfr, diss awar	1	1/1	С	0	S	514	2650	2285	4.46	1125 5	25.55	0	0	0.04	0.2	740
12SH030	bould er	UTM3 2	644244.25	6940674.31	perid otite	m serp v	0	0-0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH031	bould er	UTM3 2	644423.15	6940679.92	perid otite	w serp mfr, diss awar	2	2/1	С	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH032	bould er	UTM3 2	644646.01	6940692.71	perid otite	r serp v, diss awar	1	1/1	w	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH039	outcr op	UTM3 2	642834.85	6941112.19	dunit e	msv text, diss awar	1	1/1	w	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH040 A	outcr op	UTM3 2	642968.21	6941191.78	perid otite	m serp v/ Diss Awar?	0	0-0	0	0	w	0	0	0	0	0	0	0	0	0	0	0
12SH040 B	outcr op	UTM3 2	642968.21	6941191.78	dunit e	m serp v/ Diss Awar?	0	0-0	0	0	w	0	0	0	0	0	0	0	0	0	0	0
12SH041	bould er	UTM3 2	642979.54	6940938.91	dunit e	serp mfr, diss awar	4	4/2	а	0	vs	0	0	0	0	0	0	0	0	0	0	0
12SH042	bould er	UTM3 2	643215.71	6940975.09	perid otite	r serp v	0	0-0	0	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH043	outcr op	UTM3 2	643394.98	6941075	perid otite	mfr text, diss awar	3	3/1	c-a	0	S	0	0	0	0	0	0	0	0	0	0	0

12SH044	outcr op	UTM3 2	643587.3	6941002.71	dunit e	m serp vlet	0	0-0	0	0	s	0	0	0	0	0	0	0	0	0	0	0
12SH045	outcr op	UTM3 2	643759.57	6941069.32	perid otite	rext/ s serp v	0	0-0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH046	outcr op	UTM3 2	643990.47	6941066.36	perid otite	rext/ W serp v	3	3/3	r	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH047	bould er	UTM3 2	644436.62	6941088.06	perid otite	rext/ serp v/ Diss Awar	2	2/1	w	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH048	bould er	UTM3 2	644596.16	6940900.03	perid otite	mfr serp vlet	0	0-0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH053	outcr op	UTM3 2	642896.65	6939940.57	dunit e	w serp v	2	2/2	r	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH054	outcr op	UTM3 2	643092.15	6939952.71	dunit e	msv text	0	0-0	0	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH055	outcr op	UTM3 2	643314.69	6939982.53	dunit e	w serp mfr, diss awar	3	3/3	w	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH056	outcr op	UTM3 2	643499.19	6939989.88	perid otite	serp mfr, diss awar	2	2/1	c-a	0	s	426	2705	1775	5.73	7514	26.24	0	0	0.4	0.34	798
12SH057	outcr op	UTM3 2	643701.7	6940013.73	dunit e	msv text	0	0-0	0	0	s	0	0	0	0	0	0	0	0	0	0	0
12SH058	outcr op	UTM3 2	643895.76	6940037.1	dunit e	m serp v	2	2/2	r	0	s	0	0	0	0	0	0	0	0	0	0	0
12SH059	outcr op	UTM3 2	644091.45	6940039.19	perid otite	cb v, chl v	0	0-0	0	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH060	outcr op	UTM3 2	644308.62	6940043.46	perid otite	rext/ m serp vlet/ Awar in v	1	1/1	r	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH061	outcr op	UTM3 2	644557.09	6940142.84	perid otite	rext/ mfr serp v/ Awar in mfr	1	1/1	r	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH062	outcr op	UTM3 2	644678.99	6940137.21	perid otite	m serp vlet, rext px	1	1/1	С	0	m	0	0	0	0	0	0	0	0	0	0	0
12SH096	bould er (r)	UTM3 2	645552.96	6939589.63	perid otite	w serp vlet/ diss awar	1	1/1	w	0	S	0	0	0	0	0	0	0	0	0	0	0
12SH097	outcr op	UTM3 2	645464.43	6939575.83	perid otite	s serp v,vlet/ awar mostly in v,vlet	2	2/1	w	0	m	353	2487	126	4.88	1126	23.77	0	0	0.33	0.52	1385
12SH117	outcr op	UTM3 2	645574.07	6939146.99	perid otite	serp vlet, serp mfr, diss awar	3	3/1	С	0	m-s	448	2115	343	4.58	1616	22.86	0	0	0.78	0.95	1291
12SH131	outcr op	UTM3 2	645558.83	6938827.74	perid otite	rext px, diss awar	1	1/1	w	0	m	276	2362	513	4.78	2796	23.68	0	0	0.22	0.31	1410
12SH162	outcr op	UTM3 2	645490.06	6937723.9	perid otite	v s rext px, serp vlet, diss awar	4	4/1	c-a	0	s	501	2684	251	4.86	1593	25.46	0	0	0.16	0.42	1472
12SH175	outcr op	UTM3 2	645506.53	6937562.49	perid otite	s serp v, mfr/ diss awar	3	3/1	a	0	S	849	2741	347	3.96	2330	24.58	0	0	0.05	0.27	816

LEGEND

a	alt	awar	bas	blk	cb	chl	ckbx	cr	d	dk	diss	fecb II	fg	fluid	gb	grn	gy	hz	int	istl	irreg	m
abundant	alter ation	awar uiit	basalt	black	carbo nate	chlorite	crackl e brecci a	chro mite	du nit e	dark	disse mina ted	iron carbona te	fine grained	fluidal	gabrr o	green	grey	heazlew oodite	intr usiv e	intersti tial	irreg ular	moderat e
n	р	pen	ph	po	ру	qt	r	rext	s	serp	sg	sh	sil	stwk	sub II	sul	text	tr	v	v s	vlet	volc
none	perid otite	penet rative	phyric	pyrrhotite	pyrite	quartz	rare	recrys tallize	str on	serpe ntine	speci fic	shear	silicificat ion	stock work	sub parall	sulphi de	textur e	trace	vein	very strong	veinl et	volcanic

						d	g		gravi ty		el				
mat	med	mfr	mg	mill	r = rare, one or two grains	1 = <0.05 mm	red	head, quires d lense							
matrix	medi um	micro fractu re	medium grained	millerite	w = weak, few grains	2 = 0.05- .1		visible grains, e with hand							
w	wh sp	Xtals	yel	u	c = common, numerous grains	3 = .12	eye	le naked in the nshine							
weak	white spots	crysta Is	yellow	ultramafic	a = abundant, even more grains	4 = .23	eye	le naked in the nshine							
						5 = .2- .4mm 6 = >.4m m	eye sur visibl eye	le naked e in the enshine le naked e in the enshine							

Table 6 – Rock samples collected during 2012 field work, 46 were analyzed for partial extraction Nickel as well for other components.

2.2.1 FIRST POINT SEM OBSERVATION

Several rock thin sections and slabs were studied using SEM. However only one thin section belongs to the area of currently dropped claims. Results are attached below (Figure 11).

Sample #: 12SH162

Field observations: Aw 1-4, c-a

Analysis: 501 ppm Ni in alloy, 2684 ppm total Ni

Microscopic observations:

- Interlocking texture of serpentine
- Primary opx
- Olivine
- Trace-rare medium grained awaruite(25-50µm); in serpentine matrix
- Common fine awaruite (<5 microns) in serpentine matrix
- Rare-common composites (25-100 microns) in serpentine veinlets, aw + ptd

Highlights: spn in mostly antigorite, fine and medium grains of awaruite, rare-common composites

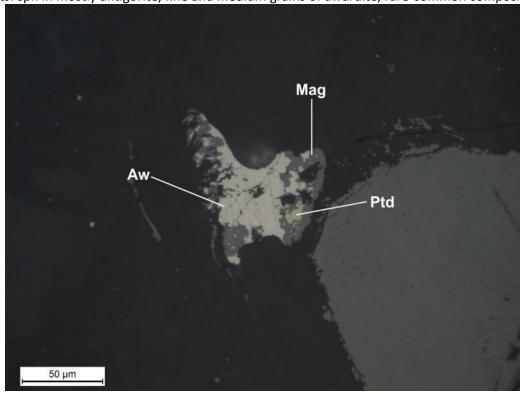


Figure 11: Composite grain of pentlandite, magnetite and awaruite.

Since this report refers only to dropped claims, there was no more work performed in the area. There was no activity such as field observation or detail GIS compilation made on Raudhammer ultramafic body or further west on smaller ultramafic pods. Minor ultramafic bodies located on the west of property were found as too small for such type of target and thus those clams were liberated. More sampling and mapping were completed on still active claims, mainly on the east and southeast of the permits.

3. LEKA ISLAND REGION

3.1 GEOLOGIAL SETTING OF LEKA ISLAND OPHIOLITE

Leka, as the most complete ophiolite complex among the other bodies of ophiolite fragments within Upper Allochton of Scandinavian Caledonides (Furnes et al, 1980), and as almost totally exposed surface offers a good potential for awaruite nickel-iron alloy recognition. Moreover, the awaruite were described from the Leka by Johannesen (1992) during the survey targeting the PGMs. For more details see please mentioned publication.

3.2 FPM OBSERVATIONS

FPM's geologists visited to the Leka only one time (August 2012) and were staying 3 days. During the trip 4 Rock samples, 10 cobble samples and 9 silt samples were collected. Samples were processed same way as those from Feragen. Results including lab assays are graphically displayed on Figure 12, for more details see Tables 7, 8, 9.

The claims have been decided to drop mainly due to relatively low Ni8FPX numbers and the higher content of sulfur (sulfides observed in most samples). Other unfavorable characteristics for awaruite mineralization are common massive pyroxenite dykes, only weakly serpentinizedultramafic bodies and layered cumulates were noted (Figure 13). Ni content in pyroxenite and layered sequences is lower compared to serpentinized peridotite and will not generate a significant amount of Ni-Fe alloy mineralization.

4. REFERENCES

Cotkin, S.J. (1983): The petrogenesis and structural geology of the Feragen peridotite and associated rocks, Sør-Trøndelag, east-central Norway. M.Sc. Thesis University of Wisconsin (Abstract only, with geological map)

Du Rietz, T. (1956): The content of chromium and nickel in the Caledonian rocks of Sweden. Geol. Føren. Sth. Førh. 78, p 223-300

Gee, D.G., Juhlin, C., Pascal, C. & Robinson, P. (2010): Collisional Orogenyin the Scandinavian Caledonides (COSC), GFF, 132: 1, 29 - 44

Furnes, H., Roberts, D., Sturt, B.A., Thon, A. & Gale, G.A. (1980): Ophiolite fragments in the Scandinavian Caledonides, in Ophiolites: Pcoc. Intern. Ophiolite Symp. Cyprus 1979, p.582-600

Hultin, I. (1968): Awaruite (josephinite), a new mineral for Norway. Nor. Geol. Tidsskr. 48, p 179-185

Johannesen, G.M. (1992): Mineralogy of platinum-group elements in the Caledonian Leka ophiolite complex. PhD thesis, Geological institute, department A – University of Bergen

Moore, A.C. & Hultin, I. (1980): Petrology, mineralogy, and origin of the Feragen ultramafic body, Sør-Trøndelag, Norway. Norsk Geol. Tidsskr. 60, p. 235-254

Nilsson, L.P. (1990): Platinum-Group Mineral Inclusions in Chromitite from the Osthammeren ultramafic tectonite body, south central Norway. Mineralogy and Petrology, 42, p. 249-263

Nilsson, L.P. & Sturt, B.A. (1995): Magmatic and detrital pyrrhotite and pentlandite and magmatic troilite from Nordfjellmark, Velfjord-Tosen region, Central Norwegian Caledonides. NGU Bulletin 427, p 116-118

Nilsson, L.P., Sturt, B.A. & Ramsay, D.M. (1997): Ophiolite ultramafites in the Folldal-Røros tract, and their Cr-(PGE) mineralisation. NGU-Bull, 433, p 10-11

Roberts, D. (2003): The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues. Tectonophysics 365, p 283-299

5. Appendix 1 - Analytical Methods

Total nickel was assayed by Acme Laboratory, Vancouver, BC, Canada, using a four acid digestion, which determines the total nickel present, in both nickel-iron alloy and silicate form in rock samples. This method would also include nickel in sulphide and other forms of nickel, if they were present.

Alloy nickel was analyzed by Acme using an alloy-selective analytical method (8FPX) that selectively dissolves nickel present as nickel-iron alloy and does not extract the nickel present within rock-forming silicate minerals. Following independent studies, including the development of certified standards to monitor accuracy, this analytical method has been certified by Dr. Barry Smee of Smee & Associates Consulting Ltd. Dr. Smee is a consulting geologist/geochemist who works internationally. His work includes: evaluating the performance of assay laboratories; recommending to companies effective assay quality control procedures; and certifying laboratory standards. As part of the quality control program implemented by the Company, these standards, plus blanks and duplicates, were assayed for total nickel and nickel present as nickel-iron alloy.

This commercially certified alloy-selective analytical method has been developed for the exclusive use of, and is proprietary to, First Point Minerals.